High-speed low-power quad operational amplifier with dual standby position

Features

■ Low supply current: 4.5 mA
■ High speed: $150 \mathrm{MHz}-110 \mathrm{~V} / \mu \mathrm{s}$
■ Unity gain stability
■ Low offset voltage: 4 mV
■ Low noise $4.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$

- Specified for 600Ω and 150Ω loads

■ High video performances:

- differential gain: 0.03\%
- differential phase: 0.07°
- gain flatness: $6 \mathrm{MHz}, 0.1 \mathrm{~dB}$ max. at 10 db gain

Applications

- Video buffers

■ A/D converter drivers

Description

The TSH95 is a low-power, high-frequency quad operational amplifier designated for high-quality video processing. The device offers an excellent speed consumption ratio with 4.5 mA per amplifier for a 150 MHz bandwidth.
A high slew rate and low noise also make it suitable for high-quality audio applications.

The TSH95 offers two separate complementary STANDBY pins: STANDBY 1 acting on operators 1 and 2, and STANDBY 2 acting on operators 3 and 4.

These pins reduce the consumption of the corresponding operators and put the output in a high impedance state.

1 Schematic diagram

Figure 1. Schematic diagram

2
 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	14	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$	± 5	V
V_{i}	Input voltage ${ }^{(3)}$	-0.3 to 12	V
$\mathrm{T}_{\text {oper }}$	Operating free-air temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	CDM: charged device model ${ }^{(4)}$ HBM: human body model ${ }^{(5)}$ MM: machine model ${ }^{(6)}$	$\begin{gathered} 1.5 \\ 2 \\ 200 \end{gathered}$	$\begin{gathered} \mathrm{kV} \\ \mathrm{kV} \\ \mathrm{~V} \end{gathered}$

1. All voltages values, except differential voltage, are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed $\mathrm{V}_{\mathrm{CC}}{ }^{+}+0.3 \mathrm{~V}$.
4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	7 to 12	V
$\mathrm{~V}_{\text {ic }}$	Common mode input voltage range	$\mathrm{V}_{\mathrm{CC}}{ }^{-}+2$ to $\mathrm{V}_{\mathrm{CC}^{+}-1}$	V

3 Electrical characteristics

 (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	$\begin{aligned} & \text { Input offset voltage } \mathrm{V}_{\mathrm{ic}}=\mathrm{V}_{\mathrm{o}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max. }} \end{aligned}$			$\begin{aligned} & 4 \\ & 6 \end{aligned}$	mV
I_{i}	Input offset current $T_{\min .} \leq T_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		1	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ib }}$	Input bias current $\mathrm{T}_{\min .} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\mu \mathrm{A}$
I_{CC}	Supply current (per amplifier, no load) $T_{\min .} \leq T_{\operatorname{amb}} \leq T_{\max }$		4.5	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	mA
CMR	Common-mode rejection ratio $\mathrm{V}_{\text {ic }}=-3 \mathrm{~V}$ to $+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=0 \mathrm{~V}$ $T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }}$.	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	100		dB
SVR	Supply voltage rejection ratio $\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}$ to $\pm 3 \mathrm{~V}$ $T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }}$.	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	75		dB
Avd	Large signal voltage gain $R_{L}=10 \mathrm{k} \Omega, \quad \mathrm{Vo}= \pm 2.5 \mathrm{~V}$ $\mathrm{T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max. }}$	$\begin{aligned} & 57 \\ & 54 \end{aligned}$	70		dB
V_{OH}	High level output voltage $\mathrm{V}_{\text {id }}=1 \mathrm{~V}$ $\begin{array}{ll} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{R}_{\mathrm{L}}=150 \Omega \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{array}$	$\begin{gathered} 3 \\ 2.5 \\ 2.4 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$		V
V_{OL}	Low level output voltage $\mathrm{V}_{\mathrm{id}}=11 \mathrm{~V}$ $\begin{array}{ll} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{R}_{\mathrm{L}}=150 \Omega \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{array}$		$\begin{aligned} & -3.5 \\ & -2.8 \end{aligned}$	$\begin{gathered} -3 \\ -2.5 \\ -2.4 \end{gathered}$	V
I_{0}	Output short circuit current Vid $= \pm 1 \mathrm{~V}$ Source Sink $T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max. }}$ Source Sink	$\begin{aligned} & 20 \\ & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 36 \\ & 40 \end{aligned}$		mA
GBP	Gain bandwidth product $A_{V C L}=100, R_{L}=600 \Omega C_{L}=15 \mathrm{pF}, \mathrm{f}=7.5 \mathrm{MHz}$	90	150		MHz
$\mathrm{f}_{\text {T }}$	Transition frequency		90		MHz
SR	Slew rate $V_{\text {in }}=-2 \text { to }+2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	62	110		V/ $\mu \mathrm{s}$
e_{n}	Equivalent input voltage noise $\mathrm{R}_{S}=50 \Omega \mathrm{f}=1 \mathrm{kHz}$		4.2		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
¢m	Phase margin $\mathrm{A}_{\mathrm{VM}}=+1$		35		Degrees
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel separation $f=1 \mathrm{MHz}$ to 10 MHz		65		dB
Gf	Gain flatness $\mathrm{f}=\mathrm{DC}$ to $6 \mathrm{MHz}, \mathrm{A}_{\mathrm{VCL}}=10 \mathrm{~dB}$			0.1	dB
THD	Total harmonic distortion $\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$		0.01		\%

Table 3. $\quad \mathrm{V}_{\mathrm{cc}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}-=-5 \mathrm{~V}$, pin 8 connected to 0 V , pin 9 connected to $\mathrm{V}_{\mathrm{Cc}}+, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit
ΔG	Differential gain $\mathrm{f}=3.58 \mathrm{MHz}, \mathrm{A}_{\mathrm{VCL}}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$		0.03		$\%$
$\Delta \varphi$	Differential phase $\mathrm{f}=3.58 \mathrm{MHz}, \mathrm{A}_{\mathrm{VCL}}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$		0.07		Degree

Table 4. Standby mode: $\mathrm{V}_{\mathrm{CC}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {SBY }}$	Pin 8/9 threshold voltage for STANDBY mode	$\mathrm{V}_{\text {CC }}{ }^{+}-2.2$	$V_{C C^{+}}-1.6$	$\begin{gathered} \mathrm{v}_{\mathrm{CC}}+- \\ 1.0 \end{gathered}$	V
$\mathrm{I}_{\text {CC SBY }}$	Total consumption: Pin $8($ Standby 1$)=0, \operatorname{Pin} 9(\overline{\text { Standby } 2})=0$ Pin $8($ Standby 1$)=0, \operatorname{Pin} 9(\overline{\text { Standby } 2})=1$ Pin $8($ Standby 1$)=0, \operatorname{Pin} 9($ Standby 2$)=0$		$\begin{aligned} & 9.4 \\ & 9.4 \\ & 0.8 \end{aligned}$		mA
$\mathrm{I}_{\text {sol }}$	Input/output isolation ($f=1 \mathrm{MHz}$ to 10 MHz)		70		dB
t_{ON}	Time from Standby mode to Active mode		200		ns
$\mathrm{t}_{\text {OFF }}$	Time from Active mode to Standby mode		200		ns
I_{D}	Standby driving current		2		pA
I_{OL}	Output leakage current		20		pA
IIL	Input leakage current		20		pA

Table 5. Standby control pin status

Logic input		Status	
Standby 1	Standby 2	Op-amps 1 and 2	Op-amps 2 and 3
0	0	Enable	Standby
0	1	Enable	Enable
1	0	Standby	Standby
1	1	Standby	Enable

Figure 2. Standby position

To put the device in standby, a logic level must be applied on the standby MOS input. Since ground is a virtual level for the device, the threshold voltage has been referred to $\mathrm{V}_{\mathrm{CC}+}$ at $\mathrm{V}_{\mathrm{CC}+}-1.6 \mathrm{~V}$ typical.

In standby mode, the output goes into high impedance in 200 ns . Note that all maximum ratings must still be followed in this mode. This mode leads to a swing limitation while using the device in a signal multiplexing configuration with followers; the differential input voltage must not exceed $\pm 5 \mathrm{~V}$, limiting the input swing to 2.5 Vpp .

4 Application information

Figure 3. Signal multiplexing

Figure 4. Sample and hold

4.1 Printed circuit layout recommendations

As with any high-frequency device, a few rules must be observed when designing the PCB so as to maximize performance.
From the most to the least important points:

- Each power supply lead must be bypassed to ground with a 10 nF ceramic capacitor and a $10 \mu \mathrm{~F}$ capacitor placed very close to the device.
- To provide low inductance and low resistance common return, use a ground plane or common point return for power and signal.
- All leads must be wide and as short as possible, especially for the inputs, in order to decrease parasitic capacitance and inductance.
- Use small resistor values to decrease the time constant with parasitic capacitance.
- Choose the smallest-possible component sizes (SMD).
- Decrease the capacitor load at the output to avoid degrading the circuit's stability and cause oscillation. You can also add a serial resistor to minimize its influence.

Figure 5. Large signal follower response

Figure 6. Static open-loop voltage gain

Figure 7. Input offset voltage drift versus temperature

Figure 8. Small signal follower response

Figure 10. Closed-lop frequency response and phase shift

www.bdtic.com/ST

Figure 11. Audio bandwidth frequency response \& phase shift (TSH95 vs standard 15 MHz audio op-amp)

Figure 13. Crosstalk isolation vs. frequency (SO-16 package)

Figure 15. Input/output isolation in standby mode (SO-16 package)

Figure 17. Signal multiplexing
Figure 18. Differential input impedance versus frequency

Figure 19. Common input impedance versus frequency

5 Macromodel information

The information below applies to the TSH95I.
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS :

* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TSH95 1324556 (analog)
**************** switch
.SUBCKT SWITCH 2010 IN OUT COM
.MODEL DIDEAL D N=0.1 IS=1E-08
DP IN 1 DIDEAL 400E-12
DN OUT 2 DIDEAL 400E-12
EP 1 OUT COM 102
EN 2 IN COM 102
RFUIT1 IN 1 1E+09
RFUIT2 OUT 2 1E+09
RCOM COM 0 1E+12
. ENDS SWITCH

```
            inverter
                *****************
```

.SUBCKT INV 2010 IN OUT
.MODEL DIDEAL D N=0.1 IS=1E-08
$\begin{array}{llll}R P 1 & 20 & 15 & 1 E+09\end{array}$
RN1 $15 \quad 10$ 1E+09
RIN IN 10 1E+12
RIP IN 20 1E+12
DPINV OUT 20 DIDEAL 400E-12
DNINV 10 OUT DIDEAL 400E-12
GINV 0 OUT IN $15-6.7 \mathrm{E}-7$
CINV 0 OUT 210f

```
.ENDS INV
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 1314DC 0
FPOL 13 5 VSTB 1E+03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
ISTB0 4 5 130UA
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 120 3.160721E+03
XCOM1 4 0 120 5 COM SWITCH
RG2 19 121 3.160721E+03
```

XCOM2 404121 COM SWITCH
CC $1952.00000 \mathrm{E}-09$
DOPM 1922 MDTH 400E-12
DONM 2119 MDTH 400E-12
HOPM 2228 VOUT 1.504000E+03
VIPM $2845.000000 \mathrm{E}+01$
HONM 2127 VOUT 1.400000E+03
VINM 527 5.000000E+01
*********** ZP
ZP
RZP1 580 1E+06
RZP2 480 1E+06
GZP $5821980 \quad 2.5 \mathrm{E}-05$
RZP2H 83410000
RZP1H 838280000
RZP2B 84510000
RZP1B 828480000
LZPH 483 3.535e-02
LZPB $8453.535 e-02$

EOUT26 238251
VOUT 2350
ROUT 2610335
COUT 1035 30.000000E-12
XCOM 401033 COM SWITCH
DOP 1925 MDTH 400E-12
VOP 425 2.361965E+00
DON 2419 MDTH 400E-12
VON $2452.361965 \mathrm{E}+00$
********** STAND BY
RMI1 4111 1E+7

RMI2 0111 2E+7
RONOFF 660 1K
CONOGG 60 10p
RSTBIN $6001 \mathrm{E}+12$
ESTBIN 1060601
ESTBREF 10610711101
DSTB1 107108 MDTH 400E-12
VSTB 1081090
ISTB 1090 1U
RSTB 1091101
DSTB2 0110 MDTH 400E-12
XINV 406 COM INV
. ENDS

Table 6. Electrical characteristics with $\mathrm{V}_{\mathrm{Cc}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Conditions	Value	Unit
V_{io}		0	mV
A_{vd}	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	3.2	$\mathrm{~V} / \mathrm{mV}$
I_{CC}	No load/amplifier	5.2	mA
$\mathrm{~V}_{\mathrm{icm}}$		-3 to 4	V
$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	+3.6	V
$\mathrm{~V}_{\mathrm{OL}}$	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	-3.6	V
$\mathrm{I}_{\text {sink }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	mA
$\mathrm{I}_{\text {source }}$	$\mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$	40	mA
GBP	$\mathrm{R}_{\mathrm{L}}=600 \Omega \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	147	MHz
SR	$\mathrm{R}_{\mathrm{L}}=600 \Omega \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	110	$\mathrm{~V} / \mathrm{\mu s}$
$\phi \mathrm{~m}$	$\mathrm{R}_{\mathrm{L}}=600 \Omega \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	42	Degrees

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

6.1 SO-16 package information

Figure 20. SO-16 package mechanical drawing

Table 7. SO-16 package mechanical data

Ref.								Millimeters							Inches
	Min.	Typ.	Max.	Min.	Typ.	Max.									
A			1.75			0.069									
A1	0.10		0.25	0.004		0.010									
A2	1.25			0.049											
b	0.31		0.51	0.012		0.020									
c	0.17		0.25	0.007		0.010									
$\mathrm{D}^{(1)}$	9.80	9.90	10.00	0.386	0.390	0.394									
E	5.80	6.00	6.20	0.228	0.236	0.244									
E1 ${ }^{(2)}$	3.80	3.90	4.00	0.150	0.154	0.157									
e		1.27			0.050										
h	0.25		0.50	0.010		0.020									
L	0.40		1.27	0.016		0.050									
k	0		8												
ccc			0.10			0.004									

1. Does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs not to exceed 0.15 mm in total.
2. Does not include interlead flash or protrusions. Interlead flash or protrusions not to exceed 0.25 mm per side.
www.bdtic.com/ST

7 Ordering information

Table 8. Order codes

Part number	Temperature range	Package	Packing	Marking
TSH95ID	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO-16	Tube or Tape \& reel	TSH95I
TSH95IDT				
TSH95IYD ${ }^{(1)}$		SO-16		TSH95IY
TSH95IYDT ${ }^{(1)}$		(Automotive grade)		

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 \& Q 002 or equivalent are on-going.

8 Revision history

Table 9. Document revision history

Date	Revision	Changes
01-Nov-2000	1	Initial release.
27-Aug-2009	2	Document format updated. Updated SO-16 package information in Chapter 6. Added automotive grade order codes in Table 8.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

