

SBS 1.1-Compliant Gas Gauge and Protection Enabled With Impedance Track™

Check for Samples: bq20z45-R1

FEATURES

- Next Generation Patented Impedance Track™
 Technology Accurately Measures Available
 Charge in Li-Ion and Li-Polymer Batteries
 - Better Than 1% Error Over the Lifetime of the Battery
- Supports the Smart Battery Specification SBS V1.1
- Flexible Configuration for 2 to 4 Series Li-Ion and Li-Polymer Cells
- Powerful 8-Bit RISC CPU With Ultralow Power Modes
- Full Array of Programmable Protection Features
 - Voltage, Current, and Temperature
- Satisfies JEITA Guidelines
- Added Flexibility to Handle More Complex Charging Profiles
- Lifetime Data Logging
- Supports SHA-1 Authentication
- Complete Battery Protection and Gas Gauge Solution in One Package
- Available in a 38-Pin TSSOP (DBT) package

DESCRIPTION

The bq20z45-R1 SBS-compliant gas gauge and protection IC is a single IC solution designed for battery-pack or in-system installation. bg20z45-R1 measures and maintains an accurate record of available charge in Li-ion or Li-polymer batteries using its integrated high-performance analog peripherals, monitors capacity change, battery impedance, open-circuit voltage, and other critical parameters of the battery pack as well and reports the information to the system host controller over a serial-communication Together bus. with integrated analog front-end (AFE) short-circuit and overload protection, the bq20z45-R1 maximizes functionality and safety while minimizing external component count, cost, and size in smart battery circuits.

The implemented Impedance Track™ gas gauging technology continuously analyzes the battery impedance, resulting in superior gas-gauging accuracy. This enables remaining capacity to be calculated with discharge rate, temperature, and cell aging all accounted for during each stage of every cycle with high accuracy.

APPLICATIONS

- Notebook PCs
- Medical and Test Equipment
- Portable Instrumentation

Table 1. AVAILABLE OPTIONS

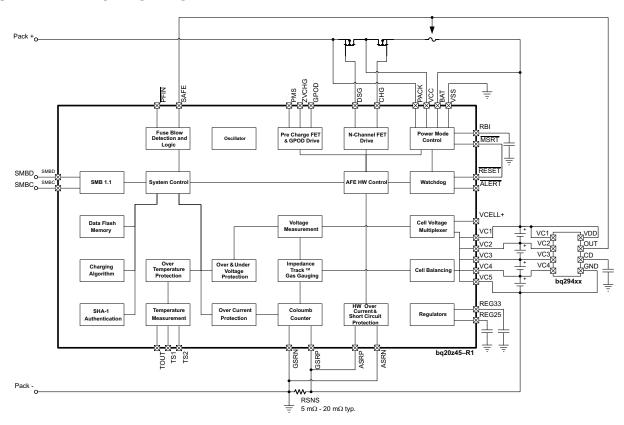
	T	PACKAGE ⁽¹⁾ 38-PIN TSSOP (DBT) Tube bq20z45-R1DBT ⁽²⁾ bq20z45-R1DBTR ⁽³⁾ bq20z45-R1DBTR ⁽³⁾	
	IA	38-PIN TSSOP (DBT) Tube	38-PIN TSSOP (DBT) Tape and Reel
-40°	°C to 85°C	bq20z45-R1DBT ⁽²⁾	bq20z45-R1DBTR ⁽³⁾

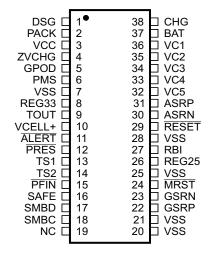
⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(3) A single reel quantity is 2000 units

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Impedance Track is a trademark of Texas Instruments.


⁽²⁾ A single tube quantity is 50 units.



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SYSTEM PARTITIONING DIAGRAM

bq20z45-R1 DBT PACKAGE (TOP VIEW)

PIN FUNCTIONS

ı	PIN		PIN FUNCTIONS
NO.	NAME	I/O ⁽¹⁾	DESCRIPTION
1	DSG	0	High side N-chan discharge FET gate drive
2	PACK	IA, P	Battery pack input voltage sense input. It also serves as device wake up when device is in shutdown mode.
3	VCC	Р	Positive device supply input. Connect to the center connection of the CHG FET and DSG FET to ensure device supply either from battery stack or battery pack input
4	ZVCHG	0	P-chan pre-charge FET gate drive
5	GPOD	OD	High voltage general purpose open drain output. Can be configured to be used in pre-charge condition
6	PMS	I	Pre-charge mode setting input. Connect to PACK to enable 0v pre-charge using charge FET connected at CHG pin. Connect to VSS to disable 0V pre-charge using charge FET connected at CHG pin.
7	VSS	Р	Negative device power supply input. Connect all VSS pins together for operation of device
8	REG33	Р	3.3V regulator output. Connect at least a 2.2µF capacitor to REG33 and VSS
9	TOUT	Р	Thermistor bias supply output
10	VCELL+	-	Internal cell voltage multiplexer and amplifier output. Connect a 0.1µF capacitor to VCELL+ and VSS
11	ALERT	OD	Alert output. In case of short circuit condition, overload condition and watchdog time out this pin will be triggered.
12	PRES	I	System / Host present input.
13	TS1	IA	Temperature sensor 1 input
14	TS2	IA	Temperature sensor 2 input
15	PFIN	I	Fuse blow detection input
16	SAFE	OD	Blow fuse signal output
17	SMBD	I/OD	SMBus data line
18	SMBC	I/OD	SMBus clock line
19	NC	-	Not connected
20, 21, 25, 28	VSS	Р	Negative device power supply input. Connect all VSS pins together for operation of device
22	GSRP	IA	Coulomb counter differential input. Connect to one side of the sense resistor
23	GSRN	IA	Coulomb counter differential input. Connect to one side of the sense resistor
24	MRST	I	Reset input for internal CPU core. connect to RESET for correct operation of device
26	REG25	Р	2.5V regulator output. Connect at least a 1µF capacitor to REG25 and VSS
27	RBI	Р	RAM backup input. Connect a capacitor to this pin and VSS to protect loss of RAM data in case of short circuit condition
29	RESET	0	Reset output. Connect to MSRT.
30	ASRN	IA	Short circuit and overload detection differential input. Connect to sense resistor
31	ASRP	IA	Short circuit and overload detection differential input. Connect to sense resistor
32	VC5	IA, P	Cell voltage sense input and cell balancing input for the negative voltage of the bottom cell in cell stack.
33	VC4	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the bottom cell and the negative voltage of the second lowest cell in cell stack.
34	VC3	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the second lowest cell in cell stack and the negative voltage of the second highest cell in 4 cell applications.
35	VC2	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the second highest cell and the negative voltage of the highest cell in 4 cell applications. Connect to VC3 in 2 cell stack applications
36	VC1	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the highest cell in cell stack in 4 cell applications. Connect to VC2 in 3 or 2 cell stack applications
37	BAT	I, P	Battery stack voltage sense input
38	CHG	0	High side N-chan charge FET gate drive

⁽¹⁾ I = Input, IA = Analog input, I/O = Input/output, I/OD = Input/Open-drain output, O = Output, OA = Analog output, P = Power

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted) (1)

		PIN	UNIT
		BAT, VCC	–0.3 V to 34 V
	Supply voltage range	PACK, PMS	–0.3 V to 34 V
V_{SS}		VC(n)-VC(n+1); n = 1, 2, 3, 4	−0.3 V to 8.5 V
		VC1, VC2, VC3, VC4	–0.3 V to 34 V
		VC5	–0.3 V to 1 V
V		PFIN, SMBD, SMBC	-0.3 V to 6 V
	Input voltage range	TS1, TS2, SAFE, VCELL+, PRES; ALERT	$-0.3 \text{ V to V}_{(REG25)} + 0.3 \text{ V}$
V _{IN}		MRST, GSRN, GSRP, RBI	$-0.3 \text{ V to V}_{(\text{REG25})} + 0.3 \text{ V}$
		ASRN, ASRP	–1 V to 1 V
		DSG, CHG, GPOD	–0.3 V to 34 V
		ZVCHG	$-0.3~V$ to V $_{(BAT)}$
V_{OUT}	Output voltage range	TOUT, ALERT, REG33	-0.3 V to 6 V
		RESET	–0.3 V to 7 V
		REG25	–0.3 V to 2.75 V
I _{SS}	Maximum combined sink current for input pins	PRES, PFIN, SMBD, SMBC	50 mA
T_A	Operating free-air temperature range	_	-40°C to 85°C
T_F	Functional temperature		-40°C to 100°C
T _{stg}	Storage temperature range		−65°C to 150°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		PIN	MIN	NOM MAX	UNIT
V _{SS}	Supply voltage	VCC, BAT	4.5	25	V
V _(STARTUP)	Minimum startup voltage	VCC, BAT, PACK	5.5		V
		VC(n)-VC(n+1); n = 1,2,3,4	0	5	V
		VC1, VC2, VC3, VC4	0	V_{SS}	V
V _{IN}	Input Voltage Range	VC5	0	0.5	V
		ASRN, ASRP	-0.5	0.5	V
		PACK, PMS	0	25	V
V _(GPOD)	Output Voltage Range	GPOD	0	25	V
I _(GPOD)	Drain Current ⁽¹⁾	GPOD		1	mA
C _(REG25)	2.5V LDO Capacitor	REG25	1		μF
C _(REG33)	3.3V LDO Capacitor	REG33	2.2		μF
C _(VCELL+)	Cell Voltage Output Capacitor	VCELL+	0.1		μF
R _(PACK)	PACK input block resistor ⁽²⁾	PACK	1		kΩ

⁽¹⁾ Use an external resistor to limit the current to GPOD to 1mA in high voltage application.

⁽²⁾ Use an external resistor to limit the inrush current PACK pin required.

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{(REG25)} = 2.41 \text{ V}$ to 2.59 V, $V_{(BAT)} = 14 \text{ V}$, $C_{(REG25)} = 1 \text{ }\mu\text{F}$, $C_{(REG33)} = 2.2 \text{ }\mu\text{F}$; typical values at $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

		PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	SUPPLY CUR						
CHG FET off; DSG FET on 90	I _(NORMAL)	Firmware running			550		μΑ
CHG FET off; DSG FET off S2	(SLEEP)	Sleep Mode	CHG FET on; DSG FET on		124		μΑ
			CHG FET off; DSG FET on		90		μΑ
SHUTDOWN WAKE; TA, = 25°C (unless otherwise noted) Shutdown exit at Vsynarrup			CHG FET off; DSG FET off		52		μΑ
PACO Shudson exit at VSTARTUP	I _(SHUTDOWN)	Shutdown Mode			0.1	1	μΑ
	SHUTDOWN V	NAKE; $T_A = 25^{\circ}C$ (unless otherw	ise noted)				
Positive or negative valeth terminal processors Positive or negative valeth valeth of positive valeth valeth valeth valeth of positive valeth vale	I _(PACK)					1	μΑ
Marker M	SRx WAKE FF	ROM SLEEP; T _A = 25°C (unless o	therwise noted)				
	V _(WAKE)	threshold with 1.00 mV, 2.25 mV, 4.5 mV and 9 mV		1.25		10	mV
			$V_{\text{(WAKE)}} = 1 \text{ mV};$ $I_{\text{(WAKE)}} = 0, \text{ RSNS1} = 0, \text{ RSNS0} = 1;$	-0.7		0.7	
Volume(s) = 4.5 mV; Volume(s) = 4.5 mV; Volume(s) = 4.5 mV; Volume(s) = 9 mV; Volume(s) = 1, RSNS0 = 1; Volume(s) = 1, RSNS0 =	$V_{(WAKE_ACR)}$	Accuracy of Vanages	$I_{(WAKE)} = 1$, RSNS1 = 0, RSNS0 = 1;	-0.8		0.8	mV
V _(WAKE, TCO) Temperature drift of V _(WAKE) 1, RSNS1 = 1, RSNS0 = 1; 1.73		Accorded of V(WARE)	$I_{(WAKE)} = 1$, RSNS1 = 1, RSNS0 = 1;	-1.0		1.0	
Voltage at REG25 pin 1.70 1.80 1.90 V V V V V V V V V				-1.4		1.4	
Note	V _(WAKE_TCO)				0.5		%/°C
$V_{\text{TT}} \qquad \text{Negative-going voltage input} \qquad \text{Voltage at REG25 pin} \qquad \qquad 1.70 \qquad 1.80 \qquad 1.90 \qquad \text{V} \\ V_{\text{Dys}} \qquad \text{Hysteresis} \qquad V_{\text{TT}} - V_{\text{TT}} \qquad \qquad 50 \qquad 150 \qquad 250 \qquad \text{mV} \\ I_{\text{RST}} \qquad \text{RESET active low time} \qquad \text{active low time after power up or watchdog reset} \qquad 100 \qquad 250 \qquad 560 \qquad \mus \\ \hline \text{WATCHDOG TIMER} \qquad \qquad$	t _(WAKE)				1	10	ms
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	POWER-ON R	ESET					
RESET RESET active low time active low time after power up or watchdog reset 100 250 560 μs WATCHDOG TIMER twoThint Watchdog start up detect time 250 500 1000 ms twDWT Watchdog detect time 50 100 150 μs 2.5V LDD; I _(REG330UT) = 0 mA; T _A = 25°C (unless otherwise noted) V _(REG25) Regulator output voltage I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < 25 V; I _{AS} < VCC or BAT < VCC or BA	V _{IT}	Negative-going voltage input	Voltage at REG25 pin	1.70	1.80	1.90	V
RESET active low time active low time after power up or watchdog reset 100 250 560 μs WATCHDOG TIMER t_{WDTINT} Watchdog start up detect time 250 500 1000 ms t_{WDWT} Watchdog detect time 50 100 150 μs 2.5V LDO; $I_{REG330UT} = 0$ mA; $T_A = 25^{\circ}C$ (unless otherwise noted) V_{REG25} Regulator output voltage $I_{AS} < VCC$ or BAT < 25 V; $I_{AS} < VCC$ or BAT <	V _{hys}	Hysteresis	$V_{IT+} - V_{IT-}$	50	150	250	mV
twoTINT Watchdog start up detect time 250 500 1000 ms twoDINT Watchdog detect time 50 100 150 µs 2.5V LDO; $I_{(REG330UT)} = 0$ mA; $T_A = 25^{\circ}$ C (unless otherwise noted) $V_{(REG25)}$ Regulator output voltage 4.5 < VCC or BAT < 25 V; $I_{(REG250UT)} \le 16$ mA; $T_A = -40^{\circ}$ C to 100° C 2.41 2.5 2.59 V $\Delta V_{(REG25TEMP)}$ Regulator output change with temperature $I_{(REG250UT)} = 2$ mA; $T_A = -40^{\circ}$ C to 100° C ±0.2 % $\Delta V_{(REG25LINE)}$ Line regulation 5.4 < VCC or BAT < 25 V; $I_{(REG250UT)} \le 2$ mA 3 10 mV $\Delta V_{(REG25LINE)}$ Load Regulation 0.2 mA $\le I_{(REG250UT)} \le 16$ mA 25 50 mV $I_{(REG25MAX)}$ Current Limit drawing current until REG25 ≥ 2 V to 0 V 5 40 75 mA 3.3V LDO; $I_{(REG250UT)} = 0$ mA; $T_A = 25^{\circ}$ C (unless otherwise noted) 4.5 < VCC or BAT < 25 V; $I_{(REG330UT)} \le 25$ mA; $T_A = -40^{\circ}$ C to 100° C 3 3.3 3.6 V $\Delta V_{(REG33TEMP)}$ Regulator output voltage $I_{(REG350UT)} \le 25$ mA;	t _{RST}	RESET active low time	active low time after power up or watchdog reset	100	250	560	μs
$\frac{1}{4.5 \text{ V/CC or BAT}} = \frac{1}{4.5} \times $	WATCHDOG 1	TIMER				,	
twpwrtWatchdog detect time50100150 μs 2.5V LDO; $I_{(REG330UT)} = 0$ mA; $T_A = 25^{\circ}C$ (unless otherwise noted) $V_{(REG25)}$ Regulator output voltage $4.5 < VCC$ or $BAT < 25$ V; $I_{(REG250UT)} \le 16$ mA; $T_A = -40^{\circ}C$ to $100^{\circ}C$ 2.412.52.59V $\Delta V_{(REG25TEMP)}$ Regulator output change with temperature $I_{(REG250UT)} = 2$ mA; $T_A = -40^{\circ}C$ to $100^{\circ}C$ ± 0.2 ± 0.2 ± 0.2 $\Delta V_{(REG25LINE)}$ Line regulation $5.4 < VCC$ or $BAT < 25$ V; 	t _{WDTINT}	Watchdog start up detect time		250	500	1000	ms
2.5V LDO; $I_{(REG330UT)} = 0$ mA; $T_A = 25^{\circ}C$ (unless otherwise noted) $V_{(REG25)}$ Regulator output voltage $V_{(REG25DUT)} \le 16 \text{ mA}; T_A = -40^{\circ}C \text{ to } 100^{\circ}C$ $\Delta V_{(REG25TEMP)}$ Regulator output change with temperature $I_{(REG25OUT)} = 2 \text{ mA}; T_A = -40^{\circ}C \text{ to } 100^{\circ}C$ $\Delta V_{(REG25LINE)}$ Line regulation $\Delta V_{(REG25LINE)}$ Load Regulation $0.2 \text{ mA} \le I_{(REG25OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG25OUT)} \le 16 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG25OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} \le I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} = I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 \text{ mA} = I_{(REG3OUT)} \le 2 \text{ mA}$ $0.2 $		Watchdog detect time		50	100	150	μs
$V_{(REG25)} \text{Regulator output voltage} \qquad \begin{cases} 4.5 < \text{VCC or BAT} < 25 \text{ V}; \\ I_{(REG250UT)} \le 16 \text{ mA}; \\ T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C} \end{cases} \qquad $		_(G33OUT) = 0 mA; T _A = 25°C (unles	s otherwise noted)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _(REG25)		4.5 < VCC or BAT < 25 V; I _{(REG250UT}) ≤ 16 mA;	2.41	2.5	2.59	V
	$\Delta V_{(REG25TEMP)}$		$I_{(REG25OUT)} = 2 \text{ mA};$ $T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C}$		±0.2		%
$\Delta V_{(REG25LOAD)} \text{Load Regulation} \qquad 0.2 \text{ mA} \leq I_{(REG25OUT)} \leq 16 \text{ mA} \qquad 25 \qquad 50$ $I_{(REG25MAX)} \text{Current Limit} \qquad \text{drawing current until} \qquad 5 \qquad 40 \qquad 75 \qquad \text{mA}$ $3.3V \text{ LDO; } I_{(REG25OUT)} = 0 \text{ mA; } T_A = 25^{\circ}\text{C (unless otherwise noted)}$ $V_{(REG33)} \text{Regulator output voltage} \qquad \begin{array}{c} 4.5 < \text{VCC or BAT} < 25 \text{ V;} \\ I_{(REG33OUT)} \leq 25 \text{ mA;} \\ T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C} \\ \end{array} \qquad 3 \qquad 3.3 \qquad 3.6 \qquad V$ $\Delta V_{(REG33TEMP)} \text{Regulator output change with temperature} \qquad \begin{array}{c} I_{(REG33OUT)} = 2 \text{ mA;} \\ T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C} \\ \end{array} \qquad 40.2 \qquad \%$	ΔV _(REG25LINE)	Line regulation			3	10	mV
$I_{(REG25MAX)} \text{Current Limit} \qquad \qquad \frac{\text{drawing current until}}{\text{REG25} = 2 \text{ V to 0 V}} \qquad \qquad 5 \qquad 40 \qquad 75 \qquad \text{mA}$ $3.3V \text{ LDO; } I_{(REG250UT)} = 0 \text{ mA; } T_A = 25^{\circ}\text{C (unless otherwise noted)}$ $V_{(REG33)} \text{Regulator output voltage} \qquad \qquad \frac{4.5 < \text{VCC or BAT} < 25 \text{ V;}}{I_{(REG330UT)} \le 25 \text{ mA;}} \qquad \qquad 3 \qquad 3.3 \qquad 3.6 \qquad \text{V}$ $T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C}$ $\Delta V_{(REG33TEMP)} \text{Regulator output change with temperature} \qquad \qquad I_{(REG330UT)} = 2 \text{ mA;}$ $T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C}$ $5.4 < \text{VCC or BAT} < 25 \text{ V;}$ $3 \qquad 3.3 \qquad 3.6 \qquad \text{Moreovery Line regulation}$ $5.4 < \text{VCC or BAT} < 25 \text{ V;}$ $3 \qquad 3.3 \qquad 3.6 \qquad \text{Moreovery Line regulation}$	ΔV _(REG25LOAD)	Load Regulation					mV
3.3V LDO; $I_{(REG250UT)} = 0$ mA; $T_A = 25^{\circ}C$ (unless otherwise noted) $V_{(REG33)}$ Regulator output voltage $V_{(REG330UT)} \le 25 \text{ mA};$ $T_A = -40^{\circ}C \text{ to } 100^{\circ}C$ $\Delta V_{(REG33TEMP)}$ Regulator output change with temperature $I_{(REG330UT)} = 2 \text{ mA};$ $T_A = -40^{\circ}C \text{ to } 100^{\circ}C$ $5.4 < VCC \text{ or BAT } < 25 \text{ V};$ $T_A = -40^{\circ}C \text{ to } 100^{\circ}C$ $5.4 < VCC \text{ or BAT } < 25 \text{ V};$ $T_A = -40^{\circ}C \text{ to } 100^{\circ}C$	(REG25MAX)	Current Limit	drawing current until	5			mA
Regulator output voltage	3.3V LDO: l/pr	(c250UT) = 0 mA: T _A = 25°C (unles					
Regulator output change with temperature $I_{(REG330UT)} = 2 \text{ mA};$ $T_A = -40^{\circ}\text{C}$ to 100°C $t_A = -40^{\circ}\text{C}$ $t_A = -40^{\circ}\text{C}$ to 100°C $t_A = -40^{\circ}\text{C}$			4.5 < VCC or BAT < 25 V; I _(REG330UT) ≤ 25 mA;	3	3.3	3.6	V
AV Secretary Line regulation 5.4 < VCC or BAT < 25 V;	$\Delta V_{(REG33TEMP)}$		I _(REG33OUT) = 2 mA;		±0.2		%
	ΔV _(REG33LINE)		5.4 < VCC or BAT < 25 V;		3	10	mV

ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{(REG25)} = 2.41 \text{ V}$ to 2.59 V, $V_{(BAT)} = 14 \text{ V}$, $C_{(REG25)} = 1 \text{ }\mu\text{F}$, $C_{(REG33)} = 2.2 \text{ }\mu\text{F}$; typical values at $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		0.2 mA ≤ I _(REG33OUT) ≤ 2 mA		7	17	
$\Delta V_{(REG33LOAD)}$	Load Regulation	0.2mA ≤ I _(REG33OUT) ≤ 25 mA		40	100	mV
		drawing current until REG33 = 3 V	25	100	145	
I _(REG33MAX)	Current Limit	short REG33 to VSS, REG33 = 0 V	12		65	mA
THERMISTOR	DRIVE	1				
V _(TOUT)	Output voltage	I _(TOUT) = 0 mA; T _A = 25°C		V _(REG25)		V
_		$I_{(TOUT)} = 1 \text{ mA; } R_{DS(on)} = (V_{(REG25)} - V_{(TOUT)}) / 1 \text{ mA; } T_A = 0$			100	
R _{DS(on)}	TOUT pass element resistance	-40°C to 100°C		50	100	Ω
VCELL+ HIGH	VOLTAGE TRANSLATION	,				
V		VC(n) - VC(n+1) = 0 V; $T_A = -40$ °C to 100°C	0.950	0.975	1	
V _(VCELL+OUT)		VC(n) - $VC(n+1)$ = 4.5 V; $T_A = -40$ °C to 100°C	0.275	0.3	0.375	
V _(VCELL+REF)	Translation output	internal AFE reference voltage ; T _A = -40°C to 100°C	0.965	0.975	0.985	V
V _(VCELL+PACK)		Voltage at PACK pin; T _A = -40°C to 100°C	0.98 × V _(PACK) /18	V _(PACK) /18	1.02 × V _(PACK) /18	
V _(VCELL+BAT)		Voltage at BAT pin; T _A = -40°C to 100°C	0.98 × V _(BAT) /18	V _(BAT) /18	1.02 × V _(BAT) /18	
CMMR	Common mode rejection ratio	VCELL+	40		. ,	dB
		K= {VCELL+ output (VC5=0V; VC4=4.5V) - VCELL+ output (VC5=0V; VC4=0V)}/4.5	0.147	0.150	0.153	
К	Cell scale factor	K= {VCELL+ output (VC2=13.5V; VC1=18V) - VCELL+ output (VC5=13.5V; VC1=13.5V)}/4.5	0.147	0.150	0.153	
I _(VCELL+OUT)	Drive Current to VCELL+ capacitor	VC(n) - VC(n+1) = 0V; VCELL+ = 0 V; T _A = -40°C to 100°C	12	18		μA
V _(VCELL+O)	CELL offset error	CELL output (VC2 = VC1 = 18 V) - CELL output (VC2 = VC1 = 0 V)	-18	-1	18	mV
I _{VCnL}	VC(n) pin leakage current	VC1, VC2, VC3, VC4, VC5 = 3 V	-1	0.01	1	μA
CELL BALAN	CING					
R _(BAL)	internal cell balancing FET resistance	$R_{DS(on)}$ for internal FET switch at $V_{DS} = 2 \text{ V}$; $T_A = 25^{\circ}\text{C}$	200	400	600	Ω
HARDWARE S	SHORT CIRCUIT AND OVERLOA	D PROTECTION; T _A = 25°C (unless otherwise noted)			,	
		V _{OL} = 25 mV (min)	15	25	35	
$V_{(OL)}$	OL detection threshold voltage accuracy	V _{OL} = 100 mV; RSNS = 0, 1	90	100	110	mV
, ,	accuracy	V _{OL} = 205 mV (max)	185	205	225	
		V _(SCC) = 50 mV (min)	30	50	70	
V _(SCC)	SCC detection threshold	V _(SCC) = 200 mV; RSNS = 0, 1	180	200	220	mV
()	voltage accuracy	V _(SCC) = 475 mV (max)	428	475	523	
		V _(SCD) = -50 mV (min)	-30	-50	-70	
V _(SCD)	SCD detection threshold	V _(SCD) = -200 mV; RSNS = 0, 1	-180	-200	-220	mV
()	voltage accuracy	$V_{(SCD)} = -475 \text{ mV (max)}$	-428	-475	-523	
t _{da}	Delay time accuracy			±15.25		μs
t _{pd}	Protection circuit propagation delay			50		μs
FET DRIVE CI	RCUIT; T _A = 25°C (unless other	vise noted)				
V _(DSGON)	DSG pin output on voltage	$V_{(DSGON)} = V_{(DSG)} - V_{(PACK)};$ $V_{(GS)}$ connect to 10 M Ω ; DSG and CHG on; $T_A = -40^{\circ}\text{C}$ to 100°C	8	12	16	٧
V _(CHGON)	CHG pin output on voltage	$ \begin{aligned} &V_{(CHGON)} = V_{(CHG)} \cdot V_{(BAT)}; \\ &V_{(GS)} = 10 M\Omega; \text{ DSG and CHG on}; \\ &T_A = -40^{\circ}\text{C to } 100^{\circ}\text{C} \end{aligned} $	8	12	16	V
V _(DSGOFF)	DSG pin output off voltage	$V_{(DSGOFF)} = V_{(DSG)} - V_{(PACK)}$			0.2	V
V _(CHGOFF)	CHG pin output off voltage	$V_{(CHGOFF)} = V_{(CHG)} - V_{(BAT)}$			0.2	V

ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{(REG25)} = 2.41 \text{ V}$ to 2.59 V, $V_{(BAT)} = 14 \text{ V}$, $C_{(REG25)} = 1 \text{ }\mu\text{F}$, $C_{(REG33)} = 2.2 \text{ }\mu\text{F}$; typical values at $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Diag diag	0 4700 - 5	V(CHG): V _(PACK) ≥ V _(PACK) + 4V		400	1000	
t _r	Rise time	C _L = 4700 pF	$V(DSG): V_{(BAT)} \ge V_{(BAT)} + 4V$		400	1000	μs
t _f	Fall time	C _L = 4700pF	$V(CHG): V_{(PACK)} + V_{(CHGON)} \ge V_{(PACK)} + 1V$		40	200	μs
			$V(DSG)$: $VC1 + V_{(DSGON)} \ge VC1 + 1V$		40	200	
$V_{(ZVCHG)}$	ZVCHG clamp voltage	BAT = 4.5 V		3.3	3.5	3.7	V
LOGIC; T _A =	= -40°C to 100°C (unless otherwis	e noted)					
D	Internal pullup resistance	ALERT		60	100	200	kΩ
R _(PULLUP)	internal pullup resistance	RESET		1	3	6	K12
		ALERT				0.2	
V_{OL}	Logic low output voltage level	RESET; V _(BAT)	= 7V; V _(REG25) = 1.5 V; I _(RESET) = 200 μA			0.4	V
			= 50 µA			0.6	
LOGIC SME	C, SMBD, PFIN, PRES, SAFE, ALI	ERT					
V _{IH}	High-level input voltage			2.0			V
V _{IL}	Low-level input voltage					0.8	V
V _{OH}	Output voltage high ⁽¹⁾	$I_{L} = -0.5 \text{ mA}$		V _{REG25} -0.5			V
V _{OL}	Low-level output voltage	PRES, PFIN, A	LERT, I _L = 7 mA;			0.4	V
Cı	Input capacitance				5		pF
I _(SAFE)	SAFE source currents	SAFE active, S	SAFE = V _(REG25) -0.6 V	-3			mA
	SAFE leakage current	SAFE inactive	(/	-0.2		0.2	μA
l _{lkg}	Input leakage current					1	μA
ADC ⁽²⁾							
	Input voltage range	TS1, TS2, usin	g Internal V _{ref}	-0.2		1	V
	Conversion time				31.5		ms
	Resolution (no missing codes)			16			bits
	Effective resolution			14	15		bits
	Integral nonlinearity					±0.03	%FSR(
	Offset error ⁽⁴⁾				140	250	μV
	Offset error drift ⁽⁴⁾	T _A = 25°C to 85	5°C		2.5	18	μV/°C
	Full-scale error ⁽⁵⁾	A			±0.1%	±0.7%	•
	Full-scale error drift				50		PPM/°(
	Effective input resistance ⁽⁶⁾			8			МΩ
COULOMB							
	Input voltage range			-0.20		0.20	V
	Conversion time	Single convers	ion	0.20	250	0.20	ms
	Effective resolution	Single convers		15			bits
	255470 1000144011	-0.1 V to 0.20			±0.007	±0.034	Dito
	Integral nonlinearity	-0.20 V to -0.1			±0.007	20.004	%FSR
	Offset error ⁽⁷⁾	$T_A = 25^{\circ}\text{C to } 85^{\circ}$			10		μV
	Offset error drift	1A - 23 C 10 6			0.4	0.7	μV/°C
	Full-scale error (8) (9)				±0.35%	0.7	μν/ Ο
	Full-scale error drift				±0.35%		PPM/°C

- (1) RC[0:7] bus
- (2) Unless otherwise specified, the specification limits are valid at all measurement speed modes
- (3) Full-scale reference
- (4) Post-calibration performance and no I/O changes during conversion with SRN as the ground reference
- (5) Uncalibrated performance. This gain error can be eliminated with external calibration.
- (6) The A/D input is a switched-capacitor input. Since the input is switched, the effective input resistance is a measure of the average resistance.
- (7) Post-calibration performance
- (8) Reference voltage for the coulomb counter is typically $V_{ref}/3.969$ at $V_{(REG25)} = 2.5$ V, $T_A = 25$ °C.
- (9) Uncalibrated performance. This gain error can be eliminated with external calibration.

INSTRUMENTS

ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{(REG25)} = 2.41 \text{ V}$ to 2.59 V, $V_{(RAT)} = 14 \text{ V}$, $C_{(REG25)} = 1 \text{ }\mu\text{F}$, $C_{(REG33)} = 2.2 \text{ }\mu\text{F}$; typical values at $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Effective input resistance ⁽¹⁰⁾	T _A = 25°C to 85°C	2.5			МΩ
INTERNAL	TEMPERATURE SENSOR					
V _(TEMP)	Temperature sensor voltage ⁽¹¹⁾			-2.0		mV/°C
VOLTAGE	REFERENCE					
	Output voltage		1.215	1.225	1.230	V
	Output voltage drift			65		PPM/°C
HIGH FRE	QUENCY OSCILLATOR					
f _(OSC)	Operating frequency			4.194		MHz
	Frequency error (12) (13)		-3%	0.25%	3%	
$f_{(EIO)}$	Frequency error (1-7)	T _A = 20°C to 70°C	-2%	0.25%	2%	
t _(SXO)	Start-up time (14)			2.5	5	ms
LOW FRE	QUENCY OSCILLATOR					
f _(LOSC)	Operating frequency			32.768		kHz
4	Frequency error ⁽¹³⁾ (15)		-2.5%	0.25%	2.5%	
f _(LEIO)	Frequency enors, (19)	T _A = 20°C to 70°C	-1.5%	0.25%	1.5%	
t _(LSXO)	Start-up time ⁽¹⁴⁾				500	μs

⁽¹⁰⁾ The CC input is a switched capacitor input. Since the input is switched, the effective input resistance is a measure of the average resistance.

^{(11) -53.7} LSB/°C

⁽¹²⁾ The frequency error is measured from 4.194 MHz.

⁽¹³⁾ The frequency drift is included and measured from the trimmed frequency at V_(REG25) = 2.5V, T_A = 25°C

⁽¹⁴⁾ The startup time is defined as the time it takes for the oscillator output frequency to be ±3%

⁽¹⁵⁾ The frequency error is measured from 32.768 kHz.

DATA FLASH CHARACTERISTICS OVER RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Typical Values at $T_A = 25$ °C and $V_{(REG25)} = 2.5$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Data retention		10			Years	
	Flash programming write-cycles		20k			Cycles	
t _(ROWPROG)	Row programming time	See (1)			2	ms	
t _(MASSERASE)	Mass-erase time				200	ms	
t _(PAGEERASE)	Page-erase time				20	ms	
I _(DDPROG)	Flash-write supply current			5	10	mA	
I _(DDERASE)	Flash-erase supply current			5	10	mA	
RAM BACK	JP						
1	RB data-retention input current	$V_{(RBI)} > V_{(RBI)MIN}$, $V_{REG25} < V_{IT-}$, $T_A = 85$ °C		1000	2500	nA	
I(RB)	No data-retention input current	$V_{(RBI)} > V_{(RBI)MIN}$, $V_{REG25} < V_{IT-}$, $T_A = 25$ °C	$V_{IT-}, T_A = 25^{\circ}C$ 90			IIA	
V _(RB)	RB data-retention input voltage ⁽¹⁾		1.7			V	

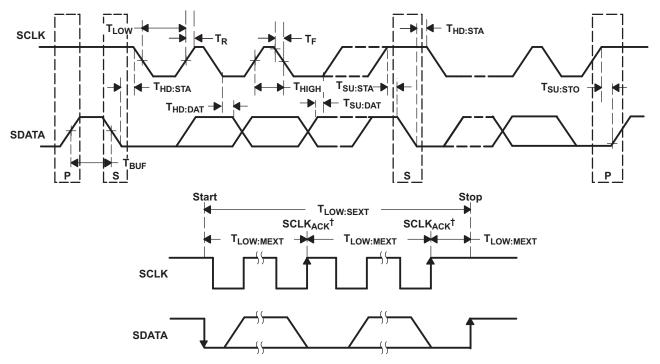
⁽¹⁾ Specified by design. Not production tested.

SMBus TIMING CHARACTERISTICS

 $T_A = -40^{\circ}$ C to 85°C Typical Values at $T_A = 25^{\circ}$ C and $V_{REG25} = 2.5$ V (Unless Otherwise Noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(SMB)	SMBus operating frequency	Slave mode, SMBC 50% duty cycle	10		100	kHz
f _(MAS)	SMBus master clock frequency	Master mode, No clock low slave extend		51.2		kHz
t _(BUF)	Bus free time between start and stop (see Figure 1)		4.7			μs
t _(HD:STA)	Hold time after (repeated) start (see Figure 1)		4			μs
t _(SU:STA)	Repeated start setup time (see Figure 1)		4.7			μs
t _(SU:STO)	Stop setup time (see Figure 1)		4			μs
	Data hald time (and Figure 1)	Receive mode	0			ns
t _(HD:DAT)	Data hold time (see Figure 1)	Transmit mode	300			
t _(SU:DAT)	Data setup time (see Figure 1)		250			ns
t _(TIMEOUT)	Error signal/detect (see Figure 1)	See ⁽¹⁾	25		35	μs
t _(LOW)	Clock low period (see Figure 1)		4.7			μs
t _(HIGH)	Clock high period (see Figure 1)	See (2)	4		50	μs
t _(LOW:SEXT)	Cumulative clock low slave extend time	See ⁽³⁾			25	ms
t _(LOW:MEXT)	Cumulative clock low master extend time (see Figure 1)	See ⁽⁴⁾			10	ms
t _f	Clock/data fall time	See ⁽⁵⁾			300	ns
t _r	Clock/data rise time	See ⁽⁶⁾			1000	ns

(6) Fall time $t_f = 0.9V_{DD}$ to $(V_{IL}MAX - 0.15)$


The bq20z45-R1 times out when any clock low exceeds $t_{(TIMEOUT)}$. $t_{(HIGH)}$, Max, is the minimum bus idle time. SMBC = SMBD = 1 for t > 50 ms causes reset of any transaction involving bq20z45-R1 that is in progress. This specification is valid when the NC_SMB control bit remains in the default cleared state (CLK[0]=0).

 $t_{\text{(LOW:SEXT)}} \text{ is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop.} \\$

 $t_{\text{(LOW:MEXT)}}$ is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop.

Rise time $t_r = V_{IL}MAX - 0.15$) to $(V_{IH}MIN + 0.15)$ (5)

A. SCLKACK is the acknowledge-related clock pulse generated by the master.

Figure 1. SMBus Timing Diagram

FEATURE SET

Primary (1st Level) Safety Features

The bg20z45-R1 supports a wide range of battery and system protection features that can easily be configured. The primary safety features include:

- Cell over/undervoltage protection
- Charge and discharge overcurrent
- **Short Circuit**
- Charge and discharge overtemperature with independent alarms and thresholds for each thermistor
- AFE Watchdog

Secondary (2nd Level) Safety Features

The secondary safety features of the bg20z45-R1 can be used to indicate more serious faults via the SAFE (pin 7). This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The secondary safety protection features include:

- Safety overvoltage
- Safety undervoltage
- Safety overcurrent in charge and discharge
- Safety overtemperature in charge and discharge with independent alarms and thresholds for each thermistor
- Charge FET and 0 Volt Charge FET fault
- Discharge FET fault
- Cell imbalance detection (active and at rest)
- Open thermistor detection
- AFE communication fault

Charge Control Features

The bg20z45-R1 charge control features include:

- Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active temperature range.
- Handles more complex charging profiles. Allows for splitting the standard temperature range into 2 sub-ranges and allows for varying the charging current according to the cell voltage.
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts.
- Determines the chemical state of charge of each battery cell using Impedance Track™ and can reduce the charge difference of the battery cells in fully charged state of the battery pack gradually using cell balancing algorithm during charging. This prevents fully charged cells from overcharging and causing excessive degradation and also increases the usable pack energy by preventing premature charge termination
- Supports pre-charging/zero-volt charging
- Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range
- Reports charging fault and also indicate charge status via charge and discharge alarms.

Gas Gauging

The bg20z45-R1 uses the Impedance Track™ Technology to measure and calculate the available charge in battery cells. The achievable accuracy is better than 1% error over the lifetime of the battery and there is no full charge discharge learning cycle required.

See Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm application note (SLUA364) for further details.

Instruments

Lifetime Data Logging Features

The bq20z45-R1 offers lifetime data logging, where important measurements are stored for warranty and analysis purposes. The data monitored include:

- Lifetime maximum temperature
- · Lifetime minimum temperature
- · Lifetime maximum battery cell voltage
- Lifetime minimum battery cell voltage
- Lifetime maximum battery pack voltage
- Lifetime minimum battery pack voltage
- · Lifetime maximum charge current
- Lifetime maximum discharge current
- Lifetime maximum charge power
- Lifetime maximum discharge power
- · Lifetime maximum average discharge current
- · Lifetime maximum average discharge power
- Lifetime average temperature

Authentication

The bq20z45-R1 supports authentication by the host using SHA-1.

Power Modes

The bg20z45-R1 supports 3 different power modes to reduce power consumption:

- In Normal Mode, the bq20z45-R1 performs measurements, calculations, protection decisions and data updates in 1 second intervals. Between these intervals, the bq20z45-R1 is in a reduced power stage.
- In Sleep Mode, the bq20z45-R1 performs measurements, calculations, protection decisions and data update
 in adjustable time intervals. Between these intervals, the bq20z45-R1 is in a reduced power stage. The
 bq20z45-R1 has a wake function that enables exit from Sleep mode, when current flow or failure is detected.
- In Shutdown Mode the bq20z45-R1 is completely disabled.

CONFIGURATION

Oscillator Function

The bq20z45-R1 fully integrates the system oscillators. Therefore the bq20z45-R1 requires no external components for this feature.

System Present Operation

The bq20z45-R1 checks the PRES pin periodically (1s). If PRES input is pulled to ground by external system, the bq20z45-R1 detects this as system present.

BATTERY PARAMETER MEASUREMENTS

The bq20z45-R1 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage, and temperature measurement.

Charge and Discharge Counting

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar signals from -0.25 V to 0.25 V. The bq20z45-R1 detects charge activity when $V_{SR} = V_{(SRP)}$ - $V_{(SRN)}$ is positive and discharge activity when $V_{SR} = V_{(SRP)}$ - $V_{(SRN)}$ is negative. The bq20z45-R1 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.

Voltage

The bq20z45-R1 updates the individual series cell voltages at one second intervals. The internal ADC of the bq20z45-R1 measures the voltage, scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the Impedance Track™ gas-gauging.

Current

The bq20z45-R1 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5 m Ω to 20 m Ω typ. sense resistor.

Auto Calibration

The bq20z45-R1 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for maximum charge measurement accuracy. The bq20z45-R1 performs auto-calibration when the SMBus lines stay low continuously for a minimum of 5 s.

Temperature

The bq20z45-R1 has an internal temperature sensor and inputs for 2 external temperature sensor inputs TS1 and TS2 used in conjunction with two identical NTC thermistors (default are Semitec 103AT) to sense the battery environmental temperature. The bq20z45-R1 can be configured to use internal or up to 2 external temperature sensors.

COMMUNICATIONS

The bq20z45-R1 uses SMBus v1.1 with Master Mode and package error checking (PEC) options per the SBS specification.

SMBus On and Off State

The bq20z45-R1 detects an SMBus off state when SMBC and SMBD are logic-low for ≥ 2 seconds. Clearing this state requires either SMBC or SMBD to transition high. Within 1 ms, the communication bus is available.

SBS Commands

Table 2. SBS COMMANDS

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x00	R/W	ManufacturerAccess	hex	2	0x0000	0xffff	_	_
0x01	R/W	RemainingCapacityAlarm	unsigned int	2	0	65535	300	mAh or 10mWh
0x02	R/W	RemainingTimeAlarm	unsigned int	2	0	65535	10	min
0x03	R/W	BatteryMode	hex	2	0x0000	0xe383	_	_
0x04	R/W	AtRate	signed int	2	-32768	32767	_	mA or 10mW
0x05	R	AtRateTimeToFull	unsigned int	2	0	65534	_	min
0x06	R	AtRateTimeToEmpty	unsigned int	2	0	65534	_	min
0x07	R	AtRateOK	unsigned int	2	0	65535	_	_
0x08	R	Temperature	unsigned int	2	0	65535	_	0.1°K
0x09	R	Voltage	unsigned int	2	0	65535	_	mV
0x0a	R	Current	signed int	2	-32768	32767	_	mA
0x0b	R	AverageCurrent	signed int	2	-32768	32767	_	mA
0x0c	R	MaxError	unsigned int	1	0	100	_	%
0x0d	R	RelativeStateOfCharge	unsigned int	1	0	100	_	%
0x0e	R	AbsoluteStateOfCharge	unsigned int	1	0	100+	_	%
0x0f	R/W	RemainingCapacity	unsigned int	2	0	65535	_	mAh or 10mWh
0x10	R	FullChargeCapacity	unsigned int	2	0	65535	_	mAh or 10mWh
0x11	R	RunTimeToEmpty	unsigned int	2	0	65534	_	min
0x12	R	AverageTimeToEmpty	unsigned int	2	0	65534	_	min
0x13	R	AverageTimeToFull	unsigned int	2	0	65534	_	min
0x14	R	ChargingCurrent	unsigned int	2	0	65534	_	mA
0x15	R	ChargingVoltage	unsigned int	2	0	65534	_	mV
0x16	R	BatteryStatus	unsigned int	2	0x0000	0xffff	_	_
0x17	R/W	CycleCount	unsigned int	2	0	65535	_	_
0x18	R/W	DesignCapacity	unsigned int	2	0	65535	4400	mAh or 10mWh
0x19	R/W	DesignVoltage	unsigned int	2	7000	16000	14400	mV
0x1a	R/W	SpecificationInfo	unsigned int	2	0x0000	0xffff	0x0031	_
0x1b	R/W	ManufactureDate	unsigned int	2	0	65535	01-Jan-1980	_
0x1c	R/W	SerialNumber	hex	2	0x0000	0xffff	0x0001	_
0x20	R/W	ManufacturerName	String	20+1	_	_	Texas Inst.	_
0x21	R/W	DeviceName	String	20+1	_	_	bq20z45-R1	_
0x22	R/W	DeviceChemistry	String	4+1	_	_	LION	_
0x23	R	ManufacturerData	String	14+1	_	_	_	_
0x2f	R/W	Authenticate	String	20+1	_	_	_	_
0x3c	R	CellVoltage4	unsigned int	2	0	65535	_	mV
0x3d	R	CellVoltage3	unsigned int	2	0	65535	_	mV
0x3e	R	CellVoltage2	unsigned int	2	0	65535	_	mV
0x3f	R	CellVoltage1	unsigned int	2	0	65535	_	mV

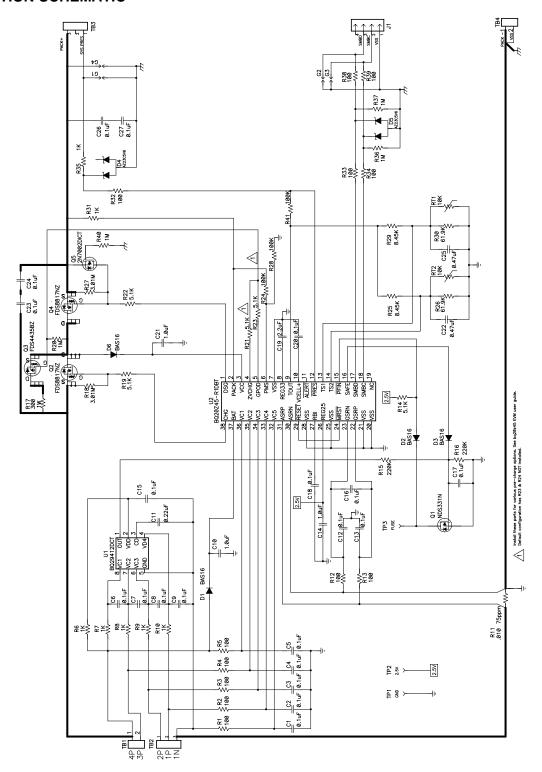


Table 3. EXTENDED SBS COMMANDS

SBS Cmd	Mode	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
0x45	R	AFEData	String	11+1	_	_	_	_
0x46	R/W	FETControl	hex	2	0x00	0xff	_	_
0x4f	R	StateOfHealth	hex	2	0x0000	0xffff	_	%
0x51	R	SafetyStatus	hex	2	0x0000	0xffff	_	_
0x53	R	PFStatus	hex	2	0x0000	0xffff	_	_
0x54	R	OperationStatus	hex	2	0x0000	0xffff	_	_
0x55	R	ChargingStatus	hex	2	0x0000	0xffff	_	_
0x57	R	ResetData	hex	2	0x0000	0xffff	_	_
0x58	R	WDResetData	unsigned int	2	0	65535	_	_
0x5a	R	PackVoltage	unsigned int	2	0	65535	_	mV
0x5d	R	AverageVoltage	unsigned int	2	0	65535	_	mV
0x5e	R	TS1Temperature	integer	2	-400	1200	_	0.1°C
0x5f	R	TS2Temperature	integer	2	-400	1200	_	0.1°C
0x60	R/W	UnSealKey	hex	4	0x00000000	0xfffffff	_	_
0x61	R/W	FullAccessKey	hex	4	0x00000000	0xfffffff	_	_
0x62	R/W	PFKey	hex	4	0x00000000	0xfffffff	_	_
0x63	R/W	AuthenKey3	hex	4	0x00000000	0xfffffff	_	_
0x64	R/W	AuthenKey2	hex	4	0x00000000	0xfffffff	_	_
0x65	R/W	AuthenKey1	hex	4	0x00000000	0xfffffff	_	_
0x66	R/W	AuthenKey0	hex	4	0x00000000	0xfffffff	_	_
0x69	R	SafetyStatus2	hex	2	0x0000	0x000f	_	_
0x6b	R	PFStatus2	hex	2	0x0000	0x000f	_	_
0x6c	R/W	ManufBlock1	String	20	_	_	_	_
0x6d	R/W	ManufBlock2	String	20	_	_	_	_
0x6e	R/W	ManufBlock3	String	20	_	_	_	_
0x6f	R/W	ManufBlock4	String	20	_	_	_	_
0x70	R/W	ManufacturerInfo	String	31+1	_	_	_	_
0x71	R/W	SenseResistor	unsigned int	2	0	65535	_	μΩ
0x72	R	TempRange	hex	2	0x0000	0xffff	_	_
0x73	R	LifetimeData	String	32+1	_	_	_	_
0x77	R/W	DataFlashSubClassID	hex	2	0x0000	Oxffff	_	_
0x78	R/W	DataFlashSubClassPage1	hex	32	_	_	_	_
0x79	R/W	DataFlashSubClassPage2	hex	32	_	_	_	_
0x7a	R/W	DataFlashSubClassPage3	hex	32	_	_	_	_
0x7b	R/W	DataFlashSubClassPage4	hex	32	_	_	_	_
0x7c	R/W	DataFlashSubClassPage5	hex	32	_	_	_	_
0x7d	R/W	DataFlashSubClassPage6	hex	32	_	_	_	_
0x7e	R/W	DataFlashSubClassPage7	hex	32	_	_	_	_
0x7f	R/W	DataFlashSubClassPage8	hex	32	_	_	_	_

TEXAS INSTRUMENTS

APPLICATION SCHEMATIC

PACKAGE OPTION ADDENDUM

www.ti.com 4-Jan-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins P	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
BQ20Z45DBT-R1	ACTIVE	TSSOP	DBT	38	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
BQ20Z45DBTR-R1	ACTIVE	TSSOP	DBT	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

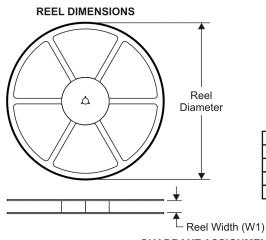
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

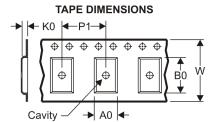
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

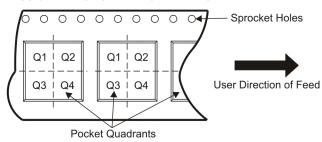
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

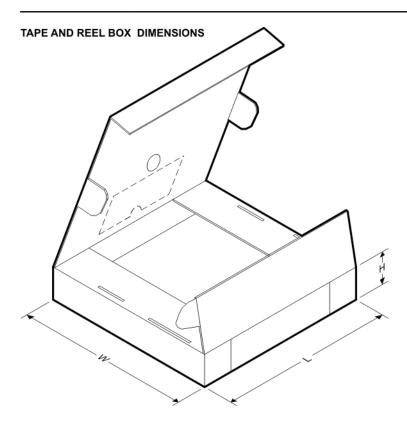
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 20-Jul-2010


TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ20Z45DBTR-R1	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Jul-2010

*All dimensions are nominal

ĺ	Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	BQ20Z45DBTR-R1	TSSOP	DBT	38	2000	346.0	346.0	33.0	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio **Data Converters** dataconverter.ti.com Automotive www.ti.com/automotive **DLP® Products** www.dlp.com Communications and www.ti.com/communications Telecom DSP Computers and www.ti.com/computers dsp.ti.com Peripherals Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Industrial www.ti.com/industrial Logic logic.ti.com Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com www.ti.com/security Security **RFID** www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense Defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video www.ti.com/wireless-apps Wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

