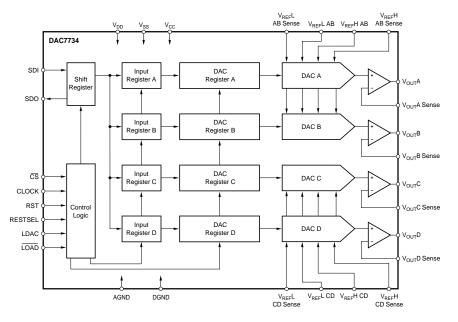


www.ti.com

16-Bit, Quad Voltage Output, Serial Input DIGITAL-TO-ANALOG CONVERTER

FEATURES

- LOW POWER: 200mW
- UNIPOLAR OR BIPOLAR OPERATION
- **SINGLE SUPPLY OUTPUT RANGE: +10V**
- DUAL SUPPLY OUTPUT RANGE: ±10V
- SETTLING TIME: 10µs to 0.003%
- 16-BIT MONOTONICITY: -40°C to +85°C
- PROGRAMMABLE RESET TO MID-SCALE OR ZERO-SCALE
- DOUBLE-BUFFERED DATA INPUTS
- ±1 LSB DNL: -40°C to +85°C


APPLICATIONS

- PROCESS CONTROL
- **ATE PIN ELECTRONICS**
- CLOSED-LOOP SERVO-CONTROL
- MOTOR CONTROL
- DATA ACQUISITION SYSTEMS
- DAC-PER-PIN PROGRAMMERS

DESCRIPTION

The DAC7734 is a 16-bit, quad voltage output, digital-to-analog converter (DAC) with ensured 16-bit monotonic performance over the specified temperature range. It accepts 24-bit serial input data, has double-buffered DAC input logic (allowing simultaneous update of all DACs), and provides a serial data output for daisy-chaining multiple DACs. Programmable asynchronous reset clears all registers to a mid-scale code of 8000h or to a zero-scale of 0000h. The DAC7734 can operate from a single +15V supply or from +15V and -15V, and +5V supplies.

Low power and small size per DAC make the DAC7734 ideal for automatic test equipment, DAC-per-pin programmers, data acquisition systems, and closed-loop servo-control. The DAC7734 is available in a 48-lead SSOP package and offers ensured specifications over the -40°C to $+85^{\circ}\text{C}$ temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

SPECIFICATIONS (Dual Supply)

At $T_A = T_{MIN}$ to T_{MAX} , $V_{CC} = +15$ V, $V_{DD} = +5$ V, $V_{SS} = -15$ V, $V_{REF}H = +10$ V, and $V_{REF}L = -10$ V, unless otherwise noted.

			DAC7734E	<u> </u>	D	AC7734E	В		AC7734E	C	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ACCURACY Linearity Error (INL) T _{MIN} to T _{MAX}	T = 25°C		+4	±3 ±4		V4.	*		+2	±2 ±3	LSB LSB
Linearity Match Differential Linearity Error (DNL) T _{MIN} to T _{MAX} Monotonicity, T _{MIN} to T _{MAX}	T = 25°C	14	±4	±3 ±3	15	*	±2 ±2	16	±2	±1 ±1	LSB LSB LSB Bits
Bipolar Zero Error Bipolar Zero Error, T_{MIN} to T_{MAX}	T = 25°C		±0.01	±0.025 ±0.05			*			*	% of FSR % of FSR
Full-Scale Error Full-Scale Error, T _{MIN} to T _{MAX} Bipolar Zero Matching	T = 25°C Channel-to-Channel Matching			±0.025 ±0.05 ±0.024			* * *			* * *	% of FSR % of FSR % of FSR
Full-Scale Matching	Channel-to-Channel Matching			±0.024			*			*	% of FSR
Power Supply Rejection Ratio (PSRR)	At Full Scale			25			*			*	ppm/V
ANALOG OUTPUT Voltage Output Output Current Maximum Load Capacitance Short-Circuit Current Short-Circuit Duration	To V_{SS} , V_{CC} or GND	V _{REF} L ±5	500 ±20 Indefinite	V _{REF} H	*	* * *	*	*	* * *	*	V mA pF mA
REFERENCE INPUT Ref High Input Voltage Range Ref Low Input Voltage Range Ref High Input Current Ref Low Input Current		V _{REF} L + 1.25 -10 -0.3 -3.2		+10 V _{REF} H - 1.25 2.6 -0.3	*	* *	*	*	*	*	V V mA mA
DYNAMIC PERFORMANCE Settling Time	To ±0.003%, 20V Output Step		9	11		*	*		*	*	μs
Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage	See Figure 5 f = 10kHz		0.5 2 60			* * *			* * *		LSB nV-s nV/√Hz
DIGITAL INPUT V _{IH} V _{IL} I _{IH} I _{IL}		0.7 • V _{DD}		V _{DD} 0.3 • V _{DD} ±10 ±10	*		* * *	*			V V μΑ μΑ
DIGITAL OUTPUT V _{OH} V _{OL}	$I_{OH} = -0.8$ mA $I_{OL} = 1.6$ mA	3.6	4.5 0.3	0.4	*	* *	*	*	* *	*	V V
POWER SUPPLY VDD VCC VSS IDD ICC Iss Power		+4.75 +14.25 -14.25	+5.0 +15.0 -15.0 50 6 -5 170	+5.25 +15.75 -15.75	* *	* * * * * * *	* *	* *	* * * * * * * * * * * * * * * * * * *	* *	V V V μA mA mA
TEMPERATURE RANGE Specified Performance		-40		+85	*		*	*		*	°C

 $[\]ensuremath{\boldsymbol{\ast}}$ Specifications same as grade to the left.

SPECIFICATIONS (Single Supply)

At $T_A = T_{MIN}$ to T_{MAX} , $V_{CC} = +15V$, $V_{DD} = +5V$, $V_{SS} = GND$, $V_{REF}H = +10V$, and $V_{REF}L = +50$ mV, unless otherwise noted.

			DAC7734E			AC7734E	В		DAC7734E	С	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ACCURACY Linearity Error ⁽¹⁾ (INL) T _{MIN} to T _{MAX} Linearity Match	T = 25°C		<u>±</u> 4	±3 ±4		*	*		±2	±2 ±3	LSB LSB LSB
$\begin{array}{l} \text{Differential Linearity Error (DNL)} \\ \text{T_{MIN} to T_{MAX}} \\ \text{Monotonicity, T_{MIN} to T_{MAX}} \end{array}$	T = 25°C	14		±3 ±3	15		±2 ±2	16		±1 ±1	LSB LSB Bits
Unipolar Zero Unipolar Zero Error, T _{MIN} to T _{MAX} Full-Scale Error	T = 25°C T = 25°C		±0.01	±0.025 ±0.05 ±0.025			* * *			* * *	% of FSR % of FSR % of FSR
Full-Scale Error, T _{MIN} to T _{MAX} Unipolar Zero Matching	Channel-to-Channel Matching			±0.05 ±0.024			*			*	% of FSR % of FSR
Full-Scale Matching	Channel-to-Channel Matching			±0.024			*			*	% of FSR
Power Supply Rejection Ratio (PSRR)	At Full Scale			25			*			*	ppm/V
ANALOG OUTPUT Voltage Output	$V_{REF}L = 0V, V_{SS} = 0V$ $R = 10k\Omega$	0		V _{REF} H	*		*	*		*	V
Output Current Maximum Load Capacitance Short-Circuit Current Short-Circuit Duration	To V _{CC} or GND	±5	500 ±20 Indefinite		*	* * *		*	* * *		mA pF mA
REFERENCE INPUT Ref High Input Voltage Range Ref Low Input Voltage Range Ref High Input Current Ref Low Input Current		V _{REF} L + 1.25 0 -0.3 -1.5		+10 V _{REF} H - 1.25 1.0 -0.3	*	*	*	*	*	*	V V mA mA
DYNAMIC PERFORMANCE Settling Time	To ±0.003%, 10V Output Step		8	10		*	*		*	*	μs
Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage	See Figure 6 f = 10kHz		0.5 2 60			* * *			* * *		LSB nV-s nV/√Hz
DIGITAL INPUT V _{IH} V _{IL} I _{IH} I _{IL}		0.7 • V _{DD} 0		V _{DD} 0.3 • V _{DD} ±10 ±10	*		* * *	*			V V μΑ μΑ
DIGITAL OUTPUT VOH VOL	$I_{OH} = -0.8 \text{mA}$ $I_{OL} = 1.6 \text{mA}$	3.6	4.5 0.3	0.4	*	*	*	*	*	*	V V
POWER SUPPLY VDD VCC VSS IDD ICC Power		+4.75 +14.25	+5.0 +15.0 0 50 3.5 50	+5.25 +15.75	*	* * * * *	*	* *	* * * *	*	V V V μA mA mW
TEMPERATURE RANGE Specified Performance		-40		+85	*		*	*		*	°C

 $[\]ensuremath{\boldsymbol{\ast}}$ Specifications same as grade to the left.

NOTE: (1) If $V_{SS} = 0V$, the specification applies at code 0021_H and above, due to possible negative zero scale error.

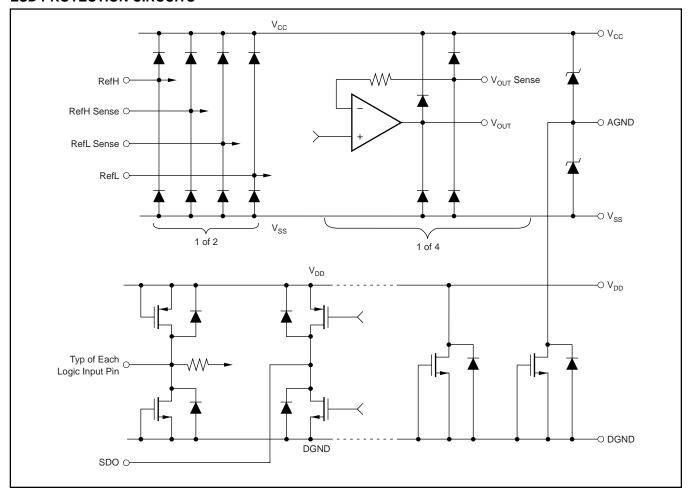
ABSOLUTE MAXIMUM RATINGS(1)

V _{CC} to V _{SS}	0.3V to +32V
V _{CC} to AGND	0.3V to +16V
V _{SS} to AGND	+0.3V to -16V
AGND to DGND	0.3V to +0.3V
V _{REF} H to AGND	9V to +11V
V _{REF} L to AGND	11V to +9V
V _{DD} to GND	0.3V to +6V
V _{REF} H to V _{REF} L	1V to 22V
Digital Input Voltage to GND	0.3V to V _{DD} + 0.3V
Digital Output Voltage to GND	0.3V to V _{DD} + 0.3V
Maximum Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

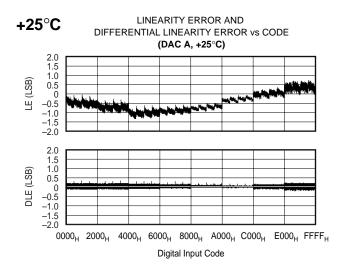
PACKAGE/ORDERING INFORMATION(1)

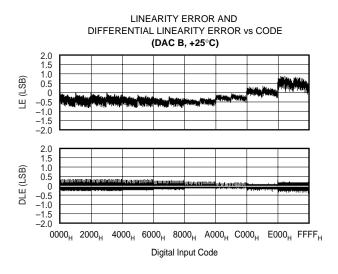
PRODUCT	LINEARITY ERROR (LSB)	DIFFERENTIAL NONLINEARITY (LSB)	PACKAGE	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
DAC7734E	±4 "	±3 "	SSOP-48	333	-40°C to +85°C	DAC7734E DAC7734E/1K	Rails, 30 Tape and Reel, 1000
DAC7734EB	±4 "	<u>±2</u> "	SSOP-48	333 "	–40°C to +85°C	DAC7734EB DAC7734EB/1K	Rails, 30 Tape and Reel, 1000
DAC7734EC	±3	±1 "	SSOP-48	333 "	-40°C to +85°C	DAC7734EC DAC7734EC/1K	Rails, 30 Tape and Reel, 1000

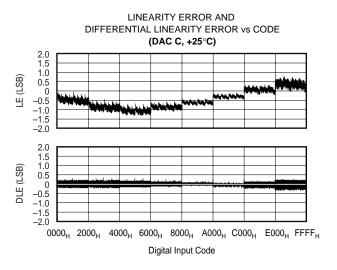
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

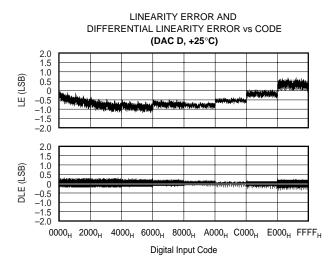
ESD PROTECTION CIRCUITS

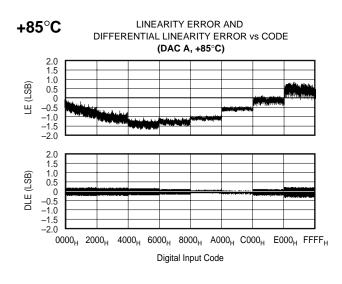
PIN CONFIGURATION

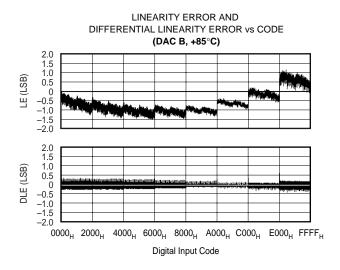

Top View				SSOP
			1	
NC	1		48	V _{OUT} A Sense
NC	2		47	$V_{OUT}A$
SDI	3		46	AGND
DGND	4		45	V_{SS}
CLK	5		44	V _{REF} L AB Sense
DGND	6		43	V _{REF} L AB
LDAC	7		42	$V_{REF}HAB$
DGND	8		41	V _{REF} H AB Sense
LOAD	9		40	V _{OUT} B Sense
DGND	10		39	$V_{OUT}B$
cs	11		38	V _{OUT} C Sense
DGND	12	DAC7734	37	$V_{OUT}C$
SDO	13	DAC1134	36	V _{REF} H CD Sense
DGND	14		35	$V_{REF}H\;CD$
RSTSEL	15		34	V _{REF} L CD
DGND	16		33	V _{REF} L CD Sense
RST	17		32	V _{OUT} D Sense
DGND	18		31	$V_{OUT}D$
NC	19		30	V_{SS}
NC	20		29	V_{SS}
DGND	21		28	AGND
DGND	22		27	AGND
V_{DD}	23		26	V _{CC}
V_{DD}	24		25	V _{CC}
			J	

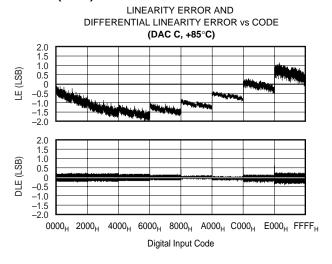

PIN DESCRIPTIONS

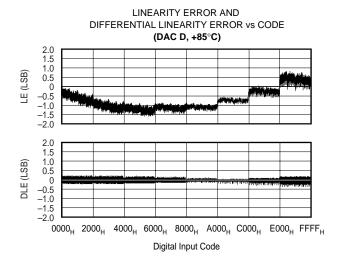

PIN	NAME	DESCRIPTION
1	NC	No Connection
2	NC	No Connection
3	SDI	Serial Data Input
4	DGND	Digital Ground
5	CLK	Data Clock Input
6	DGND	Digital Ground
7	LDAC	DAC Register Load Control, Rising Edge
		Triggered
8	DGND	Digital Ground
9	LOAD	DAC Input Register Load Control, Active Low
10	DGND	Digital Ground
11	c s	Chip Select, Active Low
12	DGND	Digital Ground
13	SDO	Serial Data Output
14	DGND	Digital Ground
15	RSTSEL	Reset Select. Determines the action of RST. If
		HIGH, a RST common will set the DAC registers
		to mid-scale (8000H). If LOW, a RST command
40	DOND	will set the DAC registers to zero (0000H).
16	DGND	Digital Ground
17	RST	Reset, Rising Edge Triggered. Depending on the state of RSTSEL, the DAC registers are set to
		either mid-scale or zero.
18	DGND	Digital Ground
19	NC	No Connection
20	NC	No Connection
21	DGND	Digital Ground
22	DGND	Digital Ground
23	V_{DD}	Digital +5V Power Supply
24	V _{DD}	Digital +5V Power Supply
25	V _{CC}	Analog +15V Power Supply
26	V _{CC}	Analog +15V Power Supply
27	AGND	Analog Ground
28	AGND	Analog Ground
29	V_{SS}	Analog –15V Power Supply or 0V Single Supply
30	V _{SS}	Analog –15V Power Supply or 0V Single Supply
31	V _{OUT} D	DAC D Output Voltage
32	V _{OUT} D Sense	DAC D's Output Amplifier Inverting Input. Used
		to close feedback loop at load.
33	V _{REF} L CD Sense	DAC C and D Reference Low Sense Input
34	V _{REF} L CD	DAC C and D Reference Low Input
35	V _{REF} H CD	DAC C and D Reference High Input
36	V _{REF} H CD Sense	DAC C and D Reference High Sense Input
37	V _{OUT} C	DAC C Output Voltage
38	V _{OUT} C Sense	DAC C's Output Amplifier Inverting Input. Used to close the feedback loop at the load.
39	V _{OUT} B	DAC B Output Voltage
40	V _{OUT} B Sense	DAC B's Output Amplifier Inverting Input. Used to close the feedback loop at the load.
41	V _{REF} H AB Sense	DAC A and B Reference High Sense Input
42	V _{REF} H AB	DAC A and B Reference High Input
43	V _{OUT} L AB	DAC A and B Reference Low Input
44	V _{REF} L AB Sense	DAC A and B Reference Low Sense Input
45	V _{SS}	Analog –15V Power Supply or 0V Single Supply
46	AGND	Analog Ground
47	$V_{OUT}A$	DAC A Output Voltage
48	V _{OUT} A Sense	DAC A's Output Amplifier Inverting Input. Used
		to close the feedback loop at the load.

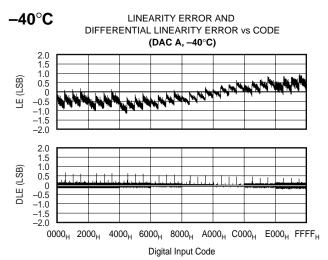


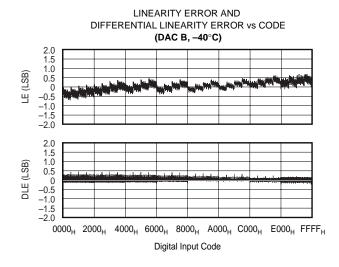

TYPICAL PERFORMANCE CURVES: $V_{SS} = 0V$

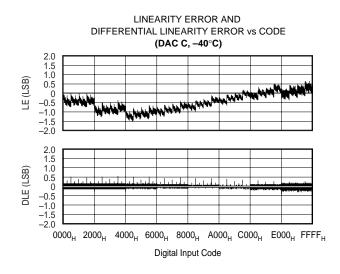


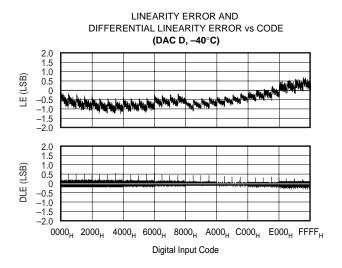


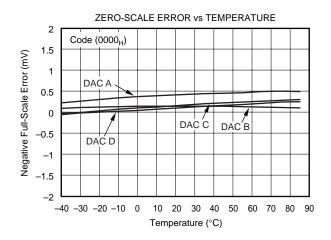


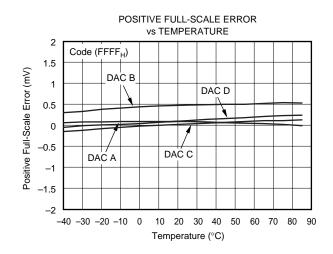


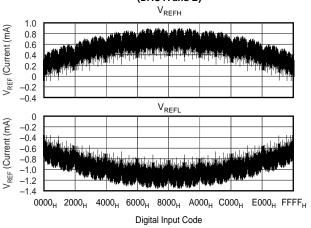

At $T_A = +25^{\circ}C$, $V_{DD} = +5V$, $V_{CC} = +15V$, $V_{SS} = 0$, $V_{REF}H = +10V$, and $V_{REF}L = 0V$, representative unit, unless otherwise specified.

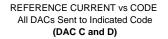

+85°C (cont.)

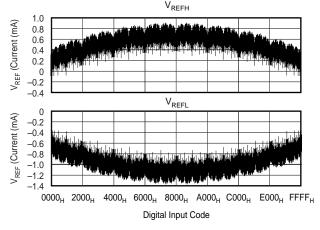


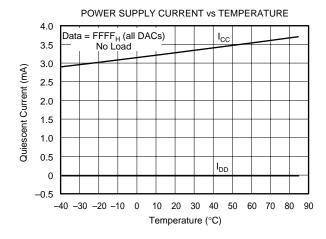


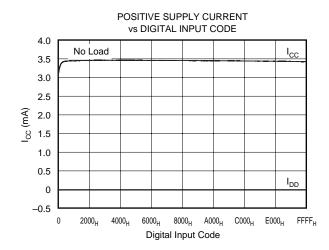


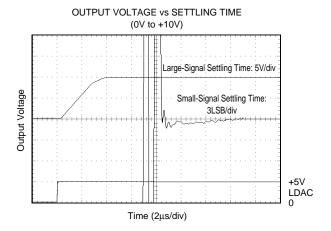


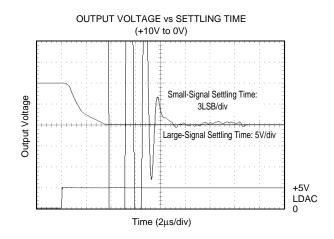


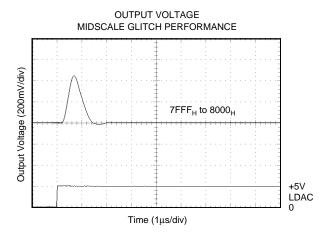


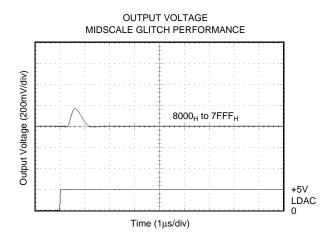


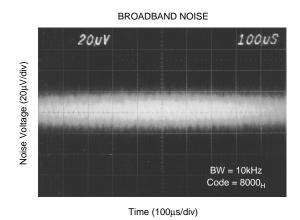

REFERENCE CURRENT vs CODE All DACs Sent to Indicated Code (DAC A and B)

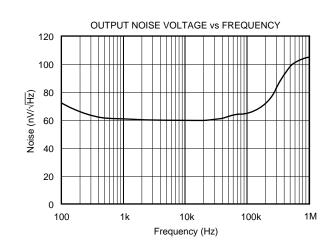


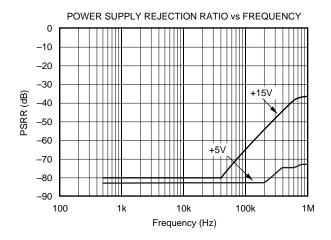


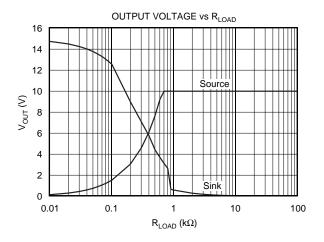


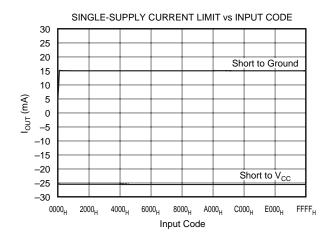


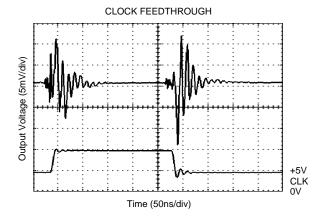


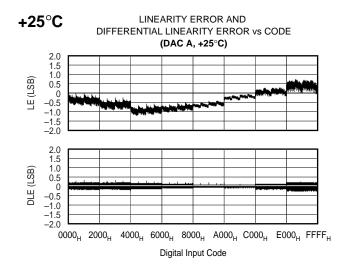


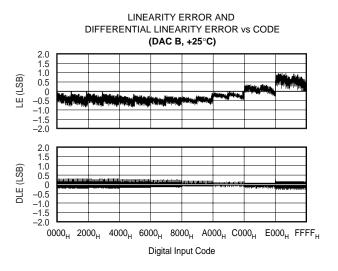


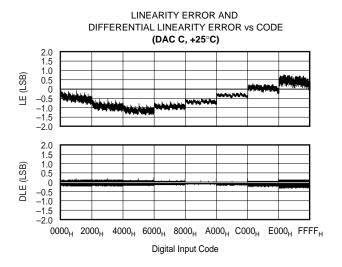






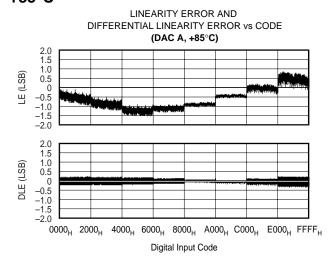


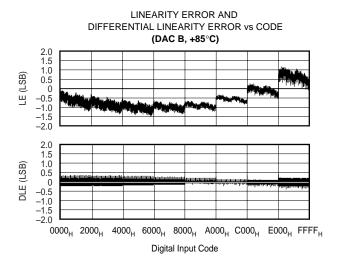


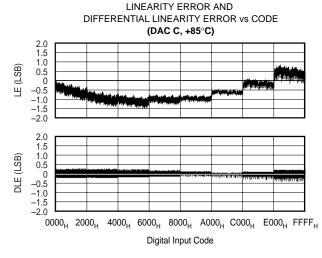


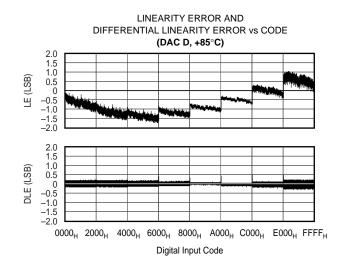


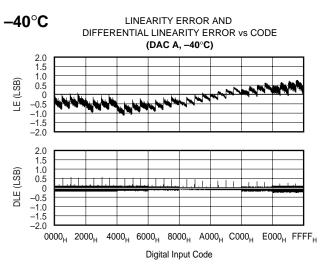
At $T_A = +25^{\circ}C$, $V_{DD} = +5V$, $V_{CC} = +15V$, $V_{SS} = -15V$, $V_{REF}H = +10V$, and $V_{REF}L = -10V$, representative unit, unless otherwise specified.

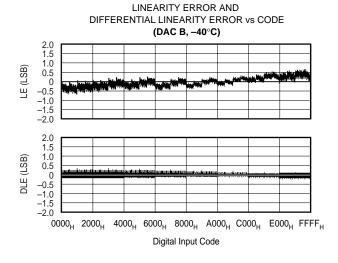


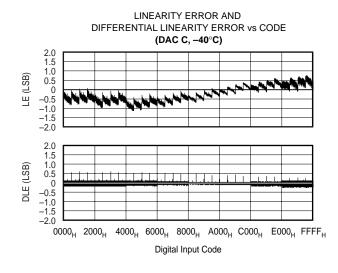


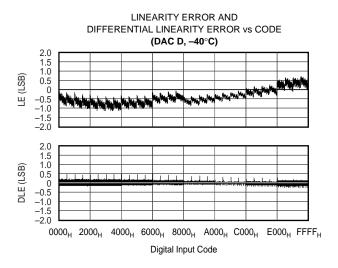

+85°C

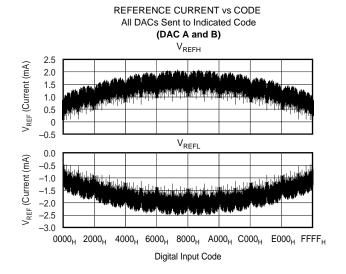


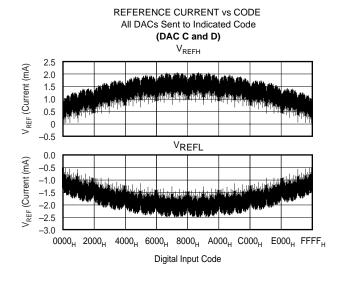


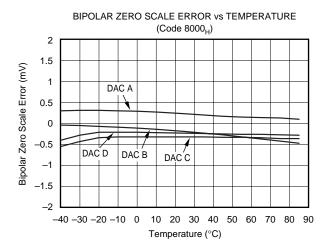

At $T_A = +25^{\circ}C$, $V_{DD} = +5V$, $V_{CC} = +15V$, $V_{SS} = -15V$, $V_{REF}H = +10V$, and $V_{REF}L = -10V$, representative unit, unless otherwise specified.

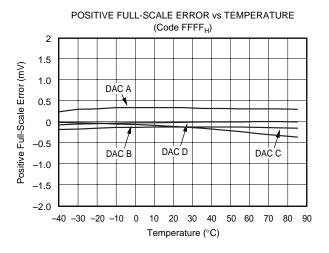

+85°C (cont.)

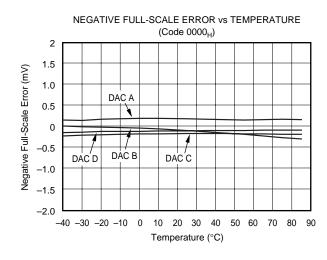


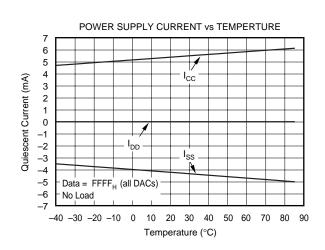


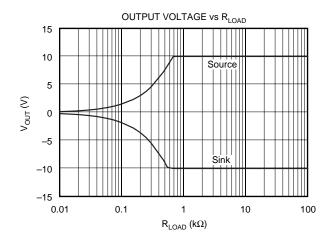


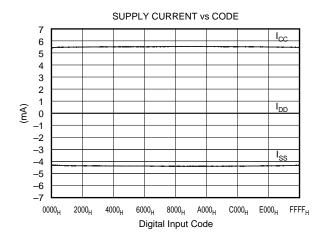


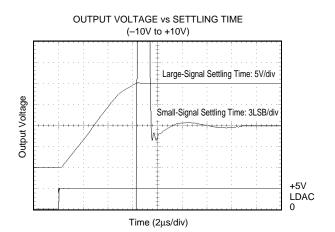


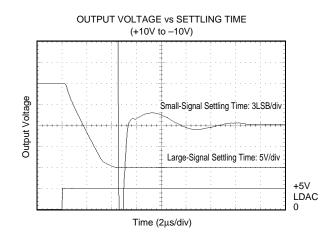


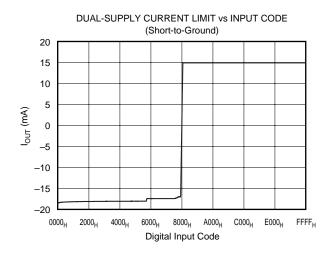


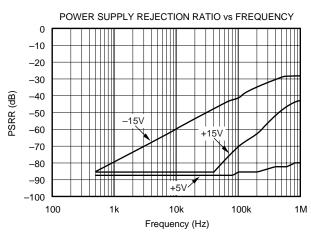


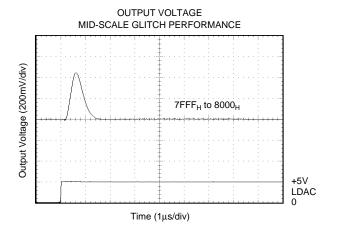


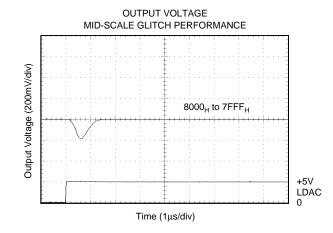












THEORY OF OPERATION

The DAC7734 is a quad voltage output, 16-bit Digital-to-Analog Converter (DAC). The architecture is an R-2R ladder configuration with the three MSBs segmented, followed by an operational amplifier that serves as a buffer. Each DAC has its own R-2R ladder network, segmented MSBs, and output op amp, as shown in Figure 1. The minimum voltage output (zero-scale) and maximum voltage output (full-scale) are set by the external voltage references $V_{\rm REF}L$ and $V_{\rm REF}H$.

The digital input is a 24-bit serial word that contains a 2-bit address code for selecting one of four DACs, a quick load bit, five unused bits, and the 16-bit DAC code (MSB first). The converters can be powered from either a single +15V supply or a dual $\pm 15 V$ supply and a +5V logic supply. The device offers a reset function that immediately sets all DAC output voltages and DAC registers to mid-scale code $8000_{\rm H}$ or to zero-scale, code $0000_{\rm H}$. See Figures 2 and 3 for the basic operation of the DAC7734.

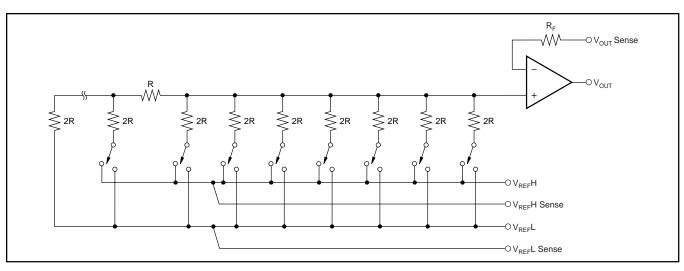


FIGURE 1. DAC7734 Architecture.

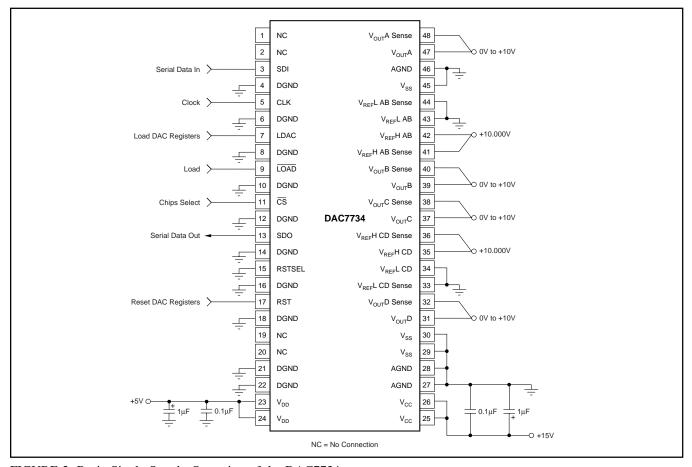


FIGURE 2. Basic Single-Supply Operation of the DAC7734.

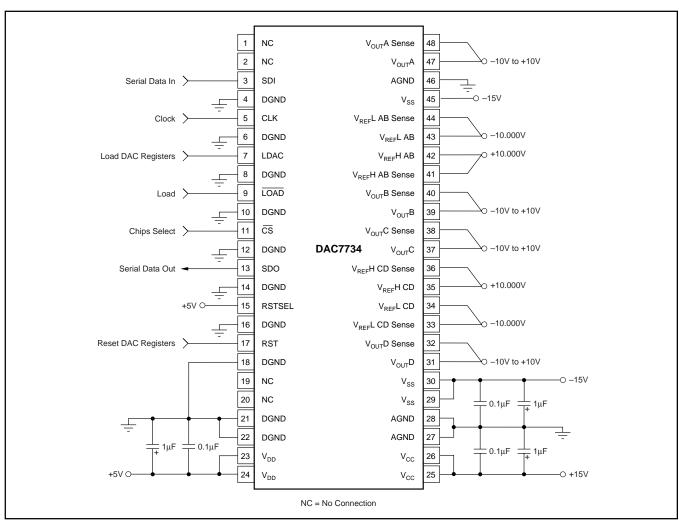


FIGURE 3. Basic Dual-Supply Operation of the DAC7734.

ANALOG OUTPUTS

When $V_{SS} = -15V$ (dual-supply operation), the output amplifier can swing to within 4V of the supply rails, ensured over the -40°C to $+85^{\circ}\text{C}$ temperature range. When $V_{SS} = 0V$ (single-supply operation), and with R_{LOAD} also connected to ground, the output can swing to ground. Care must also be taken when measuring the zero-scale error when $V_{SS} = 0V$. Since the output voltage cannot swing below ground, the output voltage may not change for the first few digital input codes $(0000_H, 0001_H, 0002_H, \text{etc.})$ if the output amplifier has a negative offset. At the negative limit of -5mV, the first specified output starts at code 0021_H .

Due to the high accuracy of these DACs, system design problems such as grounding and contact resistance become very important. A 16-bit converter with a 10V full-scale range has a 1LSB value of 152 μ V. With a load current of 1mA, series wiring and connector resistance of only 150m Ω (R_{W2}) will cause a voltage drop of 150 μ V, as shown in Figure 4. To understand what this means in terms of a system layout, the resistivity of a typical 1-ounce copperclad printed circuit board is 1/2 m Ω per square. For a 1mA load, a 20 milli-inch wide printed circuit conductor 6 inches long will result in a voltage drop of 150 μ V.

The DAC7734 offers a force and sense output configuration for the high open-loop gain output amplifier. This feature allows the loop around the output amplifier to be closed at the load (as shown in Figure 4), thus ensuring an accurate output voltage.

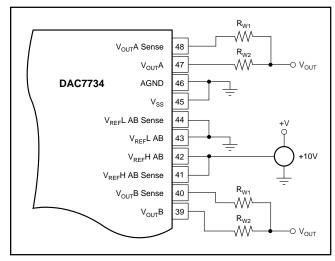


FIGURE 4. Analog Output Closed-Loop Configuration (1/2 DAC7734). $R_{\rm W}$ represents wiring resis-

REFERENCE INPUTS

The reference inputs, $V_{REF}L$ and $V_{REF}H$, can be any voltage between $V_{SS}+4V$ and $V_{CC}-4V$, provided that $V_{REF}H$ is at least 1.25V greater than $V_{REF}L$. The minimum output of each DAC is equal to $V_{REF}L$ plus a small offset voltage (essentially, the offset of the output op amp). The maximum output is equal to $V_{REF}H$ plus a similar offset voltage. Note that V_{SS} (the negative power supply) must either be connected to ground or must be in the range of -14.25V to -15.75V. The voltage on V_{SS} sets several bias points within the converter. If V_{SS} is not in one of these two configurations, the bias values may be in error and proper operation of the device is not ensured.

The current into the $V_{REF}H$ input and out of $V_{REF}L$ depends on the DAC output voltages, and can vary from a few microamps to approximately 2.0mA. The reference input appears as a varying load to the reference. The DAC7734 features a reference drive and sense connection such that the internal errors caused by the changing reference current and the circuit impedances can be minimized. Figures 5 through 9 show different reference configurations, and the effect on the linearity and differential linearity.

The analog supplies must come up first. If V_{CC} and V_{SS} do not come up together, then V_{SS} should come up first. If the power supplies for the reference come up first, then the V_{CC} and V_{SS} supplies will be powered from the reference via the ESD protection diode; see the ESD protection circuits on page 4.

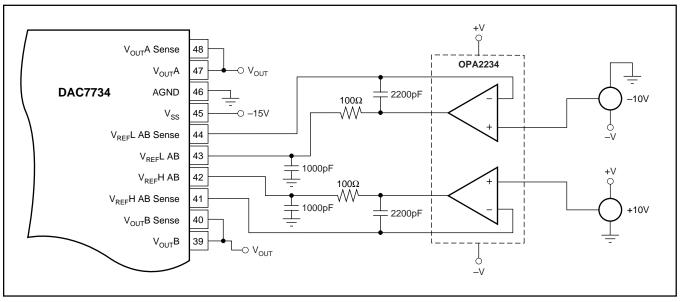


FIGURE 5. Dual-Supply Configuration-Buffered References, used for Dual-Supply Performance (1/2 DAC7734).

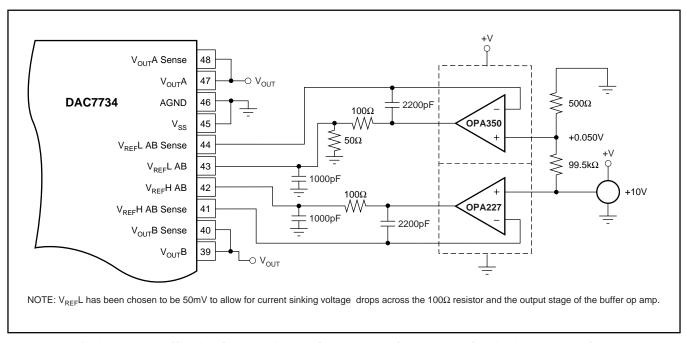


FIGURE 6. Single-Supply Buffered Reference with a Reference Low of 50mV used for Single-Supply Performance Curves (1/2 DAC7734).

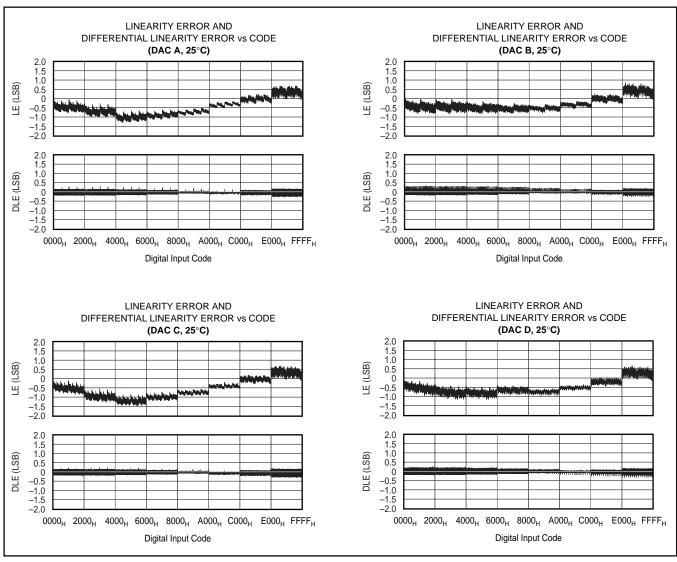


FIGURE 7. Integral Linearity and Differential Linearity Error Curves for Figure 8.

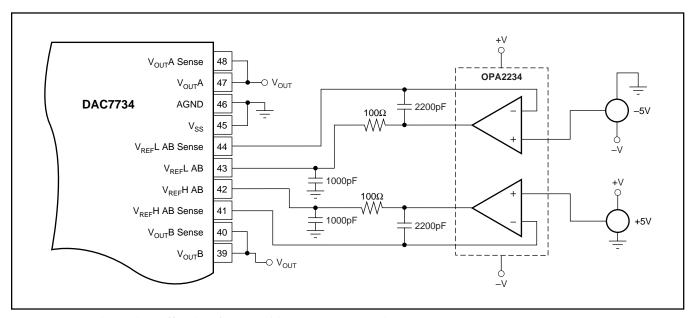


FIGURE 8. Dual-Supply Buffered Reference with $V_{REF}L = -5V$ and $V_{REF}H = +5V$ (1/2 DAC7734).

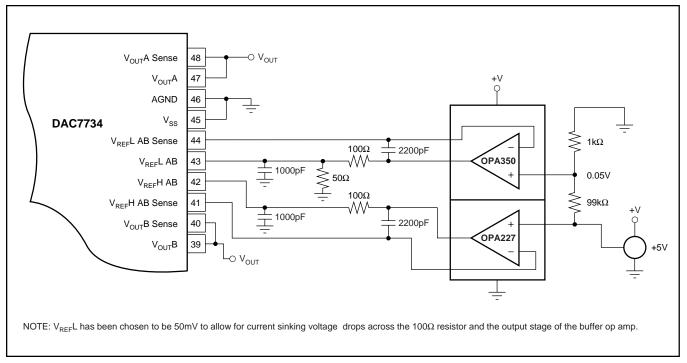


FIGURE 9. Single-Supply Buffered Reference with a Reference Low of 50mV and Reference High of +5V.

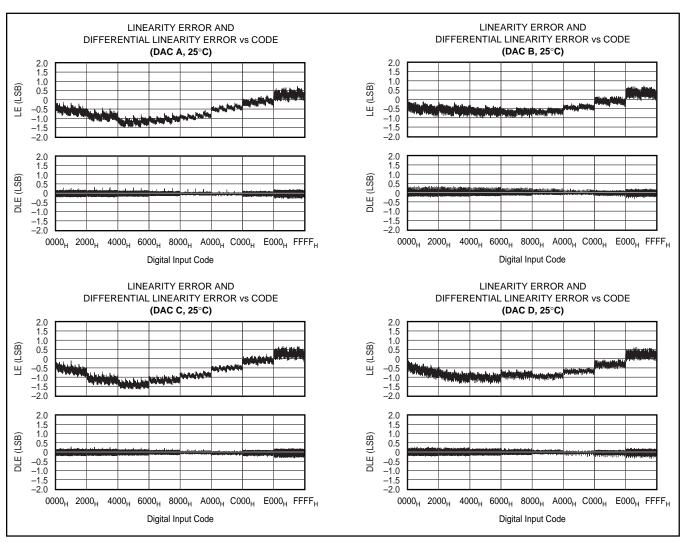


FIGURE 10. Integral Linearity and Differential Linearity Error Curves for Figure 9.

DIGITAL INTERFACE

Table I shows the basic control logic for the DAC7734. The interface consists of a Signal Data Clock (CLK) input, Serial Data (SDI), DAC Input Register Load Control Signal ($\overline{\text{LOAD}}$), and DAC Register Load Control Signal (LDAC). In addition, a Chip Select ($\overline{\text{CS}}$) input is available to enable serial communication when there are multiple serial devices. An asynchronous Reset (RST) input, by the rising edge, is provided to simplify start-up conditions, periodic resets, or emergency resets to a known state, depending on the status of the reset select (RSTSEL) signal.

The DAC code, quick load control, and address are provided via a 24-bit serial interface (see Table I). The first two bits shifted into the shift register, B23 and B22, are the DAC register address. These bits select the input register that will be updated when \overline{LOAD} goes LOW. The third bit, B21, is a "Quick Load" bit such that if HIGH, the code in the shift register is loaded into ALL DAC input registers when the \overline{LOAD} signal goes LOW, independent of the state of the address bits, B23 and B22. If the "Quick Load" bit is LOW, the contents of the shift register is loaded only to the DAC register that is addressed. Bits B20 through B16 are not used and can assume any logical value. The last sixteen bits, B15 through B0, make up the DAC code to be loaded into the selected input register.

The internal DAC register is edge-triggered and not level-triggered. When the LDAC signal is transitioned from LOW to HIGH, the digital word currently in the DAC input register is latched. The first set of registers (the DAC input registers) are level triggered via the LOAD signal. This double-buffered architecture has been designed so that new data can be entered for each DAC without disturbing the analog outputs. When the new data has been entered into the

device, all of the DAC outputs can be updated simultaneously by the rising edge of LDAC. Additionally, it allows the DAC input registers to be written to at any point, then the DAC output voltages can be synchronously changed via a trigger signal (LDAC).

Note that \overline{CS} and CLK are combined with an OR gate, which controls the serial-to-parallel shift register. These two inputs are completely interchangeable. In addition, care must be taken with the state of CLK when \overline{CS} rises at the end of a serial transfer. If CLK is LOW when \overline{CS} rises, the OR gate will provide a rising edge to the shift register, shifting the internal data one additional bit. The result will be incorrect data and possible selection of the wrong input register(s). If both \overline{CS} and CLK are used, \overline{CS} should rise only when CLK is HIGH. If not, then either \overline{CS} or CLK can be used to operate the shift register. See Table II for more information.

CS ⁽¹⁾	CLK ⁽¹⁾	LOAD	RST	SERIAL SHIFT REGISTER
H ⁽²⁾	X ⁽³⁾	Н	Н	No Change
L ⁽⁴⁾	L	Н	Н	No Change
L	↑ (5)	Н	Н	Advanced One Bit
\uparrow	L	Н	Н	Advanced One Bit
H ⁽⁶⁾	Х	L ⁽⁷⁾	Н	No Change
H ⁽⁶⁾	Х	Н	↑ (8)	No Change

NOTES: (1) $\overline{\text{CS}}$ and CLK are interchangeable. (2) H = Logic HIGH. (3) X = Don't Care. (4) L = Logic LOW (5) = Positive Logic Transition. (6) A HIGH value is suggested in order to avoid a "false clock" from advancing the shift register and changing the shift register. (7) If data is clocked into the serial register while $\overline{\text{LOAD}}$ is LOW, the selected DAC register will change as the shift register bits "flow" through A1 and A0. This will corrupt the data in each DAC register that has been erroneously selected. (8) Rising edge of RST causes no change in the contents of the serial shift register.

TABLE II. Serial Shift Register Truth Table.

SERIAL DATA INPUT

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	B5	B4	В3	B2	B1	В0
A1	Α0	QUICK LOAD	Х	X	Х	X	Х	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

A 1	A0	cs	RST	RSTSEL	LDAC	LOAD	INPUT REGISTER	DAC REGISTER	MODE	DAC
L	L	L	Н	Χ	Х	L	Write	Hold	Write Input	Α
L	Н	L	Н	X	Χ	L	Write	Hold	Write Input	В
Н	L	L	Н	X	Χ	L	Write	Hold	Write Input	С
Н	Н	L	Н	X	Χ	L	Write	Hold	Write Input	D
X	Х	Н	Н	X	1	Н	Hold	Write	Update	All
X	Х	Н	Н	X	Н	Н	Hold	Hold	Hold	All
X	Х	X	1	L	Χ	X	Reset to Zero	Reset to Zero	Reset to Zero	All
X	Х	Х	1	Н	Х	Х	Reset to Midscale	Reset to Midscale	Reset to Midscale	All

TABLE I. DAC7734 Logic Truth Table.

SERIAL-DATA OUTPUT

The Serial-Data Output (SDO) is the internal shift register output. For DAC7734, the SDO is a driven output and does not require an external pull-up. Any number of DAC7734s can be daisy-chained by connecting the SDO pin of one device to the SDI pin of the following device in the chain, as shown in Figure 11.

DIGITAL TIMING

Figure 12 and Table III provide detailed timing for the digital interface of the DAC7734.

DIGITAL INPUT CODING

The DAC7734 input data is in Straight Binary format. The output voltage is given by Equation 1.

$$V_{OUT} = V_{REF}L + \frac{\left(V_{REF}H - V_{REF}L\right) \cdot N}{65.536}$$
 (1)

where N is the digital input code. This equation does not include the effects of offset (zero-scale) or gain (full-scale) errors.

DIGITALLY-PROGRAMMABLE CURRENT SOURCE

The DAC7734 offers a unique set of features that allows a wide range of flexibility in designing applications circuits such as programmable current sources. The DAC7734 offers both a differential reference input, as well as an open-loop configuration around the output amplifier. The open-loop configuration around the output amplifier allows a transistor to be placed within the loop to implement a digitally-programmable, unidirectional current source. The availability of a differential reference allows programmability for both the full-scale and zero-scale currents. The output current is calculated as:

$$I_{OUT} = \left(\left(\frac{V_{REF}H - V_{REF}L}{R_{SENSE}} \right) \cdot \left(\frac{N}{65,536} \right) \right) + \left(V_{REF}L / R_{SENSE} \right)$$
 (2)

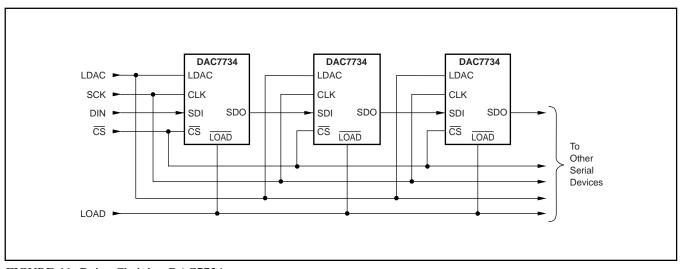


FIGURE 11. Daisy-Chaining DAC7734.

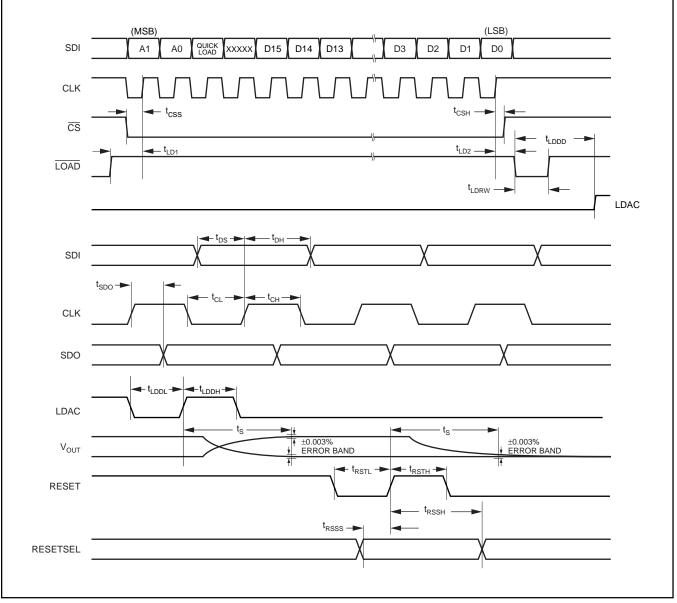


FIGURE 12. Digital Input and Output Timing.

SYMBOL	DESCRIPTION	MIN	MAX	UNITS
t _{DS}	Data Valid to CLK Rising	10		ns
t _{DH}	Data Held Valid after CLK Rises	20		ns
t _{CH}	CLK HIGH	25		ns
t _{CL}	CLK LOW	25		ns
t _{css}	CS LOW to CLK Rising	15		ns
t _{CSH}	CLK HIGH to CS Rising	0		ns
t _{LD1}	LOAD HIGH to CLK Rising	10		ns
t _{LD2}	CLK Rising to LOAD LOW	30		ns
t _{LDRW}	LOAD LOW Time	30		ns
t _{LDDL}	LDAC LOW Time	40		ns
t _{LDDH}	LDAC HIGH Time	40		ns
t _{SDO}	SDO Propagation Delay	10	45	ns
t _{RSSS}	RESETSEL Valid to RESET HIGH	0		ns
t _{RSSH}	RESET HIGH to RESETSEL Not Valid	100		ns
t _{RSTL}	RESET LOW Time	10		ns
t _{RSTH}	RESET HIGH Time	10		ns
t _{LDDD}	LOAD LOW to LDAC Rising Time	40		ns
t _S	Settling Time		11 (dual) /10(single)	μs

TABLE III. Timing Specifications ($T_A = -40^{\circ}C$ to +85°C).

Figure 13 shows a DAC7734 in a 4mA to 20mA current output configuration. The output current can be determined by Equation 3:

$$I_{OUT} = \left(\left(\frac{5V - 1V}{250\Omega} \right) \cdot \left(\frac{N}{65,536} \right) \right) + \left(\frac{1V}{250\Omega} \right)$$
 (3)

At full-scale, the output current is 16mA, plus the 4mA, for the zero current. At zero scale, the output current is the offset current of 4mA ($1V/250\Omega$).

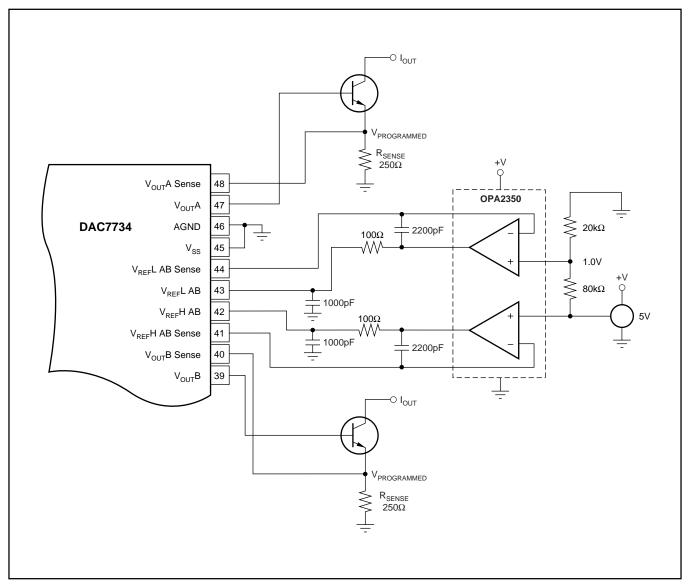


FIGURE 13. 4-to-20mA Digitally Controlled Current Source (1/2 DAC7734).

Revision History

DATE	REVISION	PAGE	SECTION	DESCRIPTION
10/08	^	1	_	Updated front page format to current standard; some page layout changed.
10/06	A 1	23	Table III	Changed symbol from "t _{LDDWL} " to "t _{LDDL} " (typo).

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

PACKAGE OPTION ADDENDUM

w.ti.com 16-Feb-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
DAC7734E	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734E/1K	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734E/1KG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734EB	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734EBG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734EC	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734EC/1K	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734EC/1KG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734ECG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
DAC7734EG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

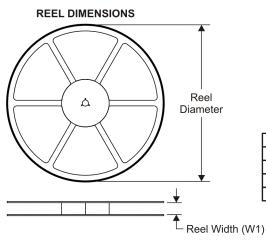
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

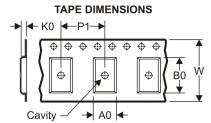
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

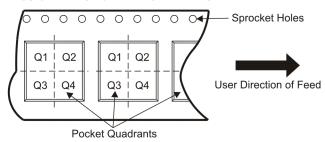
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis

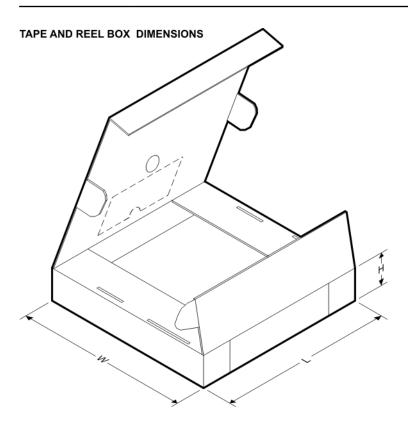


21-Aug-2008


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC7734E/1K	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
DAC7734EC/1K	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

21-Aug-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC7734E/1K	SSOP	DL	48	1000	346.0	346.0	49.0
DAC7734EC/1K	SSOP	DL	48	1000	346.0	346.0	49.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications **Products Amplifiers** Audio www.ti.com/audio amplifier.ti.com Data Converters Automotive dataconverter.ti.com www.ti.com/automotive **DLP® Products** www.dlp.com Broadband www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface interface.ti.com www.ti.com/military Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt Security www.ti.com/security power.ti.com Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated