

STD4NK100Z

N-channel 1000 V, 5.6 Ω 2.2 A SuperMESH™ Power MOSFET Zener-protected in DPAK package

Datasheet — preliminary data

Features

Order code	V _{DSS}	R _{DS(on)} max	I _D
STD4NK100Z	1000 V	< 6.8 Ω	2.2 A

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized
- Very low intrinsic capacitance
- Very good manufacturing repeatability

Applications

- Switching application
 - Automotive

This device is an N-channel Zener-protected Power MOSFET developed using STMicroelectronics' SuperMESH™ technology, achieved through optimization of ST's well established strip-based PowerMESH™ layout. In addition to a significant reduction in onresistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

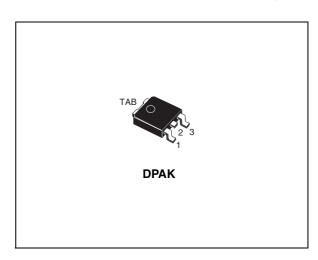
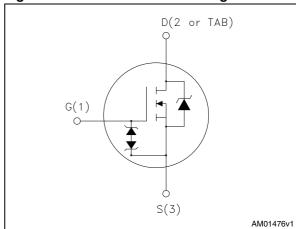



Figure 1. Internal schematic diagram

www.st.com

Table 1. Device summary

change without notice.

Order code	Marking	Package	Packaging
STD4NK100Z	4NK100Z	DPAK	Tape and reel

March 2012 Doc ID 022821 Rev 1 1/12

Contents STD4NK100Z

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
3	Test circuits	6
4	Package mechanical data	7
5	Packaging mechanical data	9
6	Revision history	1

STD4NK100Z Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	1000	V
V _{GS}	Gate-source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	2.2	Α
I _D	Drain current (continuous) at T _C =100 °C	1	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	8.8	Α
P _{TOT}	Total dissipation at T _C = 25 °C	90	W
	Derating factor	0.72	W/°C
V _{ESD(G-S)}	Gate source ESD (HBM-C=100pF, R=1.5 kΩ)	3000	V
dv/dt (2)	Peak diode recovery voltage slope TBD		V/ns
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.39	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	50	°C/W

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _{JMAX})	2.2	Α
E _{AS}	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AR} , V _{DD} =50 V)	TBD	mJ

^{2.} $I_{SD} \leq 2.2$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$.

2 Electrical characteristics

(T_{CASE}=25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	1000			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 1000 V, V _{DS} = 1000 V, Tc = 125 °C			1 50	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{GS} = 0)	V _{GS} = ± 20 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	٧
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 1.1 A		5.6	6.8	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0	-	601 53 12	-	pF pF pF
C _{oss. eq} ⁽¹⁾	Equivalent output capacitance	V _{GS} =0, V _{DS} =0 V to 800 V	-	TBD	-	pF
$\begin{array}{c} t_{\text{d(on)}} \\ t_{\text{r}} \\ t_{\text{d(off)}} \\ t_{\text{f}} \end{array}$	Turn-on delay time Rise time Off-voltage rise time Fall time	V_{DD} =500 V, I_{D} = 1.25 A, R_{G} =4.7 Ω V_{GS} =10 V (see <i>Figure 4</i>)	-	15 7.5 32 39	-	ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =800 V, I_{D} = 2.5 A V_{GS} =10 V (see <i>Figure 3</i>)	-	18 3.6 9.2	-	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol Parameter Test conditions Min. Typ. Max. Unit Source-drain current 2.2 Α I_{SD} $I_{SDM}^{(1)}$ 8.8 Source-drain current (pulsed) Α $V_{SD}^{(2)}$ I_{SD} = 2.2 A, V_{GS} =0 Forward on voltage -1.6 ٧ $I_{SD} = 2.5 A$ Reverse recovery time 584 t_{rr} ns $di/dt = 100 A/\mu s$, Q_{rr} Reverse recovery charge 2.3 μC V_{DD}=100 V Reverse recovery current 8 Α I_{RRM} (see Figure 2) I_{SD}= 2.5 A, Reverse recovery time 628 ns t_{rr} $di/dt = 100 A/\mu s$, 2.5 Q_{rr} Reverse recovery charge μC V_{DD}=100 V, T_i=150 °C Reverse recovery current 8.1 Α I_{RRM} (see Figure 2)

Table 7. Source drain diode

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	Igs=± 1 mA (open drain)	30		-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300 μs , duty cycle 1.5%

Test circuits STD4NK100Z

3 Test circuits

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

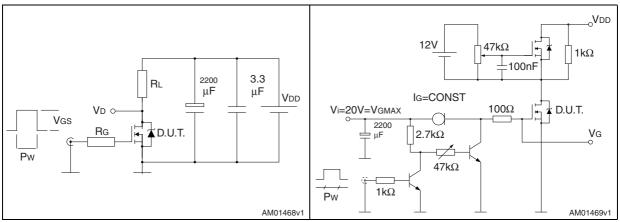


Figure 4. Test circuit for inductive load switching and diode recovery times

Figure 5. Unclamped inductive load test circuit

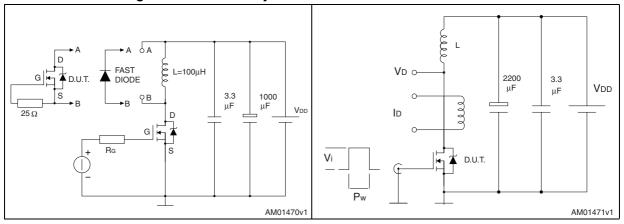
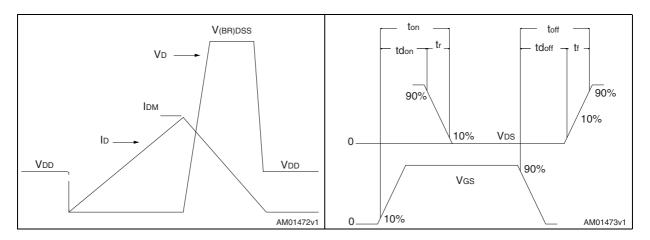



Figure 6. Unclamped inductive waveform

Figure 7. Switching time waveform

6/12 Doc ID 022821 Rev 1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. DPAK (TO-252) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
Е	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		1.50
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0°		8°

Figure 8. DPAK (TO-252) drawing

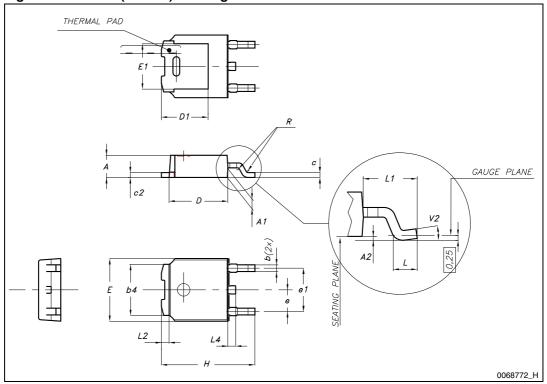
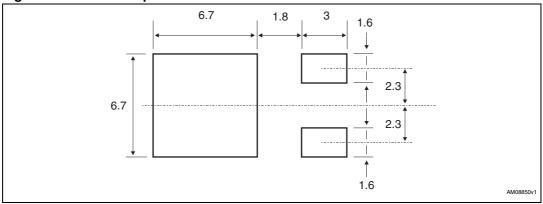



Figure 9. DPAK footprint^(a)

577

a. All dimensions are in millimeters

5 Packaging mechanical data

Table 10. DPAK (TO-252) tape and reel mechanical data

	Таре			Reel	
Dim	n	nm	Dim	n	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
T	0.25	0.35			
W	15.7	16.3			

Figure 10. Tape for DPAK (TO-252)

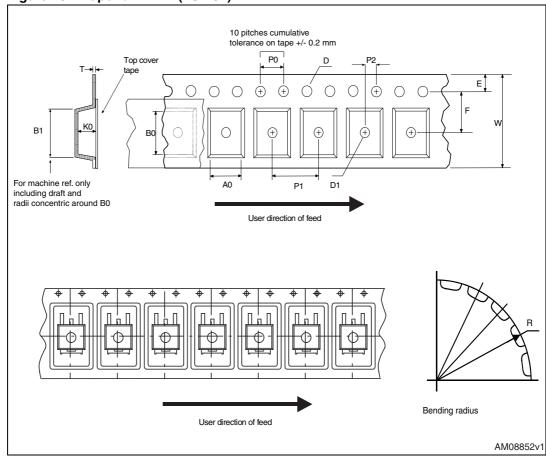
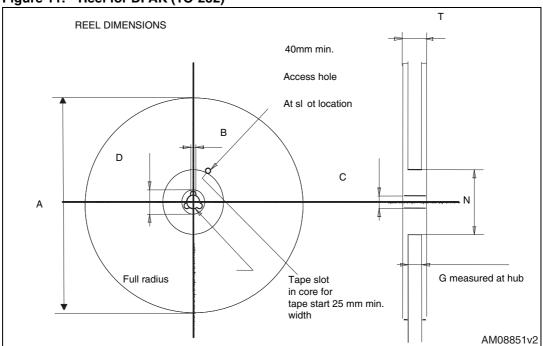



Figure 11. Reel for DPAK (TO-252)

STD4NK100Z Revision history

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
02-mar-2012	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 022821 Rev 1

