16-BIT, 1.25 MSPS, UNIPOLAR DIFFERENTIAL INPUT, MICRO POWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE

FEATURES

- $1.25-\mathrm{MHz}$ Sample Rate
- 16-Bit NMC Ensured Over Temperature
- Zero Latency
- Unipolar Differential Input Range: $\mathrm{V}_{\text {ref }}$ to $-\mathrm{V}_{\text {ref }}$
- Onboard Reference
- Onboard Reference Buffer
- High-Speed Parallel Interface
- Power Dissipation: 155 mW at 1.25 MHz Typ
- Wide Digital Supply
- 8-/16-Bit Bus Transfer
- 48-Pin TQFP Package

APPLICATIONS

- DWDM
- Instrumentation
- High-Speed, High-Resolution, Zero Latency Data Acquisition Systems
- Transducer Interface
- Medical Instruments
- Communication

DESCRIPTION

The ADS8402 is a 16 -bit, 1.25 MHz A/D converter with an internal 4.096-V reference. The device includes a 16-bit capacitor-based SAR A/D converter with inherent sample and hold. The ADS8402 offers a full 16-bit interface and an 8 -bit option where data is read using two 8-bit read cycles.
The ADS8402 has a unipolar differential input. It is available in a 48-lead TQFP package and is characterized over the industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

MODEL	MAXIMUM INTEGRAL LINEARITY (LSB)	MAXIMUM DIFFERENTIAL LINEARITY (LSB)	NO MISSING CODES RESOLUTION (BIT)	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPERATURE RANGE	ORDERING INFORMATION	TRANSPORT MEDIA QUANTITY
ADS84021	± 6	-2~+3	15	$\begin{aligned} & 48 \mathrm{Pin} \\ & \text { TQFP } \end{aligned}$	PFB	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	ADS8402IPFBT	Tape and reel 250
							ADS8402IPFBR	Tape and reel 1000
ADS84021B	± 3.5	-1~+2	16	$\begin{aligned} & 48 \mathrm{Pin} \\ & \text { TQFP } \end{aligned}$	PFB	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	ADS8402IBPFBT	Tape and reel 250
							ADS8402IBPFBR	Tape and reel 1000

NOTE: For the most current specifications and package information, refer to our website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

			UNIT
Voltage	+IN to AGND		$+\mathrm{VA}+0.1 \mathrm{~V}$
	-IN to AGND		+VA + 0.1 V
Voltage range	+VA to AGND		-0.3 V to 7 V
	+VBD to BDGND		-0.3 V to 7 V
	+VA to +VBD		-0.3 V to 2.5 V
Digital input voltage to BDGND			-0.3 V to +VBD +0.3 V
Digital output voltage to BDGND			-0.3 V to +VBD +0.3 V
Operating free-air temperature range, T_{A}			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$			$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction temperature ($\mathrm{I}^{\text {m max }}$)			$150^{\circ} \mathrm{C}$
TQFP package	Powerdissipation		$\left(\mathrm{TJMax}-\mathrm{T}_{\mathrm{A}}\right.$)/ $\theta_{\text {JA }}$
	θ JA thermal impedance		$86^{\circ} \mathrm{C} / \mathrm{W}$
Leadtemperature, soldering		Vapor phase (60 sec)	$215^{\circ} \mathrm{C}$
		Infrared (15 sec)	$220^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ADS8402
INSTRUMENTS
www.ti.com

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}$ ref $=4.096 \mathrm{~V}$, fSAMPLE $=1.25 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analog Input						
Full-scale input voltage (see Note 1)		+IN - - IN	$-\mathrm{V}_{\text {ref }}$		$\mathrm{V}_{\text {ref }}$	V
Absolute input voltage		+IN	-0.2		$\mathrm{V}_{\text {ref }}+0.2$	V
		-IN	-0.2		$\mathrm{V}_{\text {ref }}+0.2$	
Common-mode input range	ADS8402l		$\left(\mathrm{V}_{\text {ref }} / 2\right)-0.2$	$\mathrm{V}_{\text {ref }} / 2$	$\left(\mathrm{V}_{\text {ref }} / 2\right)+0.2$	V
Input capacitance				25		pF
Input leakage current				0.5		nA

SystemPerformance						
Resolution			16			Bits
No missing codes	ADS8402I		15			Bits
	ADS84021B		16			
Integral linearity (see Notes 2 and 3)	ADS8402I		-6	± 2.5	6	LSB
	ADS84021B		-3.5	± 2	3.5	
Differentiallinearity	ADS8402I		-2	± 1	3	LSB
	ADS84021B		-1	± 0.75	2	
Offset error (see Note 4)	ADS84021		-3	± 1	3	mV
	ADS84021B		-1.5	± 0.5	1.5	mV
Gain error (see Notes 4 and 5)	ADS8402I		-0.15		0.15	\%FS
	ADS84021B		-0.098		0.098	
Common-mode rejection ratio		At dc ($\pm 0.2 \mathrm{~V}$ around $\mathrm{V}_{\text {ref }} / 2$)		80		dB
		$+\mathrm{IN}--\mathrm{IN}=1 \mathrm{~V}_{\mathrm{pp}}$ at 1 MHz		80		
Noise				60		$\mu \mathrm{V}$ RMS
DC Power supply rejection ratio		At 7FFFh output code, $+\mathrm{VA}=4.75 \mathrm{~V}$ to 5.25 V , Vref $=4.096 \mathrm{~V}$, See Note 4		1		LSB

Sampling Dynamics				
Conversiontime		610	ns	
Acquisitiontime		150	ns	
Throughputrate			1.25	
MHz				
Aperturedelay		2	ns	
Aperturejitter		25	ps	
Step response		100	ns	
Overvoltage recovery		100	ns	

(1) Ideal input span, does not include gain or offset error.
(2) LSB means least significant bit
(3) This is endpoint INL, not best fit
(4) Measured relative to an ideal full-scale input (+ IN $--\operatorname{IN}$) of 8.192 V
(5) This specification does not include the internal reference voltage error and drift.

SPECIFICATIONS (CONTINUED)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=+5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4.096 \mathrm{~V}$, fSAMPLE $=1.25 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DynamicCharacteristics						
Total harmonic distortion (THD) (see Note 1)		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		-95		dB
Signal-to-noise ratio (SNR)		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		90		dB
Signal-to-noise + distortion (SINAD)		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		88		dB
Spurious free dynamic range (SFDR)		$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		95		dB
-3dB Small signal bandwidth				5		MHz
External Voltage Reference Input						
Reference voltage at REFIN, $\mathrm{V}_{\text {ref }}$			2.5	4.096	4.2	V
Reference resistance (see Note 2)				500		k Ω
Internal Reference Output						
Internal reference start-up time		From 95\% (+VA), with $1 \mu \mathrm{~F}$ storage capacity			120	ms
$\mathrm{V}_{\text {ref }}$ range		IOUT = 0	4.065	4.096	4.13	V
Source Current		Static load			10	$\mu \mathrm{A}$
Line Regulation		+VA $=4.75 \sim 5.25 \mathrm{~V}$		0.6		mV
Drift		IOUT = 0		36		PPM/C
Digital Input/Output						
Logic family				CMO		
Logic level	V_{IH}	$\mathrm{I}_{\mathrm{IH}}=5 \mu \mathrm{~A}$	+VBD-1		+VBD + 0.3	V
	V_{IL}	$\mathrm{ILL}^{\prime}=5 \mu \mathrm{~A}$	-0.3		0.8	
	V OH	$\mathrm{IOH}=2$ TTL loads	+VBD-0.6		+VBD	
	V_{OL}	$\mathrm{l} \mathrm{OL}=2$ TTL loads	0		0.4	
Data format			2's Complement			
Power Supply Requirements						
Power supply voltage	+VBD (see Notes 3 and 4)		2.95	3.3	5.25	V
	+VA (see Note 4)		4.75	5	5.25	V
+VA Supply current (see Note 5)		$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MHz}$		31	34	mA
Power dissipation (see Note 5)		$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MHz}$		155		mW
Temperature Range						
Operatingfree-air			-40		85	${ }^{\circ} \mathrm{C}$

(1) Calculated on the first nine harmonics of the input frequency
(2) Can vary $\pm 20 \%$
(3) The difference between +VA and +VBD should not be less than 2.3 V , i.e., if +VA is $5.25 \mathrm{~V},+\mathrm{VBD}$ should be minimum of 2.95 V .
(4) $+\mathrm{VBD} \geq+\mathrm{VA}-2.3 \mathrm{~V}$
(5) This includes only VA+ current. +VBD current is typically 1 mA with 5 pF load capacitance on output pins.

ADS8402
INSTRUMENTS
www.ti.com

TIMING CHARACTERISTICS

All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ (see Notes 1,2 , and 3)

	PARAMETER	MIN	TYP	MAX	UNIT
tconv	Conversiontime		600	610	ns
${ }^{\text {t }}$ ACQ	Acquisitiontime	150			ns
tpd1	$\overline{\text { CONVST }}$ low to conversion started (BUSY high)			35	ns
tpd2	Propagation delay time, End of conversion to BUSY low			20	ns
$\mathrm{t}_{\mathrm{w}} 1$	Pulse duration, $\overline{\text { CONVST }}$ low	20			ns
$\mathrm{t}_{\text {su1 }}$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\text { CONVST }}$ low	0			ns
$\mathrm{t}_{\mathrm{w} 2}$	Pulse duration, $\overline{\text { CONVST }}$ high	20			ns
	CONVST falling edge jitter			10	ps
tw3	Pulse duration, BUSY signal low	Min(tacQ)			ns
$\mathrm{t}_{\mathrm{w} 4}$	Pulse duration, BUSY signal high			630	ns
th1	Hold time, First data bus data transition ($\overline{\mathrm{RD}}$ low, $\overline{\text { or } \mathrm{CS}}$ low for read cycle, or BYTE input changes) after CONVST low	40			ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0			ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0			ns
tw5	Pulse duration, $\overline{\mathrm{RD}}$ low time	50			ns
ten	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid			20	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	0			ns
td3	Delay time, BYTE rising edge or falling edge to data valid	2		20	ns
tw6	$\overline{\mathrm{RD}}$ high	20			ns
th2	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\mathrm{CONVST}}$ falling edge	50			ns
tpd4	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	Max(td5)			ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE rising edge to $\overline{\mathrm{RD}}$ falling edge	0			ns
th3	Hold time, BYTE falling edge to $\overline{\text { RD }}$ falling edge	0			ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ High ($\overline{\mathrm{CS}}$ high for read cycle) to 3-stated data bus			20	ns
td5	Delay time, BUSY low to MSB data valid			0	ns

(1) All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
(2) See timing diagrams.
(3) All timings are measured with 20 pF equivalent loads on all data bits and BUSY pins.

TIMING CHARACTERISTICS
All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ (see Notes 1,2 , and 3)

	PARAMETER	MIN	TYP	MAX	UNIT
t CONV	Conversiontime		600	610	ns
$\mathrm{t}_{\mathrm{ACP}}$	Acquisitiontime	150			ns
tpd1	$\overline{\text { CONVST }}$ low to conversion started (BUSY high)			40	ns
$\mathrm{t}_{\text {pd2 }}$	Propagation delay time, end of conversion to BUSY low			20	ns
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, $\overline{\text { CONVST }}$ Iow	20			ns
$\mathrm{t}_{\text {su1 }}$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\text { CONVST }}$ low	0			ns
$\mathrm{t}_{\mathrm{w} 2}$	Pulse duration, $\overline{\text { CONVST }}$ high	20			ns
	CONVST falling edge jitter			10	ps
tw3	Pulse duration, BUSY signal low	$\operatorname{Min}\left(\mathrm{t}_{\text {ACO }}\right)$			ns
$\mathrm{t}_{\mathrm{w} 4}$	Pulse duration, BUSY signal high			630	ns
th1	Hold time, first data bus transition ($\overline{\mathrm{RD}}$ low, or CS low for read cycle, or BYTE or BUS 16/16 input changes) after CONVST low	40			ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0			ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0			ns
tw5	Pulse duration, $\overline{\mathrm{RD}}$ low	50			ns
$\mathrm{t}_{\text {en }}$	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid			30	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	0			ns
td3	Delay time, BUS16/16 or BYTE rising edge or falling edge to data valid	2		30	ns
$\mathrm{t}_{\mathrm{w} 6}$	Pulse duration, $\overline{\mathrm{RD}}$ high time	20			ns
th2	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\mathrm{CONVST}}$ falling edge	50			ns
$\mathrm{t}_{\mathrm{pd} 4}$	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	Max(td5)			ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE rising edge to $\overline{\mathrm{RD}}$ falling edge	0			ns
th3	Hold time, BYTE falling edge to $\overline{\text { RD }}$ falling edge	0			ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ High ($\overline{\mathrm{CS}}$ high for read cycle) to 3-stated data bus			30	ns
td5	Delay time, BUSY low to MSB data valid delay time			0	ns

(1) All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
(2) See timing diagrams.
(3) All timings are measured with 10 pF equivalent loads on all data bits and BUSY pins.

PIN ASSIGNMENTS

PFB PACKAGE (TOP VIEW)		
RESET	38 23	DB8
BYTE	39 22	DB9
CONVST	40 21	DB10
$\overline{\mathrm{RD}}$	41	DB11
$\overline{\mathrm{CS}}$	42×19	DB12
+VA	43 (18	7 DB13
AGND	44	DB14
AGND	45	DB15
+VA	46	AGND
REFM	47	AGND
REFM $\left[\begin{array}{ccccccccccccc}48 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\right]+$ VA		

NC - No connection

TERMINAL FUNCTIONS

TIMING DIAGRAMS

\dagger Signal internal to device
Figure 1. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ and $\overline{\mathrm{RD}}$ Toggling

\dagger Signal internal to device
Figure 2. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ Toggling, $\overline{\mathrm{RD}}$ Tied to BDGND

\dagger Signal internal to device
Figure 3. Timing for Conversion and Acquisition Cycles With $\overline{\mathrm{CS}}$ Tied to BDGND, $\overline{\mathrm{RD}}$ Toggling

\dagger Signal internal to device
Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ and $\overline{\mathrm{RD}}$ Tied to BDGND—Auto Read

Figure 5. Detailed Timing for Read Cycles

ADS8402
INSTRUMENTS
www.ti.com

TYPICAL CHARACTERISTICS \dagger

SIGNAL-TO-NOISE PLUS DISTORTION
vs
FREE-AIR TEMPERATURE

Figure 8

SIGNAL-TO-NOISE RATIO
vs
FREE-AIR TEMPERATURE

Figure 7

SPURIOUS FREE-DYNAMIC RANGE vs
FREE-AIR TEMPERATURE

Figure 9

Figure 10

SIGNAL-TO-NOISE PLUS DISTORTION
 vs
 INPUT FREQUENCY

Figure 12

SIGNAL-TO-NOISE RATIO
VS
INPUT FREQUENCY

Figure 11

Figure 13
\dagger At $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

ADS8402
INSTRUMENTS
www.ti.com

Figure 14

SUPPLY CURRENT
SAMPLE RATE

Figure 16

TOTAL HARMONIC DISTORTION vs
INPUT FREQUENCY

Figure 15

Figure 17

Figure 18

GAIN ERROR
vs
FREE-AIR TEMPERATURE

Figure 20

INTERNAL REFERENCE VOLTAGE
vS
FREE-AIR TEMPERATURE

Figure 19

OFFSET ERROR
vs
FREE-AIR TEMPERATURE

Figure 21
\dagger At $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

ADS8402
INSTRUMENTS
www.ti.com

Figure 22

DIFFERENTIAL NONLINEARITY (MIN)
FREE-AIR TEMPERATURE

Figure 24

DIFFERENTIAL NONLINEARITY (MAX)
vs
FREE-AIR TEMPERATURE

Figure 23

INTEGRAL NONLINEARITY (MAX)
vs
FREE-AIR TEMPERATURE

Figure 25

Figure 26

INTEGRAL NONLINEARITY
vs
REFERENCE VOLTAGE

Figure 27

DIFFERENTIAL NONLINEARITY
vs
REFERENCE VOLTAGE

Figure 28
\dagger At $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, External Reference $=4.096 \mathrm{~V}$ (REFIN)
Figure 29

INL

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, External Reference $=4.096 \mathrm{~V}$ (REFIN)
Figure 30

FFT SPECTRUM RESPONSE

32768 Points, $\mathrm{f}=1.25 \mathrm{MHz}$, Internal Reference $=4.096 \mathrm{~V}($ REFIN $)$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz},(+\mathrm{IN}--\mathrm{IN})=$ Full Scale

Figure 31

APPLICATION INFORMATION

MICROCONTROLLER INTERFACING

ADS8402 to 8-Bit Microcontroller Interface

Figure 32 shows a parallel interface between the ADS8402 and a typical microcontroller using the 8-bit data bus.
The BUSY signal is used as a falling-edge interrupt to the microcontroller.

Figure 32. ADS8402 Application Circuitry (using external reference)

Figure 33. Use Internal Reference

PRINCIPLES OF OPERATION

The ADS8402 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution, which inherently includes a sample/hold function. See Figure 32 for the application circuit for the ADS8402.

The conversion clock is generated internally. The conversion time of 610 ns is capable of sustaining a $1.25-\mathrm{MHz}$ throughput.
The analog input is provided to two input pins: +IN and -IN. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

REFERENCE

The ADS8402 can operate with an external reference with a range from 2.5 V to 4.2 V . A 4.096- V internal reference is included. When internal reference is used, pin 2 (REFOUT) should be connected to pin 1 (REFIN) with an $0.1 \mu \mathrm{~F}$ decoupling capacitor and $1 \mu \mathrm{~F}$ storage capacitor between pin 2 (REFOUT) and pins 47 and 48 (REFM) (see Figure 33). The internal reference of the converter is double buffered. If an external reference is used, the second buffer provides isolation between the external reference and the CDAC. This buffer is also used to recharge all of the capacitors of the CDAC during conversion. Pin 2 (REFOUT) can be left unconnected (floating) if external reference is used.

ANALOG INPUT

When the converter enters the hold mode, the voltage difference between the +IN and -IN inputs is captured on the internal capacitor array. Both +IN and -IN input has a range of -0.2 V to $\mathrm{V}_{\text {ref }}+0.2 \mathrm{~V}$. The input span $(+\mathrm{IN}-(-\mathrm{IN}))$ is limited to $-\mathrm{V}_{\text {ref }}$ to $\mathrm{V}_{\text {ref }}$.

The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. Essentially, the current into the ADS8402 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (25 pF) to an 16 -bit settling level within the acquisition time (150 ns) of the device. When the converter goes into the hold mode, the input impedance is greater than $1 \mathrm{G} \Omega$.

Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the +IN and $-I N$ inputs and the span $(+I N-(-I N))$ should be within the limits specified. Outside of these ranges, the converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters should be used.

Care should be taken to ensure that the output impedance of the sources driving +IN and -IN inputs are matched. If this is not observed, the two inputs could have different setting time. This may result in offset error, gain error and linearity error which varies with temperature and input voltage.

A typical input circuit using Tl's THS4503 is shown in Figure 34. Input from a single-ended source may be converted into differential signal for ADS8402 as shown in the figure. In case the source itself is differential then THS4503 may be used in differential input and differential output mode.

$\mathbf{R}_{\mathbf{G},} \mathbf{R}_{\mathbf{S}}$, and $\mathbf{R}_{\mathbf{T}}$ should be chosen such that
$\mathbf{R}_{\mathbf{G}+} \mathbf{R}_{\mathbf{S}} \| \mathbf{R}_{\mathbf{T}}=1 \mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{OCM}}=2 \mathrm{~V},+\mathrm{V}_{\text {CC }}=7 \mathrm{~V}$, and $-\mathrm{V}_{\mathrm{CC}}=-7 \mathrm{~V}$
Figure 34. Using THS4503 With ADS8402

DIGITAL INTERFACE

Timing and Control

See the timing diagrams in the specifications section for detailed information on timing signals and their requirements.
The ADS8402 uses an internal oscillator generated clock which controls the conversion rate and in turn the throughput of the converter. No external clock input is required.
Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum requirement has been met, the $\overline{\text { CONVST }}$ pin can be brought high), while $\overline{\mathrm{CS}}$ is low. The ADS8402 switches from the sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of this signal is important to the performance of the converter. The BUSY output is brought high after CONVST goes low. BUSY stays high throughout the conversion process and returns low when the conversion has ended.
Sampling starts with the falling edge of the BUSY signal when $\overline{\mathrm{CS}}$ is tied low or starts with the falling edge of $\overline{\mathrm{CS}}$ when BUSY is low.
Both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ can be high during and before a conversion with one exception ($\overline{\mathrm{CS}}$ must be low when $\overline{\mathrm{CONVST}}$ goes low to initiate a conversion). Both the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ pins are brought low in order to enable the parallel output bus with the conversion.

Reading Data

The ADS8402 outputs full parallel data in two's complement format as shown in Table 1. The parallel output is active when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both low. There is a minimal quiet zone requirement around the falling edge of $\overline{\text { CONVST. This }}$ is 100 ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read should be attempted within this zone. Any other combination of $\overline{C S}$ and $\overline{R D}$ sets the parallel output to 3 -state. BYTE is used for multiword read operations. BYTE is used whenever lower bits of the conversion result are output on the higher byte of the bus. Refer to Table 1 for ideal output codes.

Table 1. Ideal Input Voltages and Output Codes

DESCRIPTION	ANALOG VALUE		DIGITAL OUTPUT TWOS COMPLEMENT
FULL SCALE RANGE	$\mathbf{2 V}_{\text {ref }}$		
Least significant bit (LSB)	$2 \mathrm{~V}_{\text {ref }} / 65536$	BINARY CODE	7FFF
Full scale	$\mathrm{V}_{\text {ref }}$	0111111111111111	0000
Midscale	0	0000000000000000	8000
Zero	-	ref	1000000000000000

The output data is a full 16-bit word (D15-D0) on DB15-DB0 pins (MSB-LSB) if BYTE is low.
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15-DB8. In this case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins DB15-DB8, then bringing BYTE high. When BYTE is high, the low bits (D7-D0) appears on pins DB15-D8.
These multiword read operations can be done with multiple active $\overline{\mathrm{RD}}$ (toggling) or with $\overline{\mathrm{RD}}$ tied low for simplicity.

BYTE		DATA READ OUT	
		DB7-DB0	
High	D7-D0	All one's	
Low	D15-D8	D7-D0	

RESET

$\overline{\text { RESET }}$ is an asynchronous active low input signal (that works independantly of $\overline{\mathrm{CS}}$). Minimum RESET low time is 20 ns . Current conversion will be aborted no later than 50 ns after the converter is in the reset mode. In addition, all output latches are cleared (set to zero's) after RESET. The converter goes back to normal operation mode no later than 20 ns after RESET input is brought high.
The converter starts the first sampling period 20 ns after the rising edge of $\overline{\text { RESET }}$. Any sampling period except for the one immediately after a RESET is started with the falling edge of the previous BUSY signal or the falling edge of CS, whichever is later.

POWER-ON INITIALIZATION

One RESET pulse followed by three conversion cycles must be given to the converter after powerup to ensure proper operation. The next pulse can be issued once both +VA and +VBD reach 95% of the minimum required value.

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8402 circuitry.
As the ADS8402 offers single-supply operation, it is often used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to achieve good performance from the converter.
The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any single conversion for an n -bit SAR converter, there are at least n windows in which large external transient voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, or high power devices.
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event.

On average, the ADS8402 draws very little current from an external reference, as the reference voltage is internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass capacitor or capacitors without oscillation. A $0.1-\mu \mathrm{F}$ bypass capacitor and $1-\mu \mathrm{F}$ storage capacitor are recommended from pin 1 (REFIN) directly to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.

SLAS154B-DECEMBER 2002 - REVISED MAY 2003
The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog ground. Avoid connections which are close to the grounding point of a microcontroller or digital signal processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.

As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from the connection for digital logic until they are connected at the power entry point. Power to the ADS8402 should be clean and well bypassed. A $0.1-\mu \mathrm{F}$ ceramic bypass capacitor should be placed as close to the device as possible. See Table 2 for the placement of the capacitor. In addition, a $1-\mu \mathrm{F}$ to $10-\mu \mathrm{F}$ capacitor is recommended. In some situations, additional bypassing may be required, such as a $100-\mu \mathrm{F}$ electrolytic capacitor or even a Pi filter made up of inductors and capacitors-all designed to essentially low-pass filter the 5-V supply, removing the high frequency noise.

Table 2. Power Supply Decoupling Capacitor Placement

POWER SUPPLY PLANE	CONVERTER ANALOG SIDE	CONVERTER DIGITAL SIDE
SUPPLY PINS		
Pin pairs that require shortest path to decoupling capacitors	$\begin{aligned} & (4,5),(8,9),(10,11),(13,15), \\ & (43,44),(45,46) \end{aligned}$	(24,25), $(34,35)$
Pins that require no decoupling	12, 14	37

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS8402IBPFBT | ACTIVE | TQFP | PFB | 48 | 250 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS8402IBPFBTG4 | ACTIVE | TQFP | PFB | 48 | 250 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS8402IPFBT | ACTIVE | TQFP | PFB | 48 | 250 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS8402IPFBTG4 | ACTIVE | TQFP | PFB | 48 | 250 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

PFB (S-PQFP-G48)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers

Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
asp.ti.com
www.ti.com/clocks
nterface.ti.com
ogic.ti.com
oower.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/pr

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video \& Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontro
www.ti.com/medica
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/vided
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

