ADS8254

16-BIT, 1-MSPS, PSEUDO-BIPOLAR DIFFERENTIAL SAR ADC WITH ON-CHIP ADC DRIVER (OPA) AND 4-CHANNEL DIFFERENTIAL MULTIPLEXER

FEATURES

- $1.0-\mathrm{MHz}$ Sample Rate, Zero Latency at Full Speed
- 16-Bit Resolution
- Supports Pseudo-Bipolar Differential Input Range: -4 V to +4 V with 2-V Common-Mode
- Built-In Four Channel, Differential Ended Multiplexer; with Channel Count Selection and Auto/Manual Mode
- On-Board Differential ADC Driver (OPA)
- Buffered Reference Output to Level Shift Bipolar $\pm 4-V$ Input with External Resistance Divider
- Reference/2 Output to Set Common-Mode for External Signal Conditioner
- 16-/8-Bit Parallel Interface
- SNR: 95.4dB Typ at 2-kHz I/P
- THD: -118dB Typ at 2-kHz I/P
- Power Dissipation: 331.25 mW at 1 MSPS
- Internal Reference
- Internal Reference Buffer
- 64-Pin QFN Package

APPLICATIONS

- Medical Imaging/CT Scanners
- Automated Test Equipment
- High-Speed Data Acquisition Systems
- High-Speed Closed-Loop Systems

DESCRIPTION

The ADS8254 is a high-performance analog system-on-chip (SoC) device with an 16-bit, 1-MSPS A/D converter, 4-V internal reference, an on-chip ADC driver (OPA), and a 4-channel differential multiplexer. The channel count of the multiplexer and auto/manual scan modes of the device are user selectable.
The ADC driver is designed to leverage the very high noise performance of the differential ADC at optimum power usage levels.
The ADS8254 outputs a buffered reference signal for level shifting of a $\pm 4-\mathrm{V}$ bipolar signal with an external resistance divider. A $\mathrm{V}_{\text {ref }} / 2$ output signal is available to set the common-mode of a signal conditioning circuit. The device also includes an 16-/8-bit parallel interface.

The ADS8254 is available in a $9 \mathrm{~mm} \times 9 \mathrm{~mm}$, 64-pin QFN package and is characterized from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

HIGH-SPEED SAR CONVERTER FAMILY

TYPE/SPEED	500 kHz	$\sim 600 \mathrm{kHz}$	750 kHz	1 MHz	1.25 MHz	2 MHz	3 MHz	4MHz
18-Bit Pseudo-Diff	ADS8383	ADS8381		ADS8481				
		ADS8380 (s)						
18-Bit Pseudo-Bipolar, Fully Diff		ADS8382 (s)		ADS8284	ADS8484			
				ADS8482				
16-Bit Pseudo-Diff	ADS8327	ADS8370 (s)	ADS8371	ADS8471	ADS8401	ADS8411		
	ADS8328				ADS8405	ADS8410 (s)		
	ADS8319							
16-Bit Pseudo-Bipolar, Fully Diff	ADS8318	ADS8372 (s)		ADS8472	ADS8402	ADS8412		ADS8422
				ADS8254	ADS8406	ADS8413 (s)		
14-Bit Pseudo-Diff					ADS7890 (s)		ADS7891	
12-Bit Pseudo-Diff				ADS7886		ADS7883		ADS7881

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION ${ }^{(1)}$

MODEL	MAXIMUM INTEGRAL LINEARITY (LSB)	MAXIMUM DIFFERENTIAL LINEARITY (LSB)	NO MISSING CODES AT RESOLUTION (BIT)	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPERATURE RANGE	ORDERING INFORMATION
ADS8254IB	± 0.75	± 0.5	16			RRANSPORT	
MEDIA							
QUANTITY							

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, refer to the TI website at www.ti.com

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT
CH (i) to AGND (both P and M		VEE-0.3 to VCC + 0.3	V
VCC to VEE		-0.3 to 18	V
+VA to AGND		-0.3 to 7	V
+VBD to BDGND		-0.3 to 7	V
ADC control digital input volta	GND	-0.3 to (+VBD + 0.3)	V
ADC control digital output to		-0.3 to (+VBD + 0.3)	V
Multiplexer control digital input	ltage to GND	-0.3 to (+VA + 0.3)	V
Power control digital input vo	to GND	-0.3 to (+VCC + 0.3)	V
Operating temperature range		-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$
Junction temperature (TJmax)		150	${ }^{\circ} \mathrm{C}$
QFN packag	Power dissipation	$\left(\mathrm{T}_{\mathrm{J}} \mathrm{Max}-\mathrm{T}_{\mathrm{A}}\right) / \theta \mathrm{JA}$	
N package	$\theta J A$ Thermal impedance	86	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead temperature, soldering	Vapor phase (60 sec)	215	${ }^{\circ} \mathrm{C}$
Lead temperature, soldering	Infrared (15 sec)	220	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VEE}=-5 \mathrm{~V},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MSPS}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT						
Full-scale input voltage at multiplexer input ${ }^{(1)}$		$\mathrm{CH}(\mathrm{i}) \mathrm{P}-\mathrm{CH}(\mathrm{i}) \mathrm{M}$	$-\mathrm{V}_{\text {ref }}$		$\mathrm{V}_{\text {ref }}$	V
Absolute input range at multiplexer input		CH (i)	-0.2		$\mathrm{V}_{\text {ref }}+0.2$	V
Input common-mode voltage		$[\mathrm{CH}(\mathrm{i}) \mathrm{P}+\mathrm{CH}(\mathrm{i}) \mathrm{M}] / 2$	$\begin{array}{r} \left(\mathrm{V}_{\text {ref }}\right) / 2 \\ -0.2 \end{array}$	$\left(\mathrm{V}_{\text {ref }} / 2\right.$	$\begin{array}{r} \left(V_{\text {ref }}\right) / 2 \\ +0.2 \end{array}$	V
SYSTEM PERFORMANCE						
Resolution				16		Bits
No missing codes	ADS8254IB		16			Bits
	ADS8254I		16			
Integral linearity ${ }^{(2)}$	ADS8254IB		-0.75	± 0.4	0.75	LSB ${ }^{(3)}$
	ADS8254I		-1.5	± 0.4	1.5	
Differential linearity	ADS8254IB	At 18-bit level	-0.5	± 0.32	0.5	LSB ${ }^{(3)}$
	ADS8254I		-0.5	± 0.32	0.5	
Offset error ${ }^{(4)}$	ADS8254IB		-0.5	± 0.05	0.5	mV
	ADS8254I		-0.5	± 0.05	0.5	
Gain error ${ }^{(4)}$	ADS8254IB	External reference	-0.1	± 0.025	0.1	\%FS
	ADS8254I		-0.1	± 0.025	0.1	
DC Power supply rejection ratio		At $3 F F F 0_{H}$ output code. For +VA or VCC, VEE variation of 0.5 V individually		80		dB
SAMPLING DYNAMICS						
Conversion time		$+\mathrm{VBD}=5 \mathrm{~V}$		625	650	ns
		$+\mathrm{VDB}=3 \mathrm{~V}$		625	650	ns
Acquisition time		$+\mathrm{VBD}=5 \mathrm{~V}$	320	350		ns
		$+\mathrm{VDB}=3 \mathrm{~V}$	320	350		
Maximum throughput rate					1.0	MHz
Aperture delay				4		ns
Aperture jitter				5		ps
Settling time to 0.5 LSB		For ADC only		150		ns
		For OPA (OP1, OP2)+ Mux		700		
Over voltage recovery		For ADC only		150		ns
DYNAMIC CHARACTERISTICS						
Total harmonic distortion (THD) ${ }^{(4)}$	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 2 kHz		-118		dB
	ADS8254IB			-118		
	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 10 kHz		-105		dB
	ADS8254IB			-105		
	ADS8254I	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}} \text { at } 100 \mathrm{kHz}, \\ & \text { LoPWR }=0 \end{aligned}$		-100		dB
	ADS8254IB			-100		
Signal to noise ratio (SNR)	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 2 kHz		95.4		dB
	ADS8254IB		94	95.4		
	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 10 kHz		95		dB
	ADS8254IB			95		
	ADS8254I	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}} \text { at } 100 \mathrm{kHz}, \\ & \text { LoPWR }=0 \end{aligned}$		93		dB
	ADS8254IB			94.5		

(1) Ideal input span, does not include gain or offset error.
(2) Measured relative to acutal measured referenceThis is endpoint INL, not best fit.
(3) LSB means least significant bit
(4) Calculated on the first nine harmonics of the input frequency.

ADS8254

SPECIFICATIONS (continued)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VEE}=-5 \mathrm{~V},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MSPS}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Signal to noise + distortion (SINAD)	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 2 kHz		95.2		dB
	ADS8254IB			95.2		
	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 10 kHz		94.5		dB
	ADS8254IB			94.5		
	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}} \text { at } 100 \mathrm{kHz},$$\text { LoPWR }=0$		92.2		dB
	ADS8254IB			93.4		
Spurious free dynamic range (SFDR)	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 2 kHz		120		dB
	ADS8254IB			120		
	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 10 kHz		106		dB
	ADS8254IB			106		
	ADS8254I	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}} \text { at } 100 \mathrm{kHz} \text {, }$LoPWR =0		101		dB
	ADS8254IB			101		
-3dB Small signal bandwidth				8		MHz
VOLTAGE REFERENCE INPUT (REFIN)						
Reference voltage at REFIN, $\mathrm{V}_{\text {ref }}$			3.0	4.096	+VA - 0.8	V
Reference input current ${ }^{(5)}$				1	1	$\mu \mathrm{A}$
INTERNAL REFERENCE OUTPUT (REFOUT)						
Internal reference start-up time		From 95% (+VA), with 1- $\mu \mathrm{F}$ storage capacitor			120	ms
Reference voltage range, $\mathrm{V}_{\text {ref }}$			4.081	4.096	4.111	V
Source current		Static load			10	$\mu \mathrm{A}$
Line regulation		+VA $=4.75 \mathrm{~V} \sim 5.25 \mathrm{~V}$		60		$\mu \mathrm{V}$
Drift		$\mathrm{I}_{\mathrm{O}}=0$		± 6		PPM $/{ }^{\circ} \mathrm{C}$
BUFFERED REFERENCE OUTPUT (BUF-REF)						
Output current		REFIN $=4 \mathrm{~V}$, at $85^{\circ} \mathrm{C}$		70		mA
REFERENCE/2 OUTPUT (VCMO)						
Output current		REFIN $=4 \mathrm{~V}$, at $+85^{\circ} \mathrm{C}$		50		$\mu \mathrm{A}$
ANALOG MULTIPLEXER						
Number of channels					8	
Channel to channel crosstalk		$100 \mathrm{kHz} \mathrm{i} / \mathrm{p}$		-95		dB
Channel selection		Auto sequencer with selection of channel count OR Manual selection through control lines				
DIGITAL INPUT-OUTPUT						
ADC CONTROL PINS						
Logic Family-CMOS						
Logic level	V_{IH}	$\mathrm{I}_{\mathrm{IH}}=5 \mu \mathrm{~A}$	$+\mathrm{V}_{\mathrm{BD}}-1$		$+\mathrm{V}_{\mathrm{BD}}+0.3$	V
	$\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{IL}}=5 \mu \mathrm{~A}$	0.3		0.8	V
	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=2$ TTL loads	$+\mathrm{V}_{\mathrm{BD}}-6$		$+\mathrm{V}_{\mathrm{BD}}$	V
	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=2$ TTL loads	0		0.4	V

MULTIPLEXER CONTROL PINS

Logic Family - CMOS					
Logic Level	$I_{1 H}$	$\mathrm{I}_{\mathrm{IH}}=5 \mu \mathrm{~A}$	2.3	+VA +0.3	V
	I_{LL}	$\mathrm{I}_{\mathrm{LL}}=5 \mu \mathrm{~A}$	-0.3	0.8	V
POWER CONTROL PINS					
Logic Family - CMOS					
Logic Level	V_{IH}	$\mathrm{I}_{\mathrm{H}}=5 \mu \mathrm{~A}$	2.3	+VA +0.3	V
	$\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{IL}}=5 \mu \mathrm{~A}$	-0.3	0.8	V

(5) Can vary $\pm 20 \%$

SPECIFICATIONS (continued)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VEE}=-5 \mathrm{~V},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4 \mathrm{~V}$, $\mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MSPS}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY REQUIREMENTS						
Power supply voltage	+VBD		2.7	3.3	5.25	V
	+VA		4.75	5	5.25	V
	VCC		4.75	5	7.5	V
	VEE		-7.5	-5	-3	V
ADC driver positive supply (VCC) current (for OP1 and OP2 together)		$\mathrm{VCC}=+5, \mathrm{VEE}=-5 \mathrm{~V}, \mathrm{CH} 0-\mathrm{CH} 3 \mathrm{p}$ and m inputs shorted to each other and connected to 2 V		11.65		mA
ADC driver negative supply (VEE) current (for OP1 and OP2 together)		$\mathrm{VCC}=+5, \mathrm{CHO}-\mathrm{CH} 3 \mathrm{p}$ and m inputs shorted to each other and connected to 2 V		9.6		mA
+VA Supply Current, 1MHz Sample Rate				45	50	mA
Reference buffer (BUF-REF) supply current (VCC to GND)		$\mathrm{VCC}=+5, \mathrm{PD}-\mathrm{RBUF}=0$, Quiescent current		8		mA
		$V C C=5, \mathrm{PD}-\mathrm{RBUF}=1^{(6)}$		10		$\mu \mathrm{A}$
TEMPERATURE RANGE						
Operating free air			-40		85	${ }^{\circ} \mathrm{C}$

(6) PD-RBUF=1 powers down the Reference buffer (BUF-REF), note that it does not 3-state the BUF-REF output.

TEXAS
InSTRUMENTS

TIMING CHARACTERISTICS

All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}{ }^{(1)}{ }^{(2)}{ }^{(3)}$

	PARAMETER	MIN	TYP MAX	UNIT
$\mathrm{t}_{\text {(CONV) }}$	Conversion time		650	ns
$\mathrm{t}_{(\text {(ACQ })}$	Acquisition time	320		ns
$\mathrm{t}_{\text {(HOLD }}$	Sample capacitor hold time		25	ns
$\mathrm{t}_{\text {pd1 }}$	CONVST low to BUSY high		40	ns
$\mathrm{t}_{\text {pd2 }}$	Propagation delay time, end of conversion to BUSY low		15	ns
$\mathrm{t}_{\text {pd3 }}$	Propagation delay time, start of convert state to rising edge of BUSY		15	ns
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, CONVST low	40		ns
$\mathrm{t}_{\text {su } 1}$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\text { CONVST }}$ low	20		ns
$\mathrm{t}_{\mathrm{w} 2}$	Pulse duration, $\overline{\text { CONVST }}$ high	20		ns
	CONVST falling edge jitter		10	ps
$\mathrm{t}_{\mathrm{w} 3}$	Pulse duration, BUSY signal low	$\mathrm{t}_{(A C Q}{ }^{\text {min }}$		ns
$\mathrm{t}_{\mathrm{w} 4}$	Pulse duration, BUSY signal high		650	ns
th_{h}	Hold time, first data bus transition ($\overline{\mathrm{RD}}$ low, or $\overline{\mathrm{CS}}$ low for read cycle, or BYTE or BUS18/16 input changes) after CONVST low	40		ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0		ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0		ns
$\mathrm{t}_{\mathrm{w} 5}$	Pulse duration, $\overline{\mathrm{RD}}$ low	50		ns
$\mathrm{t}_{\text {en }}$	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid		20	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	5		ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid	10	20	ns
$\mathrm{t}_{\mathrm{w} 6}$	Pulse duration, $\overline{\mathrm{RD}}$ high	20		ns
$\mathrm{t}_{\mathrm{w} 7}$	Pulse duration, $\overline{\mathrm{CS}}$ high	20		ns
th_{h}	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\mathrm{CONVST}}$ falling edge	50		ns
$\mathrm{t}_{\text {pd4 }}$	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	0		ns
$\mathrm{t}_{\mathrm{d} 4}$	Delay time, BYTE edge to BUS18/16 edge skew	0		ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE or BUS18/16 transition to $\overline{\mathrm{RD}}$ falling edge	10		ns
th	Hold time, BYTE or BUS18/16 transition to $\overline{\text { RD }}$ falling edge	10		ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ high ($\overline{\mathrm{CS}}$ high for read cycle) to 3 -stated data bus		20	ns
$\mathrm{t}_{\mathrm{d} 5}$	Delay time, BUSY low to MSB data valid delay		0	ns
$\mathrm{t}_{\mathrm{d} 6}$	Delay time, $\overline{C S}$ rising edge to BUSY falling edge	50		ns
$\mathrm{t}_{\mathrm{d} 7}$	Delay time, BUSY falling edge to $\overline{\mathrm{CS}}$ rising edge	50		ns
$\mathrm{t}_{\text {su }}$	BYTE transition setup time, from BYTE transition to next BYTE transition, or BUS18/16 transition setup time, from BUS18/16 to next BUS18/16.	50		ns
$\mathrm{t}_{\text {su(ABORT }}$	Setup time from the falling edge of CONVST (used to start the valid conversion) to the next falling edge of CONVST (when CS $=0$ and CONVST are used to abort) or to the next falling edge of $\overline{C S}$ (when $\overline{C S}$ is used to abort).	60	550	ns

(1) All input signals are specified with $t_{r}=t_{f}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
(2) See timing diagrams.
(3) All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.

TIMING CHARACTERISTICS

All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V}+\mathrm{VBD}=3 \mathrm{~V}{ }^{\text {(1) }}$ (2) ${ }^{(3)}$

PARAMETER		MIN	TYP MAX	UNIT
$\mathrm{t}_{(\text {CONV }}$	Conversion time		650	ns
$\mathrm{t}_{(A C Q)}$	Acquisition time	310		ns
$\mathrm{t}_{(\text {HOLD }}$	Sample capacitor hold time		25	ns
$\mathrm{t}_{\mathrm{pd} 1}$	CONVST low to BUSY high		40	ns
$\mathrm{t}_{\mathrm{pd} 2}$	Propagation delay time, end of conversion to BUSY low		25	ns
$\mathrm{t}_{\text {pd3 }}$	Propagation delay time, start of convert state to rising edge of BUSY		25	ns
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, CONVST low	40		ns
$\mathrm{t}_{\text {su1 }}$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\text { CONVST }}$ low	20		ns
$\mathrm{t}_{\mathrm{w} 2}$	Pulse duration, CONVST high	20		ns
	CONVST falling edge jitter		10	ps
$\mathrm{t}_{\mathrm{w} 3}$	Pulse duration, BUSY signal low	$\mathrm{t}_{(\mathrm{ACQ}}{ }^{\text {min }}$		ns
$\mathrm{t}_{\mathrm{w} 4}$	Pulse duration, BUSY signal high		650	ns
$t_{\text {h } 1}$	Hold time, first data bus transition ($\overline{\mathrm{RD}}$ low, or $\overline{\mathrm{CS}}$ low for read cycle, or BYTE or BUS18/16 input changes) after CONVST low	40		ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0		ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0		ns
$\mathrm{t}_{\mathrm{w} 5}$	Pulse duration, $\overline{\mathrm{RD}}$ low	50		ns
$\mathrm{t}_{\text {en }}$	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid		30	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	5		ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid	10	30	ns
$\mathrm{t}_{\text {w6 }}$	Pulse duration, $\overline{\mathrm{RD}}$ high	20		ns
$\mathrm{t}_{\mathrm{w} 7}$	Pulse duration, $\overline{\mathrm{CS}}$ high	20		ns
$\mathrm{t}_{\mathrm{h} 2}$	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\text { CONVST }}$ falling edge	50		ns
$\mathrm{t}_{\mathrm{pd} 4}$	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	0		ns
$\mathrm{t}_{\mathrm{d} 4}$	Delay time, BYTE edge to BUS18/76 edge skew	0		ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE or BUS18/16 transition to $\overline{\mathrm{RD}}$ falling edge	10		ns
th	Hold time, BYTE or BUS18/16 transition to $\overline{\text { RD }}$ falling edge	10		ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ high ($\overline{\mathrm{CS}}$ high for read cycle) to 3 -stated data bus		30	ns
$\mathrm{t}_{\mathrm{d} 5}$	Delay time, BUSY low to MSB data valid delay		0	ns
$\mathrm{t}_{\mathrm{d} 6}$	Delay time, $\overline{C S}$ rising edge to BUSY falling edge	50		ns
$\mathrm{t}_{\mathrm{d} 7}$	Delay time, BUSY falling edge to $\overline{\mathrm{CS}}$ rising edge	50		ns
$\mathrm{t}_{\text {su5 }}$	BYTE transition setup time, from BYTE transition to next BYTE transition, or BUS18/16 transition setup time, from BUS18/16 to next BUS18/16.	50		ns
$\mathrm{t}_{\text {su }}$ (ABORT)	Setup time from the falling edge of $\overline{\text { CONVST }}$ (used to start the valid conversion) to the next falling edge of CONVST (when CS $=0$ and CONVST are used to abort) or to the next falling edge of $\overline{C S}$ (when $\overline{C S}$ is used to abort).	70	550	ns

(1) All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
(2) See timing diagrams.
(3) All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.

MULTIPLEXER TIMING REQUIREMENTS

$\mathrm{VCC}=4.75 \mathrm{~V}$ to 7.5 V , $\mathrm{VEE}=-3 \mathrm{~V}$ to -7.5 V

		MIN	TYP
$\mathrm{t}_{\text {su6 }}$	Setup time C1, C2 or C3 to MXCLK rising edge	MAX	UNIT
$\mathrm{t}_{\mathrm{d} 8}$	Multiplexer and driver settle time (from MXCLK rising edge to $\overline{\text { CONVST }}$ falling edge)	600	600
nss			

TeXAs
Instruments

PIN ASSIGNMENTS

PIN		I/O	DESCRIPTION
NO	NAME		
MULTIPLEXER INPUT PINS			
17	CHOP	I	Non-inverting analog input for differential multiplexer channel number 0 . Device performance is optimized for 50 ohm source impedance at this input.
18	CHOM	I	Inverting analog input for differential multiplexer channel number 0 . Device performance is optimized for 50 ohm source impedance at this input.
19	CH1P	I	Non-inverting analog input for differential multiplexer channel number 1. Device performance is optimized for 50 ohm source impedance at this input.
20	CH1M	I	Inverting analog input for differential multiplexer channel number 1. Device performance is optimized for 50 ohm source impedance at this input.
29	CH2P	I	Non-inverting analog input for differential multiplexer channel number 2. Device performance is optimized for 50 ohm source impedance at this input.
30	CH2M	I	Inverting analog input for differential multiplexer channel number 2. Device performance is optimized for 50 ohm source impedance at this input.
31	CH3P	I	Non-inverting analog input for differential multiplexer channel number 3. Device performance is optimized for 50 ohm source impedance at this input.
32	CH3M	I	Inverting analog input for differential multiplexer channel number 3. Device performance is optimized for 50 ohm source impedance at this input.
ADC INPUT PINS			
25	INP	1	ADC Non inverting input., connect 1nF cap across INP and INM
27	INM	I	ADC Inverting input, connect 1nF cap across INP and INM
REFERENCE INPUT/ OUTPUT PINS			
8, 9	REFM	I	Reference ground.
10	REFIN	1	Reference Input. Add $0.1-\mu \mathrm{F}$ decoupling capacitor between REFIN and REFM.
11	REFOUT	0	Reference Output. Add 1- F c capacitor between the REFOUT pin and REFM pin when internal reference is used.

PIN FUNCTIONS (continued)

PIN		I/O	DESCRIPTION		
NO	NAME				
14	VCMO	O	This pin outputs Refin/2 and can be used to set common-mode voltage of differential analog inputs.		
15	BUFREF	0	Buffered reference output. Useful to level shift bipolar signals using external resistors.		
POWER CONTROL PINS					
21	$\begin{aligned} & \text { PD- } \\ & \text { RBUF } \end{aligned}$	I	High on this pin powers down the reference buffer (BUF-REF).		
MULTIPLEXER CONTROL PINS					
33	AUTO	1	High level on this pin selects 'Auto' mode for multiplexer scanning. Low level selects manual mode of multiplexer scanning		
34	C3	I	In auto mode (AUTO=1) multiplexer channel selection is reset to CH 0 on rising edge of MXCLK while $\mathrm{C} 3=1$. The pin is 'do not care' in manual mode.		
35	C2	1	Acts as multiplexer address bit when $\mathrm{AUTO}=0$ (Manual mode). In auto mode (AUTO=1) C 2 and C 1 select the last multiplexer channel (channel count) in the auto scan sequence.		
36	C1	I	Acts as multiplexer address LSB when AUTO=0 (Manual mode). In auto mode (AUTO=1) C2 and C1 select the last multiplexer channel (channel count) in the auto scan sequence.		
37	MXCLK	I	Multiplexer channel is selected on rising edge of MXCLK irrespective of whether it is auto or manual mode. Device BUSY output can be connected to MXCLK so that device selects next channel at the end of every sample.		
ADC DATA BUS					
42-49, 52-59	Data Bus		8-BIT BUS		16-BIT BUS
			BYTE $=0$	BYTE = 1	BYTE $=0$
42	DB15	0	D15 (MSB)	D7	D15(MSB)
43	DB14	0	D14	D6	D14
44	DB13	0	D13	D5	D13
45	DB12	0	D12	D4	D12
46	DB11	O	D11	D3	D11
47	DB10	0	D10	D2	D10
48	DB9	0	D9	D1	D9
49	DB8	0	D8	D0	D8
52	DB7	0	D7	All ones	D7
53	DB6	0	D6	All ones	D6
54	DB5	0	D5	All ones	D5
55	DB4	0	D4	All ones	D4
56	DB3	0	D3	All ones	D3
57	DB2	0	D2	All ones	D2
58	DB1	0	D1	All ones	D1
59	DB0	0	D0 (LSB)	All ones	D0 (LSB)
ADC CONTROL PINS					
62	BUSY	0	Status output. This pin is held high when device is converting.		
1	BYTE	1	Byte Select Input. Used for 8-bit bus reading. Refer to the ADC DATA BUS description above.		
2	$\overline{\text { CONVST }}$	1	Convert start. This input is active low and can act independent of the CS input.		
3	$\overline{\mathrm{RD}}$	1	Synchronization pulse for the parallel output.		
4	$\overline{\mathrm{CS}}$	1	Chip Select.		
DEVICE POWER SUPPLIES					
22	VEE		Negative supply for OPA (OP1, OP2)		
23, 24	VCC		Positive supply for OPA (OP1, OP2, BUF-REF)		
$\begin{gathered} 5,7,13,38, \\ 40 \end{gathered}$	+VA		Analog power supply.		
$\begin{gathered} 6,12,26,39 \\ 41 \end{gathered}$	AGND		Analog ground.		
50, 63	+VBD		Digital Power Supply For ADC Bus.		
51	BGND		Digital ground for ADC bus interface digital supply.		
NOT CONNECTED PINS					
$\begin{gathered} 16,28,60 \\ 61,64 \end{gathered}$	NC		No connection.		

ADS8254
www.ti.com

DEVICE OPERATION AND TIMING DIAGRAMS

The ADS8254 is analog system-on-chip (SoC) device. The device includes a multiplexer, a single-ended input/differential output ADC driver and differential input high-performance ADC, an additional internal reference, a buffered reference output, and a REF/2 output.

Figure 1 shows the basic operation of the device (including all elements). Subsequent sections describe the detailed timings of the individual blocks of the device (primarily the multiplexer and ADC).

Figure 1. Device Operation
As shown in the diagram, the device can be controlled with only one ($\overline{\text { CONVST }}$) digital input. On the falling edge of CONVST, the BUSY output of the device goes high. A high level on BUSY indicates the device has sampled the signal and it is converting the sample into its digital equivalent. After the conversion is complete, the BUSY output falls to a logic low level and the device output data corresponding to the recently converted sample is available for reading.
It is recommended (not mandatory) to short the BUSY output of the device to the MXCLK input. The device selects a new channel at every rising edge of MXCLK. The multiplexer is differential. The multiplexer and ADC driver are designed to settle to the 18 -bit level before sampling; even at the maximum conversion speed.
ADC Control and Timing: The timing diagrams in the this section describe ADC operation; multiplexer operation is described in a the following sections.

\dagger Signal internal to device
Figure 2. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ and $\overline{\mathrm{RD}}$ Toggling

\dagger Signal internal to device
Figure 3. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ Toggling, $\overline{\mathrm{RD}}$ Tied to BDGND

†Signal internal to device
Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ Tied to BDGND, $\overline{\mathrm{RD}}$ Toggling
www.ti.com

\dagger Signal internal to device
Figure 5. Timing for Conversion and Acquisition Cycles With $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ Tied to BDGND - Auto Read

Figure 6. Detailed Timing for Read Cycles

Multiplexer: The multiplexer has two modes of sequencing namely auto sequencing and manual sequencing. Multiplexer mode selection and operation is controlled with the AUTO, C1, C2, C3, and MXCLK pins.
Auto Sequencing: A logic one level on the AUTO pin selects auto sequencing mode. It is possible to select the number of channels to be scanned (always starting from channel zero) in auto sequencing mode. Pins C1 and C2 select the channel count (last channel in the auto sequence).
On every rising edge of MXCLK while C3 is at the logic zero level, the next higher channel (in ascending order) is selected. Channel selection rolls over to channel zero on the rising edge of MXCLK after channel selection reaches the channel count (last channel in the auto sequence selected by pins C1and C2).
Any time during the sequence the channel sequence can be reset to channel zero. A rising edge on MXCLK while C3 is at the logic one level resets channel selection to channel zero.

Table 1. Channel Selection in Auto Mode

CHANNEL COUNT PINS			CLOCK PIN		LAST CHANNEL IN SEQUENCE

Figure 7. Multiplexer Auto Mode Timing Diagram
Manual Sequencing: A logic zero level on the AUTO pin selects manual sequencing mode. Pins C1and C2 set the channel address. On the rising edge of MXCLK, the addressed channel is connected to the ADC driver input.

Table 2. Channel Selection in Manual Mode

MODE	CHANNEL ADDRESS PINS			CLOCK PIN	CHANNEL
AUTO	C3	C2	C1	MXCLK	
0	X	0	0	\uparrow	0
0	X	0	1	\uparrow	1

Table 2. Channel Selection in Manual Mode (continued)

MODE	CHANNEL ADDRESS PINS			CLOCK PIN	CHANNEL
AUTO	C3	C2	C1	MXCLK	
0	X	1	0	\uparrow	2
0	X	1	1	\uparrow	3

AUTO $=0$, device operation in manual mode
Figure 8. Multiplexer Manual Mode Timing Diagram

TYPICAL CHARACTERISTICS

Figure 9.

DC HISTOGRAM
(CH 0 with mux switching $\mathrm{CHO}-1-0$)

Figure 10.

INTERNAL REFERENCE VOLTAGE FREE-AIR TEMPERATURE

Figure 11.

TYPICAL CHARACTERISTICS (continued)

Figure 12.

Figure 15.

OPA -VE SUPPLY CURRENT (IEE)
vs
FREE-AIR TEMPERATURE

Figure 18.

Figure 13.

OPA POSITIVE SUPPLY CURRENT (ICC)
FREE-AIR TEMPERATURE

Figure 16.

Figure 19.

SUPPLY CURRENT (IA) ANALOG VOLTAGE (+VA)

Figure 14.
OPA POSITIVE SUPPLY CURRENT (ICC)
vs
OPA POSITIVE SUPPLY VOLTAGE (+VCC)

Figure 17.

Figure 20.

ADS8254
www.ti.com

TYPICAL CHARACTERISTICS (continued)

Figure 21.

Figure 24.

Figure 27.

Figure 22.
INTEGRAL NONLINEARITY vs
FREE-AIR TEMPERATURE

Figure 25.

Figure 28.

DIFFERENTIAL NONLINEARITY

Figure 23.
INTEGRAL NONLINEARITY

Figure 26.

Figure 29.

TYPICAL CHARACTERISTICS (continued)

Figure 30.
FULL CHIP OFFSET REFERENCE VOLTAGE

Figure 33.

Figure 36.

FULL CHIP OFFSET OPA SUPPLY VS VOLTAGE (VCC)

Figure 31.
FULL CHIP OFFSET
vs
CHANNEL

Figure 34.

Figure 37.

FULL CHIP OFFSET ANALOG SUPPLY VOLTAGE (+VA)

Figure 32.
FULL CHIP GAIN ERROR FREE-AIR TEMPERATURE

Figure 35.
FULL CHIP GAIN ERROR
REFERENCE VOLTAGE

Figure 38.

TYPICAL CHARACTERISTICS (continued)

Figure 39.

Figure 42.

Figure 45.

SIGNAL-TO-NOISE RATIO
VS
FREE-AIR TEMPERATURE

Figure 40.
EFFECTIVE NUMBER OF BITS FREE-AIR TEMPERATURE

Figure 43.

Figure 46.

TOTAL HARMONIC DISTORTION vs FREE-AIR TEMPERATURE

Figure 41.
SIGNAL-TO-NOISE RATIO ANALOG SUPPLY VOLTAGE (+VA)

Figure 44.
EFFECTIVE NUMBERR OF BITS ANALOG SUPPLY VOLTAGE (+VA)

Figure 47.

TYPICAL CHARACTERISTICS (continued)

Figure 48.

Figure 51.
SPURIOUS FREE DYNAMIC RANGE OPA SUPPLY VS VOLTAGE (VCC)

Figure 54.

TOTAL HARMONIC DISTORTION REFERENCE VOLTAGE

Figure 49.

Figure 52.
EFFECTIVE NUMBER OF BITS OPA SUPPLY VS VOLTAGE (VCC)

Figure 55.

SPURIOUS FREE DYNAMIC RANGE REFERENCE VOLTAGE

Figure 50.
TOTAL HARMONIC DISTORTION OPA SUPPLY VSULTAGE (VCC)

Figure 53.
SIGNAL-TO-NOISE RATIO
VS
SOURCE RESISTANCE (RIN)

Figure 56.

Texas
InSTRUMENTS

TYPICAL CHARACTERISTICS (continued)

Figure 57.

Figure 60.

Figure 63.

Figure 58.
TOTAL HARMONIC DISTORTION mULTIPLEXER CHANNELS

Figure 61.

VCM_O VOLTAGE OPA SUPPLY VS VOLTAGE (VCC)

Figure 64.

EFFECTIVE NUMBER OF BITS vs SOURCE RESISTANCE (RIN)

Figure 59.
SPURIOUS FREE DYNAMIC RANGE MULTIPLEXER CHANNELS

Figure 62.
BUFFER REFERENCE OUTPUT
VOLTAGE
VS
OPA SUPPLY VOLTAGE (VCC)

Figure 65.

TYPICAL CHARACTERISTICS (continued)
TYPICAL DNL

Figure 66.
TYPICAL INL

Figure 67.
TYPICAL FFT

Figure 68.

InsTRUMENTS
ADS8254
www.ti.com
SLAS643-MARCH 2009

APPLICATION INFORMATION

As discussed before, the ADS8254 is 16-bit analog SoC that includes various blocks like a multiplexer, ADC driver, internal reference, internal reference buffer, buffered reference output, and Ref/2 output on-board. The following diagram shows the recommended analog and digital interfacing of the ADS8254.

APPLICATION DIAGRAM

Figure 69. Analog and Digital Interface Diagram
As shown in Figure 69, the ADS8254 accepts unipolar differential analog inputs in the range of $\pm \mathrm{V}_{\text {ref }}$ with a common-mode voltage of $\mathrm{V}_{\text {rei }} / 2$. An application may require the interfacing of bipolar input signals. The following diagram shows the conversion of bipolar input signals to unipolar differential signals.

From BUF-REF o/p of ADC
(Use external buffer if current drawn by resistor network exceeds current output specification of reference buffer)

Note: Value of R depends on signal BW Use $\mathrm{R}=1.2 \mathrm{k} \Omega$ for signal $\mathrm{BW}<=10 \mathrm{kHz}$.
Choose C as per signal BW, 3 dB BW (filt) $=\mathrm{RC} / 2$

Figure 70. Bipolar Input Signals to Unipolar Differential Signals Conversion

MICROCONTROLLER INTERFACING

ADS8254 to 8-Bit Microcontroller Interface

Figure 71] shows a parallel interface between the ADS8254 and a typical microcontroller using an 8-bit data bus. The BUSY signal is used as a falling edge interrupt to the microcontroller.

Figure 71. ADS8254 Application Circuitry

Figure 72. ADS8254 Using Internal Reference

PRINCIPLES OF OPERATION

The ADS8254 features a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 71] for the application circuit for the ADS8254.

The conversion clock is generated internally. The conversion time of 650 ns is capable of sustaining a 1 MHz throughput.
When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

REFERENCE

The ADS8254 can operate with an external reference with a range from 3.0 V to 4.2 V . The reference voltage on the input pin 10 (REFIN) of the converter is internally buffered. A clean, low noise, well-decoupled reference voltage on this pin is required to ensure good performance of the converter. A low noise band-gap reference like the REF5040 can be used to drive this pin. A $0.1-\mu \mathrm{F}$ decoupling capacitor is required between REFIN and REFM pins (pin 10 and pin 9) of the converter. This capacitor should be placed as close as possible to the pins of the device. Designers should strive to minimize the routing length of the traces that connect the terminals of the capacitor to the pins of the converter. An RC network can also be used to filter the reference voltage. A $100-\Omega$ series resistor and a $0.1-\mu \mathrm{F}$ capacitor, which can also serve as the decoupling capacitor can be used to filter the reference voltage.

Figure 73. ADS8254 Using External Reference
The ADS8254 also has limited low pass filtering capability built into the converter. The equivalent circuitry on the REFIN input is as shown in Figure 74.

Figure 74. Simplified Reference Input Circuit
The REFM input of the ADS8254 should always be shorted to AGND. A 4.096-V internal reference is included. When the internal reference is used, pin 11 (REFOUT) is connected to pin 10 (REFIN) with an $0.1-\mu \mathrm{F}$ decoupling capacitor and $1-\mu \mathrm{F}$ storage capacitor between pin 11 (REFOUT) and pin 9 (REFM) (see Figure 72). The internal reference of the converter is double buffered. If an external reference is used, the second buffer provides isolation between the external reference and the CDAC. This buffer is also used to recharge all of the capacitors of the CDAC during conversion. Pin 11 (REFOUT) can be left unconnected (floating) if external reference is used (as shown in Figure 74).

ADS8254
www.ti.com

ANALOG INPUT

The ADS8254 features an analog multiplexer, a differential, high-input impedance, unity-gain ADC driver, and a high-performance ADC. Typically it would require alot of care in the selection of the driving circuit components and board layout for high resolution ADC driving. However, an on-board ADC driver simplifies the job for the user. All that is needed is to decouple AINP and AINM with a $1-\mathrm{nF}$ decoupling capacitor across these two terminals as close to the device as possible. The multiplexer inputs tolerate a source impedance of up to 50Ω for the specified device performance at a 1-MSPS operating speed. This relaxes the constraints on the signal conditioning circuit. In the case of true bipolar input signals, it is possible to condition them with a resister divider as shown in Figure 70. The device permits use of $1.2-\mathrm{k} \Omega$ resistors for the divider with an effective source impedance of 600Ω for signal BW less than 10 kHz . A suitable capacitor value can be used to limit signal BW which limits noise coming from the resistor divider network. Care must be taken about absolute analog voltage at the multiplexer input terminals. This voltage should not exceed VCC and VEE. The clamp at driver OPA limits the voltage applied to the ADC input.

Reading Data

The ADS8254 outputs full parallel data in straight binary format as shown in Table 3. The parallel output is active when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both low. There is a minimal quiet zone requirement around the falling edge of CONVST. This is 50 ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read should attempted within this zone. Any other combination of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ sets the parallel output to 3 -state. BYTE is used for multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the bus. Refer to Table 3 for ideal output codes.

Table 3. Ideal Input Voltages and Output Codes

DESCRIPTION	ANALOG VALUE	DIGITAL OUTPUT STRAIGHT BINARY	
Full scale range	$2 \times\left(+\mathrm{V}_{\text {ref }}\right)$		
Least significant bit (LSB)	$2 \times\left(+\mathrm{V}_{\text {ref }}\right) / 65536$	BINARY CODE	HEX CODE
+ Full scale	$\left(+\mathrm{V}_{\text {ref }}\right)-1 \mathrm{LSB}$	0111111111111111	7FFF
Midscale	0 V	0000000000000000	0000
Midscale -1 LSB	$0 \mathrm{~V}-1 \mathrm{LSB}$	1111111111111111	FFFF
Zero	$-\mathrm{V}_{\text {ref }}$	1000000000000000	8000

The output data is a full 16 -bit word (D15-D0) on DB15-DB0 pins (MSB-LSB) if BYTE is low.
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15-DB8. In this case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins DB15-DB8, then bringing BYTE high. When BYTE is high, the low bits (D7-D0) appear on pins DB15-DB8.
This multiword read operation can be performed with multiple active $\overline{\mathrm{RD}}$ (toggling) or with $\overline{\mathrm{RD}}$ held low for simplicity. This is referred to as the AUTO READ operation.

Table 4. Conversion Data Read Out

BYTE	DATA READ OUT	
	PINS DB15-DB8	PINS DB7-DB0
High	D7-D0	All One's
Low	D15-D8	D7-D0

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS8254IBRGCR | ACTIVE | VQFN | RGC | 64 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| ADS8254IBRGCT | ACTIVE | VQFN | RGC | 64 | 250 |
 no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| ADS8254IRGCR | ACTIVE | VQFN | RGC | 64 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| ADS8254IRGCT | ACTIVE | VQFN | RGC | 64 | 250 |
 no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 (mm)	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
ADS8254IBRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
ADS8254IBRGCT	VQFN	RGC	64	250	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
ADS8254IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
ADS8254IRGCT	VQFN	RGC	64	250	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS8254IBRGCR	VQFN	RGC	64	2000	333.2	345.9	28.6
ADS8254IBRGCT	VQFN	RGC	64	250	333.2	345.9	28.6
ADS8254IRGCR	VQFN	RGC	64	2000	333.2	345.9	28.6
ADS8254IRGCT	VQFN	RGC	64	250	333.2	345.9	28.6

RGC(S-PVQFN-N64) CUSTOM DEVICE PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.

0 The package thermal pad must be soldered to the board for thermal and mechanical performance.
See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

Instruments
www.ti.com

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View
NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RGC (S-PVQFN-N64)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	$\underline{\text { amplifier.ti.com }}$
Data Converters	$\underline{\text { dataconverter.ti.com }}$
DLP® Products	$\underline{\text { www.dlp.com }}$
DSP	$\underline{\text { www.ti.com }}$
Clocks and Timers	$\underline{\text { interface.ti.com }}$
Interface	$\underline{\text { logic.ti.com }}$
Logic	$\underline{\text { power.ti.com }}$
Power Mgmt	$\underline{\text { www.ti-rrocontroller.ti.com }}$
Microcontrollers	

RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications

Audio	$\underline{\text { www.ti.com/audio }}$
Automotive	
Communications and	
Telecom	
Computers and	
Peripherals	
Consumer Electronics	$\underline{\text { www.ti.com/automotive }}$
Energy	$\underline{\text { www.ti.com/compunications }}$
Industrial	$\underline{\text { www.ti.com/consumer-apps }}$
Medical	$\underline{\text { www.ti.com/energy }}$
Security	$\underline{\text { www.ti.com/medical }}$
Space, Avionics \&	$\underline{\text { www.ti.com/security }}$
Defense	
Video and Imaging	$\underline{\text { www.ti.com/vpace-avionics-defense }}$
Wireless	$\underline{\text { www.ti.com/wireless-apps }}$

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

