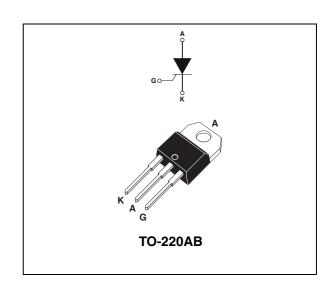


TYNx40 Series

40A SCRs

STANDARD


Table 1: Main Features

Symbol	Value	Unit
I _{T(RMS)}	40	Α
V _{DRM} /V _{RRM}	600 to 1000	V
I _{GT}	35	mA

DESCRIPTION

The **TYNx40** series is suitable for applications where in-rush current conditions are critical, such as overvoltage crowbar protection circuits in power supplies, in-rush current limiting circuits, solid state relays (in back to back configuration), welding equipment, high power motor control circuits.

Using clip assembly technology, they provide a superior performance in high surge current capabilites.

Table 2: Order Codes

Part Numbers	Marking
TYN640RG	TYN640
TYN840RG	TYN840
TYN1040RG	TYN1040

Table 3: Absolute Ratings (limiting values)

Symbol	Parameter	Value	Unit			
I _{T(RMS)}	RMS on-state current (180° conduction angle) $T_c = 95^{\circ}C$			40	Α	
IT _(AV)	Average on-state current (180° conduction	angle)	$T_c = 95^{\circ}C$	25	Α	
L	Non-venetitive covers made as state covered		T _i = 25°C	480	Α	
I _{TSM}	Non repetitive surge peak on-state current	$t_p = 10 \text{ ms}$	1 j = 23 0	460	^	
l²t	I^2t Value for fusing $t_p = 10 \text{ ms}$		$T_j = 25^{\circ}C$	1060	A ² s	
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$	F = 60 Hz	T _j = 125°C	50	A/µs	
I _{GM}	Peak gate current $t_p = 20 \mu s$ $T_j = 1$		$T_j = 125^{\circ}C$	4	Α	
P _{G(AV)}	Average gate power dissipation $T_j = 125^{\circ}C$			1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C	
V _{RGM}	Maximum peak reverse gate voltage			5	V	

February 2006 REV. 5 1/6

Tables 4: Electrical Characteristics ($T_j = 25$ °C, unless otherwise specified)

Symbol	Test Conditions			Value	Unit
I _{GT}			MIN.	3.5	mA
'G1	$V_D = 12 \text{ V}$ $R_L = 33 \Omega$		MAX.	35	
V _{GT}			MAX.	1.3	V
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$	T _j = 125°C	MIN.	0.2	V
I _H	I _T = 500 mA Gate open		MAX.	75	mA
IL	$I_G = 1.2 \times I_{GT}$		MAX.	150	mA
dV/dt	$V_D = 67 \% V_{DRM}$ Gate open $T_j = 125 ^{\circ}C$		MIN.	1000	V/µs
V _{TM}	$I_{TM} = 80 \text{ A}$ tp = 380 µs $T_j = 25^{\circ}\text{C}$		MAX.	1.6	V
V _{t0}	Threshold voltage $T_j = 125$ °C		MAX.	0.85	V
R _d	Dynamic resistance $T_j = 125$ °C		MAX.	10	mΩ
I _{DRM}	$V_{DRM} = V_{RRM}$	T _j = 25°C	MAX.	5	μΑ
I _{RRM}		T _j = 125°C	IVI/A/X.	4	mA

Table 5: Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (DC)	0.8	°C/W
R _{th(j-a)}	Junction to ambient (DC)	60	°C/W

Figure 1: Maximum average power dissipation versus average on-state current

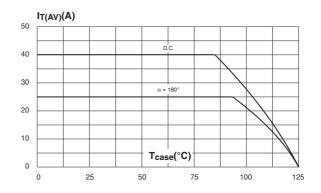



Figure 2: Average and D.C. on-state current versus case temperature

577

Figure 3: Relative variation of thermal impedance versus pulse duration

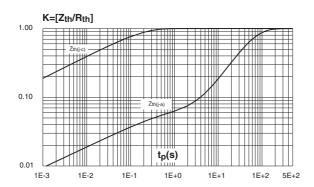


Figure 5: Surge peak on-state current versus number of cycles

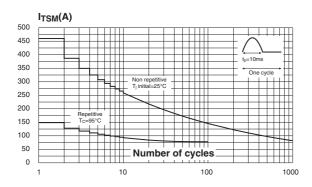


Figure 7: On-state characteristics (maximum values)

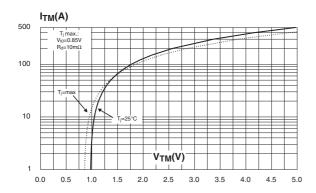


Figure 4: Relative variation of gate trigger current, holding current and latching current versus junction temperature

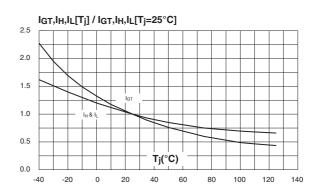
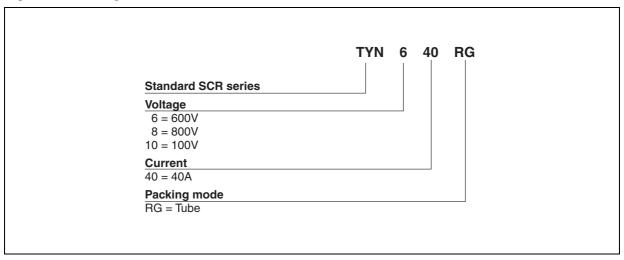



Figure 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding values of I^2t

577

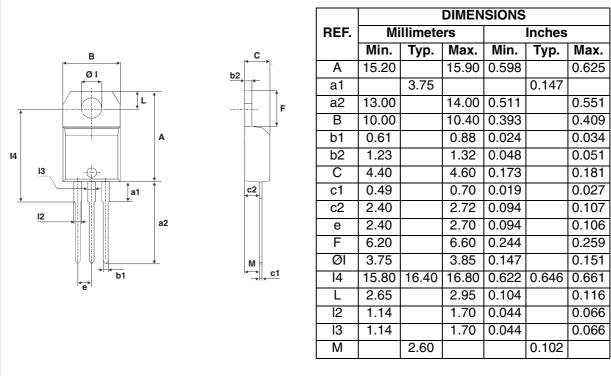

Figure 8: Ordering Information Scheme

Table 6: Product Selector

Part Numbers	Voltage (xxx)			Sensitivity Package		
	600 V	800 V	1000 V	Sensitivity	rackage	
TYNx40	Х	Х	Х	35 mA	TO-220AB	

Figure 9: TO-220AB Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Table 7: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
TYN640RG	TYN640				
TYN840RG	TYN840	TO-220AB	2.3 g	50	Tube
TYN1040RG	TYN1040				

Table 8: Revision History

Date	Revision	Description of Changes
Apr-2002	4A	Last update.
13-Feb-2006	5	TO-220AB delivery mode changed from bulk to tube. ECOPACK statement added.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

57

6/6