www.bdtic.com/ST

REV. 2

STANDARD

Table 1: Main Features

Symbol	Value	Unit
I _{T(RMS)}	6	А
V _{DRM} /V _{RRM}	600 and 1000	V
I _{GT}	15	mA

DESCRIPTION

February 2006

The TYN606 and TYN1006 family of Silicon Controlled Rectifiers are high performance glass passivated technology.

This general purpose Family of Silicon Controlled

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (180° conduction angle) $T_c = 110^{\circ}C$		6	А	
IT _(AV)	Average on-state current (180° conduc	tion angle)	T _c = 110°C	3.8	А
l=a	Non repetitive surge peak on-state	t _p = 8.3 ms	T _i = 25°C	73	А
I _{TSM}	current	t _p = 10 ms	$\frac{1}{j} = 250$	70	
l²t	I ^² t Value for fusing	t _p = 10 ms	T _j = 25°C	24.5	A ² s
dl/dt	$\label{eq:transformation} \begin{array}{l} Critical \mbox{ rate of rise of on-state current} \\ I_G = 100 \mbox{ mA }, \mbox{ dI}_G/\mbox{ dt} = 0.1 \mbox{ A/}\mbox{ \mus} \end{array} \qquad T_j = 12 \label{eq:transformation}$		T _j = 125°C	50	A/µs
I _{GM}	Peak gate current $t_p = 20 \ \mu s$		T _j = 125°C	4	А
$P_{G(AV)}$	Average gate power dissipation		T _j = 125°C	1	W
P_{GM}	Maximum gate power $t_p = 20 \ \mu s$ $T_j = T_j = 0 \ \mu s$		T _j = 125°C	10	W
V_{DRM}	Repetitive peak off-state voltageTYN606TYN1006 $T_j = 125^{\circ}C$		T: = 125°C	600	V
V _{RRM}			1] = 120 0	1000	v
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C
ΤL	Maximum lead temperature for soldering during 10s at 2mm from case 260			260	°C

Rectifiers is designed for power supply up to 400Hz on resistive or inductive load.

Table 3: Absolute Ratings (limiting values)

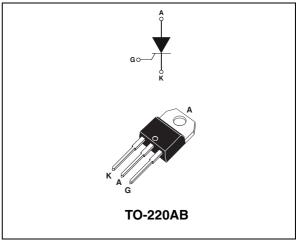

TO-220AB

Table 2: Order Codes

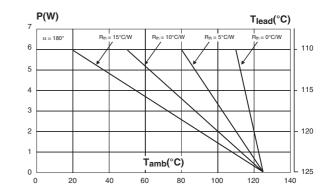
Part N	umbers	Marking
TYN	606RG	TYN606
TYN1	006RG	TYN1006

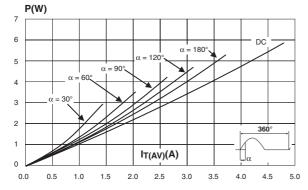
TYN606 TYN1006

6A SCRs

TYN606 / TYN1006

Symbol	Test Conditions		Value	Unit	
I _{GT}	$V_{\rm D} = 12 \text{V} (\text{D.C.}) \text{R}_1 = 33 \Omega$		MAX.	15	mA
V_{GT}	$v_{\rm D} = 12 v (D.0.) + 11 = 33.22$		MAX.	1.5	V
V_{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$	T _j = 110°C	MIN.	0.2	V
t _{gt}	$V_D = V_{DRM}$ $I_G = 40$ mA $dI_G/dt = 0.5$ A/µs		TYP.	2	μs
Ι _Η	I _T = 100 mA Gate open		MAX.	30	mA
١L	$I_{G} = 1.2 \times I_{GT}$		TYP.	50	mA
dV/dt	$ \begin{array}{l} \mbox{Linear slope up to:} \\ \mbox{V}_D = \ 67 \ \% \ \mbox{V}_{DRM} \ \ \mbox{Gate open} \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		MIN.	200	V/µs
V_{TM}	I _{TM} = 12 A tp = 380 μs		MAX.	1.6	V
I _{DRM}	V _{DBM} = V _{BBM}	$T_j = 25^{\circ}C$	MAX.	10	μA
I _{RRM}		T _j = 110°C		2	mA
t _q		$T_j = 110^{\circ}C$	TYP.	70	μs

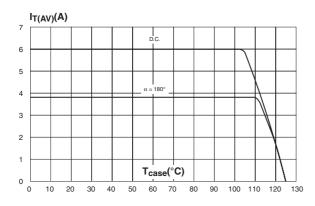

Tables 4: Electrical Characteristics (T_i = 25°C, unless otherwise specified)


Table 5: Thermal Resistance

Symbol	Parameter		Unit
R _{th(j-c)}	Junction to case (D.C.)	2.5	°C/W
R _{th(j-a)}	Junction to ambient	60	°C/W

Figure 1: Maximum average power dissipation versus average on-state current

Figure 2: Correlation between maximum average power dissipation and maximum allowable temperature (T_{amb} and T_{lead})



www.bdtic.com/ST

Figure 3: Average on-state current versus case temperature

Figure 5: Relative variation of gate trigger current versus junction temperature

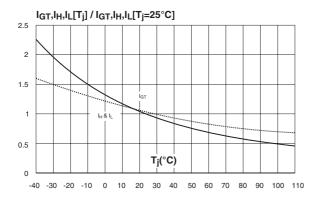


Figure 7: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding values of l^2t

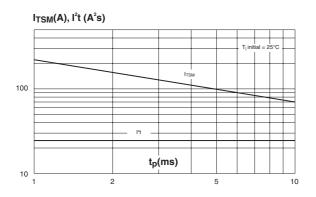


Figure 4: Relative variation of thermal impedance versus pulse duration

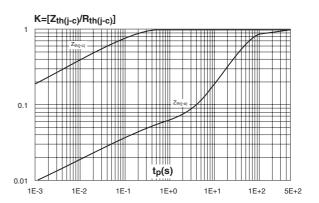
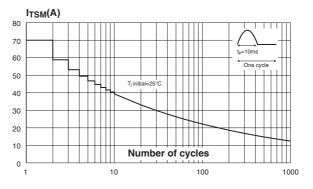
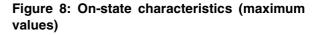
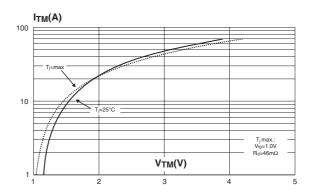
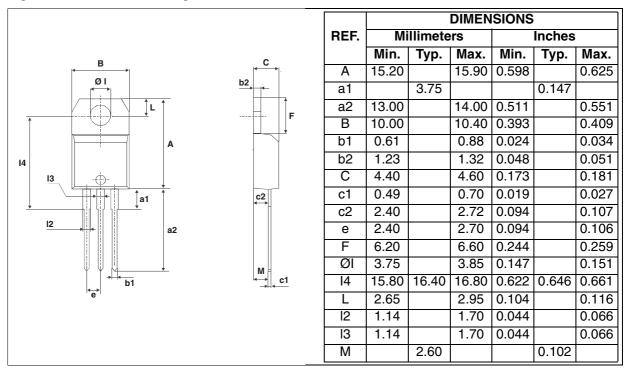





Figure 6: Surge peak on-state current versus number of cycles

www.bdtic.com/ST

TYN606 / TYN1006


Figure 9: Ordering Information Scheme

TYN 6 06 RG
Standard SCR series
Voltage 6 = 600V 10 = 100V
<u>Current</u> 06 = 6A
Packing mode RG = Tube

Table 6: Product Selector

Part Numbers	s Voltage (xx) Sensitivity		Package	
Fait Numbers	600 V	1000 V		
TYN606RG	Х		15 mA	TO-220AB
TYN1006RG		Х	15 mA	TO-220AB

Figure 10: TO-220AB Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

www.bdtic.com/ST

/

Table 7: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
TYN606RG	TYN606	TO-220AB	2.3 g	50	Tube
TYN1006RG	TYN1006		2.0 g	50	Tabe

Table 8: Revision History

Date	Revision	Description of Changes
Sep-2001	1A	First issue.
13-Feb-2006	2	TO-220AB delivery mode changed from bulk to tube. ECOPACK statement added.

www.bdtic.com/ST

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

www.bdtic.com/ST