Table 1: General Features

TYPE	$\mathbf{V}_{\text {DSs }} @$ TJmax 2	$R_{\text {DS(on) }}$	$\mathbf{I}_{\mathbf{d}}$	P $_{\text {TOT }}$
STP5NK60Z	650 V	$<1.6 \Omega$	5 A	90 W
STP5NK60ZFP	650 V	$<1.6 \Omega$	5 A	25 W
STD5NK60Z	650 V	$<1.6 \Omega$	5 A	90 W

- TYPICAL R ${ }_{\text {DS }}$ (on) $=1.2 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING

REPEATIBILITY

DESCRIPTION

The SuperMESH ${ }^{\text {TM }}$ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH ${ }^{\text {TM }}$ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOSFETs including revolutionary MDmesh ${ }^{\text {TM }}$ products.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- IDEAL FOR OFF-LINE POWER SUPPLIES, ADAPTORS AND PFC
- LIGHTING

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STP5NK60Z	P5NK60Z	TO-220	TUBE
STP5NK60ZFP	P5NK60ZFP	TO-220FP	TUBE
STD5NK60ZT4	D5NK60	DPAK	TAPE \&REEL

Rev. 7

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value		Unit
		TO-220/DPAK	TO-220FP	
$\mathrm{V}_{\text {DS }}$	Drain-source Voltage ($\left.\mathrm{V}_{\mathrm{GS}}=0\right)$	600		V
$V_{\text {DGR }}$	Drain-gate Voltage ($\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$)	600		V
V_{GS}	Gate- source Voltage	± 30		V
ID	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	5	5 (*)	A
ID	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	3.16	3.16 (*)	A
IDM (•)	Drain Current (pulsed)	20	20 (*)	A
Ртот	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	90	25	W
	Derating Factor	0.72	0.2	W/ ${ }^{\circ} \mathrm{C}$
$\left.\mathrm{V}_{\text {ESD }} \mathrm{G}-\mathrm{S}\right)$	Gate source ESD (HBM-C=100pF, R=1.5K ${ }^{\text {a }}$)	3000		V
dv/dt (1)	Peak Diode Recovery voltage slope	4.5		V / ns
$\mathrm{V}_{\text {ISO }}$	Insulation Withstand Voltage (DC)	-	2500	V
$\begin{gathered} \hline \mathrm{T}_{\mathrm{j}} \\ \mathrm{~T}_{\mathrm{stg}} \end{gathered}$	Operating Junction Temperature Storage Temperature	-55 to 150		${ }^{\circ} \mathrm{C}$

(•) Pulse width limited by safe operating area
(1) ISD $^{55 A}$, di/dt $\leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\text {DD }} \leq \mathrm{V}_{\text {(BR) }}$ DSS, $\mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {JMAX }}$.
${ }^{(}$) Limited only by maximum temperature allowed
Thermal Data

		TO-220/DPAK	TO-220FP	
Rthj-case	Thermal Resistance Junction-case Max	1.39	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
T_{1}	Maximum Lead Temperature For Soldering Purpose	300	${ }^{\circ} \mathrm{C}$	

(\#) When mounted on 1inch ${ }^{2}$ FR-4, 2 Oz copper board.
Table 4: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I_{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_{j} max)	5	A
E_{AS}	Single Pulse Avalanche Energy (starting $\left.\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=I_{\mathrm{AR}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}\right)$	220	mJ

Table 5: Gate-Source Zener Diode

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
BVGSO	Gate-Source Breakdown Voltage	$\operatorname{lgs}= \pm 1 \mathrm{~mA}$ (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED)
Table 6: On/Off

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {(BR) }} \mathrm{DSS}$	Drain-source Breakdown Voltage	$\mathrm{ID}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	600			V
IDSS	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{Max}$ Rating $\mathrm{V}_{\mathrm{DS}}=\mathrm{Max}$ Rating, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1 50	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{GSS}}$	Gate-body Leakage Current ($\left.\mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		± 10	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	3	3.75	4.5	V
$\mathrm{R}_{\mathrm{DS}(\text { on })}$	Static Drain-source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$		1.2	1.6	Ω

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{gfs}_{\text {f }}(1)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$		4		S
$\begin{aligned} & \hline \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$		$\begin{aligned} & 690 \\ & 90 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Coss eq. (3)	Equivalent Output Capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 480 V		40		pF
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ t_{r} t_{d} (off) t_{r}	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 20) } \end{aligned}$		$\begin{aligned} & 16 \\ & 25 \\ & 36 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \left.\hline \mathrm{tr}_{(\text {Voff }}\right) \\ \mathrm{tf}_{\mathrm{t}} \\ \mathrm{t}_{\mathrm{c}} \end{gathered}$	Off-voltage Rise Time Fall Time Cross-over Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=480 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 20) } \end{aligned}$		$\begin{aligned} & 12 \\ & 10 \\ & 24 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \hline \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{O} \\ & \text { (see Figure 23) } \\ & \hline \end{aligned}$		$\begin{gathered} \hline 26 \\ 6 \\ 20 \end{gathered}$	34	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

Table 8: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \text { ISD } \\ \text { ISDM (2) } \end{gathered}$	Source-drain Current Source-drain Current (pulsed)				$\begin{gathered} 5 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {SD }}$ (1)	Forward On Voltage	$\mathrm{I}_{\mathrm{SD}}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			1.6	V
$\begin{gathered} \hline \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \\ \hline \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \text { ISD }=5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s} \\ & \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see Figure 21) } \\ & \hline \end{aligned}$		$\begin{gathered} 485 \\ 2.7 \\ 11 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$

Note: 1. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
2. Pulse width limited by safe operating area.
3. $C_{\text {oss eq. }}$ is defined as a constant equivalent capacitance giving the same charging time as $C_{o s s}$ when $V_{D s}$ increases from 0 to 80% VDSS.
www.bdtic.com/ST

Figure 3: Safe Operating Area For TO-220/ DPAK

Figure 4: Safe Operating Area For TO-220FP

Figure 5: Output Characteristics

Figure 6: Thermal Impedance For TO-220/ DPAK

Figure 7: Thermal Impedance For TO-220FP

Figure 8: Transfer Characteristics

Figure 9: Transconductance

Figure 10: Gate Charge vs Gate-source Voltage

Figure 11: Normalized Gate Threshold Voltage vs Temperature

Figure 12: Static Drain-source On Resistance

Figure 13: Capacitance Variations

Figure 14: Normalized On Resistance vs Temperature

Figure 15:

Figure 16: Source-Drain Forward Characteristics

Figure 17: Maximum Avalanche Energy vs Temperature

Figure 18: Normalized BVdss vs Temperature

Figure 19: Unclamped Inductive Load Test Circuit

Figure 20: Switching Times Test Circuit For Resistive Load

Figure 21: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 22: Unclamped Inductive Wafeform

Figure 23: Gate Charge Test Circuit

STP5NK60Z - STP5NK60ZFP- STD5NK60Z

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-220 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
c	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
e	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

www.bdtic.com/ST

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	. 0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
\varnothing	3		3.2	0.118		0.126

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
B	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
C	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
E	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
H	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

Table 9: Revision History

Date	Revision	Description of Changes
05-Apr-2005	1	First issue
29-Apr-2005	2	Modified value in Table 7.
06-Sep-2005	3	Inserted Ecopack indication
14-Oct-2005	4	Modified value on Table 1
28-Oct-2005	5	Tape \& Reel info added
14-Nov-2005	6	Modified value on Table 6
15-Dec-2005	7	Various corrections

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

