

Stellaris® LM3S808 Microcontroller

DATA SHEET

Copyright © 2007-2011

DS-LM3S808-9102

Texas Instruments Incorporated

Copyright

Copyright © 2007-2011 Texas Instruments Incorporated All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments Incorporated. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

A Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Texas Instruments Incorporated 108 Wild Basin, Suite 350 Austin, TX 78746 http://www.ti.com/stellaris http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm

Table of Contents

Revision His	story	19
About This	Document	22
Audience		22
About This Ma	anual	22
Related Docu	ments	
Documentatio	n Conventions	23
1	Architectural Overview	
1.1	Product Features	25
1.2	Target Applications	
1.3	High-Level Block Diagram	31
1.4	Functional Overview	33
1.4.1	ARM Cortex™-M3	33
1.4.2	Motor Control Peripherals	
1.4.3	Analog Peripherals	
1.4.4	Serial Communications Peripherals	35
1.4.5	System Peripherals	36
1.4.6	Memory Peripherals	37
1.4.7	Additional Features	37
1.4.8	Hardware Details	38
2	The Cortex-M3 Processor	
2.1	Block Diagram	40
2.2	Overview	41
2.2.1	System-Level Interface	41
2.2.2	Integrated Configurable Debug	41
2.2.3	Trace Port Interface Unit (TPIU)	42
2.2.4	Cortex-M3 System Component Details	42
2.3	Programming Model	43
2.3.1	Processor Mode and Privilege Levels for Software Execution	43
2.3.2	Stacks	43
2.3.3	Register Map	44
2.3.4	Register Descriptions	45
2.3.5	Exceptions and Interrupts	58
2.3.6	Data Types	58
2.4	Memory Model	58
2.4.1	Memory Regions, Types and Attributes	59
2.4.2	Memory System Ordering of Memory Accesses	60
2.4.3	Behavior of Memory Accesses	
2.4.4	Software Ordering of Memory Accesses	61
2.4.5	Bit-Banding	62
2.4.6	Data Storage	64
2.4.7	Synchronization Primitives	65
2.5	Exception Model	
2.5.1	Exception States	
2.5.2	Exception Types	
2.5.3	Exception Handlers	69

2.5.4	Vector Table	70
2.5.5	Exception Priorities	
2.5.6	Interrupt Priority Grouping	71
2.5.7	Exception Entry and Return	71
2.6	Fault Handling	73
2.6.1	Fault Types	74
2.6.2	Fault Escalation and Hard Faults	74
2.6.3	Fault Status Registers and Fault Address Registers	75
2.6.4	Lockup	
2.7	Power Management	
2.7.1	Entering Sleep Modes	
2.7.2	Wake Up from Sleep Mode	
2.8	Instruction Set Summary	
3	Cortex-M3 Peripherals	
3 .1	Functional Description	
3.1.1	System Timer (SysTick)	
3.1.1	Nested Vectored Interrupt Controller (NVIC)	
3.1.2		
	System Control Block (SCB)	
3.1.4	Memory Protection Unit (MPU)	
3.2	Register Map	
3.3	System Timer (SysTick) Register Descriptions	
3.4	NVIC Register Descriptions	
3.5	System Control Block (SCB) Register Descriptions	
3.6	Memory Protection Unit (MPU) Register Descriptions	129
4	JTAG Interface	
4.1	Block Diagram	140
4.1 4.2	Block Diagram Functional Description	140 140
4.1 4.2 4.2.1	Block Diagram Functional Description JTAG Interface Pins	140 140 140
4.1 4.2 4.2.1 4.2.2	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller	140 140 140 142
4.1 4.2 4.2.1 4.2.2 4.2.3	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.3	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR)	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR)	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1 4.4.2	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1 4.4.2 5	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.3 4.4 4.4.1 4.4.2 5 5.1	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.1	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Device Identification	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.2.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.1 5.1.2	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Register Control Reset Control	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.1 5.1.2 5.1.3	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Device Identification Reset Control Power Control	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.1 5.1.2 5.1.3 5.1.3 5.1.4	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Device Identification Reset Control Power Control Clock Control System Control	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Device Identification Reset Control Power Control System Control Induction Data Register System Control Initialization Reset Control Power Control System Control Initialization and Configuration	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Device Identification Reset Control Power Control Clock Control System Control Initialization and Configuration	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.3 5.4	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Device Identification Reset Control Power Control Clock Control System Control Register Map Register Map Register Descriptions	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4 4.3 4.4 4.4.1 4.4.2 5 5.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.3	Block Diagram Functional Description JTAG Interface Pins JTAG TAP Controller Shift Registers Operational Considerations Initialization and Configuration Register Descriptions Instruction Register (IR) Data Registers System Control Functional Description Device Identification Reset Control Power Control Clock Control System Control Initialization and Configuration Reset Control Power Control Initialization and Configuration Reset Control Register Map	

6.2	Functional Description	204
6.2.1	SRAM Memory	204
6.2.2	Flash Memory	205
6.3	Flash Memory Initialization and Configuration	207
6.3.1	Changing Flash Protection Bits	207
6.3.2	Flash Programming	208
6.4	Register Map	209
6.5	Flash Register Descriptions (Flash Control Offset)	209
6.6	Flash Register Descriptions (System Control Offset)	217
7	General-Purpose Input/Outputs (GPIOs)	
. 7.1	Functional Description	
7.1.1	Data Control	
7.1.2		
7.1.3	•	
7.1.4		
7.1.5		
7.2	Initialization and Configuration	
7.3	Register Map	
7.4	Register Descriptions	
8	General-Purpose Timers	
8.1 • •	Block Diagram	
8.2	Functional Description	
8.2.1	GPTM Reset Conditions	
8.2.2		
8.2.3	1 5	
8.3	Initialization and Configuration	
8.3.1	32-Bit One-Shot/Periodic Timer Mode	
8.3.2		
8.3.3		
8.3.4	1 5	
8.3.5	1 5 5	
8.3.6		
8.4 9.5	Register Map	
8.5	Register Descriptions	
9	Watchdog Timer	
9.1	Block Diagram	
9.2	Functional Description	
9.3	Initialization and Configuration	
9.4	Register Map	
9.5	Register Descriptions	
10	Analog-to-Digital Converter (ADC)	319
10.1	Block Diagram	
10.2	Functional Description	320
10.2.	1 Sample Sequencers	320
10.2.	2 Module Control	321
10.2.	3 Hardware Sample Averaging Circuit	322
10.2.	4 Analog-to-Digital Converter	322

10.2.5	Differential Sampling	322
10.2.6	Test Modes	324
10.2.7	Internal Temperature Sensor	. 325
10.3	Initialization and Configuration	325
10.3.1	Module Initialization	
10.3.2	Sample Sequencer Configuration	. 325
10.4	Register Map	326
10.5	Register Descriptions	327
11	Universal Asynchronous Receivers/Transmitters (UARTs)	354
11.1	Block Diagram	
11.2	Functional Description	355
11.2.1	Transmit/Receive Logic	355
11.2.2	Baud-Rate Generation	. 356
11.2.3	Data Transmission	356
11.2.4	FIFO Operation	357
11.2.5	Interrupts	357
11.2.6	Loopback Operation	358
11.3	Initialization and Configuration	358
11.4	Register Map	359
11.5	Register Descriptions	360
12	Synchronous Serial Interface (SSI)	393
12.1	Block Diagram	
12.2	Functional Description	
12.2.1	Bit Rate Generation	. 394
12.2.2	FIFO Operation	394
12.2.3	Interrupts	394
12.2.4	Frame Formats	395
12.3	Initialization and Configuration	402
12.4	Register Map	403
12.5	Register Descriptions	404
13	Inter-Integrated Circuit (I ² C) Interface	430
13.1	Block Diagram	
13.2	Functional Description	
13.2.1	I ² C Bus Functional Overview	. 431
13.2.2	Available Speed Modes	. 433
	Interrupts	
	Loopback Operation	
13.2.5		
13.3	Initialization and Configuration	
13.4	Register Map	
13.5	Register Descriptions (I ² C Master)	
13.6	Register Descriptions (I ² C Slave)	. 457
14	Analog Comparator	
14.1	Block Diagram	
14.2	Functional Description	
14.2.1	Internal Reference Programming	
14.3	Initialization and Configuration	
-	5	

14.4	Register Map	. 469
14.5	Register Descriptions	. 469
15	Pin Diagram	. 477
16	Signal Tables	. 479
16.1	Connections for Unused Signals	
17	Operating Characteristics	. 486
18	Electrical Characteristics	. 487
18.1	DC Characteristics	
18.1.1	Maximum Ratings	. 487
18.1.2	Recommended DC Operating Conditions	487
18.1.3	On-Chip Low Drop-Out (LDO) Regulator Characteristics	488
18.1.4	GPIO Module Characteristics	. 488
18.1.5	Power Specifications	. 488
18.1.6	Flash Memory Characteristics	
18.2	AC Characteristics	
	Load Conditions	
	Clocks	
18.2.3	· · · · · , · · · ,	
18.2.4		
18.2.5	Sleep Modes	
	General-Purpose I/O (GPIO)	
	Analog-to-Digital Converter	
18.2.8	5	
	Inter-Integrated Circuit (I ² C) Interface	498
40 0 40	Analan Componeter	400
-) Analog Comparator	
Α	Serial Flash Loader	. 500
A A.1	Serial Flash Loader	. 500 . 500
A A.1 A.2	Serial Flash Loader Serial Flash Loader Interfaces	500 500 500
A A.1 A.2 A.2.1	Serial Flash Loader Serial Flash Loader Interfaces UART	500 500 500 500
A A.1 A.2 A.2.1 A.2.2	Serial Flash Loader Serial Flash Loader Interfaces UART SSI	. 500 . 500 . 500 . 500 . 500
A A.1 A.2 A.2.1 A.2.2 A.3	Serial Flash Loader Serial Flash Loader Interfaces UART SSI Packet Handling	500 500 500 500 500 500 501
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1	Serial Flash Loader Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format	500 500 500 500 500 500 501 501
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2	Serial Flash Loader Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets	. 500 . 500 . 500 . 500 . 500 . 501 . 501 . 501
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3	Serial Flash Loader Serial Flash Loader Interfaces	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4	Serial Flash Loader	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 501 . 502
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1	Serial Flash Loader Serial Flash Loader Interfaces	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 502 . 502
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2	Serial Flash Loader Serial Flash Loader Interfaces	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 501 . 502 . 502 . 502
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3	Serial Flash Loader	500 500 500 500 500 501 501 501 501 502 502 502 502 502
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2	Serial Flash Loader Serial Flash Loader Interfaces	500 500 500 500 500 501 501 501 501 502 502 502 502 502 502
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.4 A.4.5	Serial Flash Loader Serial Flash Loader Interfaces	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 501 . 502 . 502 . 502 . 502 . 502 . 503 . 503
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4	Serial Flash Loader Serial Flash Loader Interfaces	500 500 500 500 500 501 501 501 501 502 502 502 502 502 503 503 503
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B	Serial Flash Loader	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 501 . 502 . 502 . 502 . 502 . 503 . 503 . 503 . 503 . 505
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C	Serial Flash Loader Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 501 . 502 . 502 . 502 . 502 . 503 . 503 . 503 . 505 . 522
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C C.1	Serial Flash Loader Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information Ordering Information	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 501 . 502 . 502 . 502 . 503 . 503
A A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C	Serial Flash Loader Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information	. 500 . 500 . 500 . 500 . 501 . 501 . 501 . 501 . 501 . 502 . 502 . 502 . 503 . 503 . 503 . 503 . 505 . 522 . 522 . 522

C.4	Support Information	523
D	Package Information	524
D.1	48-Pin LQFP Package	
	Package Dimensions	
	Tray Dimensions	
D.1.3	Tape and Reel Dimensions	528
D.2	48-Pin QFN Package	529
D.2.1	Package Dimensions	529

List of Figures

Fi	gure 1-1.	Stellaris LM3S808 Microcontroller High-Level Block Diagram	32
Fi	gure 2-1.	CPU Block Diagram	41
Fi	gure 2-2.	TPIU Block Diagram	42
Fi	gure 2-3.	Cortex-M3 Register Set	44
Fi	gure 2-4.	Bit-Band Mapping	64
Fi	gure 2-5.	Data Storage	65
Fi	gure 2-6.	Vector table	70
Fi	gure 2-7.	Exception Stack Frame	72
Fi	gure 3-1.	SRD Use Example	87
Fi	gure 4-1.	JTAG Module Block Diagram	. 140
Fi	gure 4-2.	Test Access Port State Machine	. 143
Fi	gure 4-3.	IDCODE Register Format	. 147
Fi	gure 4-4.	BYPASS Register Format	. 148
Fi	gure 4-5.	Boundary Scan Register Format	. 148
Fi	gure 5-1.	Basic RST Configuration	. 151
Fi	gure 5-2.	External Circuitry to Extend Power-On Reset	. 151
Fi	gure 5-3.	Reset Circuit Controlled by Switch	. 152
Fi	gure 5-4.	Main Clock Tree	. 155
Fi	gure 6-1.	Flash Block Diagram	. 204
Fi	gure 7-1.	GPIO Port Block Diagram	
Fi	gure 7-2.	GPIODATA Write Example	. 223
Fi	gure 7-3.	GPIODATA Read Example	. 223
Fi	gure 8-1.	GPTM Module Block Diagram	. 260
Fi	gure 8-2.	16-Bit Input Edge Count Mode Example	. 264
Fi	gure 8-3.	16-Bit Input Edge Time Mode Example	
	gure 8-4.	16-Bit PWM Mode Example	. 266
Fi	gure 9-1.	WDT Module Block Diagram	. 296
Fi	gure 10-1.	ADC Module Block Diagram	
Fi	gure 10-2.	Differential Sampling Range, V _{IN_ODD} = 1.5 V	. 323
Fi	gure 10-3.	Differential Sampling Range, V _{IN ODD} = 0.75 V	
Fi	gure 10-4.	Differential Sampling Range, V _{IN_ODD} = 2.25 V	
Fi	gure 10-5.	Internal Temperature Sensor Characteristic	. 325
Fi	gure 11-1.	UART Module Block Diagram	. 355
Fi	gure 11-2.	UART Character Frame	. 356
Fi	gure 12-1.	SSI Module Block Diagram	. 393
Fi	gure 12-2.	TI Synchronous Serial Frame Format (Single Transfer)	. 396
Fi	gure 12-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	. 396
Fi	gure 12-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	. 397
Fi	gure 12-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	. 397
Fi	gure 12-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	. 398
Fi	gure 12-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	. 399
Fi	gure 12-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	. 399
Fi	gure 12-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	. 400
Fi	gure 12-10.	MICROWIRE Frame Format (Single Frame)	. 401
Fi	gure 12-11.	MICROWIRE Frame Format (Continuous Transfer)	. 402
Fi	gure 12-12.	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	. 402

www.BSDTIC.com/TI

Figure 13-1.	I ² C Block Diagram	431
Figure 13-2.	I ² C Bus Configuration	431
Figure 13-3.	START and STOP Conditions	432
Figure 13-4.	Complete Data Transfer with a 7-Bit Address	432
Figure 13-5.	R/S Bit in First Byte	432
Figure 13-6.	Data Validity During Bit Transfer on the I ² C Bus	433
Figure 13-7.	Master Single SEND	436
Figure 13-8.	Master Single RECEIVE	437
Figure 13-9.	Master Burst SEND	438
Figure 13-10.	Master Burst RECEIVE	439
Figure 13-11.	Master Burst RECEIVE after Burst SEND	440
Figure 13-12.	Master Burst SEND after Burst RECEIVE	441
Figure 13-13.	Slave Command Sequence	442
Figure 14-1.	Analog Comparator Module Block Diagram	466
Figure 14-2.	Structure of Comparator Unit	467
Figure 14-3.	Comparator Internal Reference Structure	468
Figure 15-1.	48-Pin QFP Package Pin Diagram	477
Figure 15-2.	48-Pin QFN Package Pin Diagram	478
Figure 18-1.	Load Conditions	490
Figure 18-2.	JTAG Test Clock Input Timing	491
Figure 18-3.	JTAG Test Access Port (TAP) Timing	492
Figure 18-4.	JTAG TRST Timing	492
Figure 18-5.	External Reset Timing (RST)	493
Figure 18-6.	Power-On Reset Timing	493
Figure 18-7.	Brown-Out Reset Timing	493
Figure 18-8.	Software Reset Timing	494
Figure 18-9.	Watchdog Reset Timing	494
Figure 18-10.	LDO Reset Timing	494
Figure 18-11.	ADC Input Equivalency Diagram	496
Figure 18-12.	SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing	
	Measurement	
-	SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	
•	SSI Timing for SPI Frame Format (FRF=00), with SPH=1	
Figure 18-15.	I ² C Timing	
Figure D-1.	48-Pin LQFP Package	
Figure D-2.	48-Pin LQFP Tray Dimensions	
Figure D-3.	48-Pin LQFP Tape and Reel Dimensions	
Figure D-4.	48-Pin QFN Package	529

List of Tables

Table 1.	Revision History	19
Table 2.	Documentation Conventions	23
Table 2-1.	Summary of Processor Mode, Privilege Level, and Stack Use	44
Table 2-2.	Processor Register Map	45
Table 2-3.	PSR Register Combinations	50
Table 2-4.	Memory Map	58
Table 2-5.	Memory Access Behavior	60
Table 2-6.	SRAM Memory Bit-Banding Regions	62
Table 2-7.	Peripheral Memory Bit-Banding Regions	62
Table 2-8.	Exception Types	68
Table 2-9.	Interrupts	69
Table 2-10.	Exception Return Behavior	73
Table 2-11.	Faults	
Table 2-12.	Fault Status and Fault Address Registers	75
Table 2-13.	Cortex-M3 Instruction Summary	
Table 3-1.	Core Peripheral Register Regions	81
Table 3-2.	Memory Attributes Summary	84
Table 3-3.	TEX, S, C, and B Bit Field Encoding	
Table 3-4.	Cache Policy for Memory Attribute Encoding	88
Table 3-5.	AP Bit Field Encoding	
Table 3-6.	Memory Region Attributes for Stellaris Microcontrollers	88
Table 3-7.	Peripherals Register Map	89
Table 3-8.	Interrupt Priority Levels	108
Table 3-9.	Example SIZE Field Values	136
Table 4-1.	JTAG Port Pins Reset State	141
Table 4-2.	JTAG Instruction Register Commands	145
Table 5-1.	Reset Sources	149
Table 5-2.	Clock Source Options	154
Table 5-3.	Possible System Clock Frequencies Using the SYSDIV Field	155
Table 5-4.	System Control Register Map	159
Table 5-5.	PLL Mode Control	171
Table 6-1.	Flash Protection Policy Combinations	205
Table 6-2.	Flash Register Map	209
Table 7-1.	GPIO Pad Configuration Examples	225
Table 7-2.	GPIO Interrupt Configuration Example	225
Table 7-3.	GPIO Register Map	226
Table 8-1.	Available CCP Pins	260
Table 8-2.	16-Bit Timer With Prescaler Configurations	263
Table 8-3.	Timers Register Map	269
Table 9-1.	Watchdog Timer Register Map	297
Table 10-1.	Samples and FIFO Depth of Sequencers	320
Table 10-2.	Differential Sampling Pairs	322
Table 10-3.	ADC Register Map	326
Table 11-1.	UART Register Map	
Table 12-1.	SSI Register Map	
Table 13-1.	Examples of I ² C Master Timer Period versus Speed Mode	

www.Bbutints Production Data TR But Internet Structure Data

Table 13-2.	Inter-Integrated Circuit (I ² C) Interface Register Map	443
Table 13-3.	Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)	448
Table 14-1.	Comparator 0 Operating Modes	467
Table 14-2.	Internal Reference Voltage and ACREFCTL Field Values	468
Table 14-3.	Analog Comparators Register Map	
Table 16-1.	Signals by Pin Number	479
Table 16-2.	Signals by Signal Name	481
Table 16-3.	Signals by Function, Except for GPIO	483
Table 16-4.	GPIO Pins and Alternate Functions	484
Table 16-5.	Connections for Unused Signals	485
Table 17-1.	Temperature Characteristics	486
Table 17-2.	Thermal Characteristics	486
Table 17-3.	ESD Absolute Maximum Ratings	486
Table 18-1.	Maximum Ratings	487
Table 18-2.	Recommended DC Operating Conditions	487
Table 18-3.	LDO Regulator Characteristics	488
Table 18-4.	GPIO Module DC Characteristics	488
Table 18-5.	Detailed Power Specifications	489
Table 18-6.	Flash Memory Characteristics	489
Table 18-7.	Phase Locked Loop (PLL) Characteristics	490
Table 18-8.	Clock Characteristics	490
Table 18-9.	System Clock Characteristics with ADC Operation	490
Table 18-10.	JTAG Characteristics	490
Table 18-11.	Reset Characteristics	
Table 18-12.	Sleep Modes AC Characteristics	494
Table 18-13.	GPIO Characteristics	495
Table 18-14.	ADC Characteristics	495
Table 18-15.	ADC Module Internal Reference Characteristics	
Table 18-16.	SSI Characteristics	
Table 18-17.	I ² C Characteristics	498
Table 18-18.	Analog Comparator Characteristics	499
Table 18-19.	Analog Comparator Voltage Reference Characteristics	499
Table C-1.	Part Ordering Information	522

List of Registers

The Cortex-	M3 Processor	. 39
Register 1:	Cortex General-Purpose Register 0 (R0)	. 46
Register 2:	Cortex General-Purpose Register 1 (R1)	. 46
Register 3:	Cortex General-Purpose Register 2 (R2)	. 46
Register 4:	Cortex General-Purpose Register 3 (R3)	. 46
Register 5:	Cortex General-Purpose Register 4 (R4)	. 46
Register 6:	Cortex General-Purpose Register 5 (R5)	. 46
Register 7:	Cortex General-Purpose Register 6 (R6)	. 46
Register 8:	Cortex General-Purpose Register 7 (R7)	
Register 9:	Cortex General-Purpose Register 8 (R8)	
Register 10:	Cortex General-Purpose Register 9 (R9)	
Register 11:	Cortex General-Purpose Register 10 (R10)	
Register 12:	Cortex General-Purpose Register 11 (R11)	. 46
Register 13:	Cortex General-Purpose Register 12 (R12)	. 46
Register 14:	Stack Pointer (SP)	. 47
Register 15:	Link Register (LR)	. 48
Register 16:	Program Counter (PC)	
Register 17:	Program Status Register (PSR)	
Register 18:	Priority Mask Register (PRIMASK)	
Register 19:	Fault Mask Register (FAULTMASK)	
Register 20:	Base Priority Mask Register (BASEPRI)	. 56
Register 21:	Control Register (CONTROL)	. 57
O		04
Cortex-IVI3 F	Peripherals	. 81
Register 1:	SysTick Control and Status Register (STCTRL), offset 0x010	
		. 91
Register 1:	SysTick Control and Status Register (STCTRL), offset 0x010	. 91 . 93
Register 1: Register 2:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014	91 93 94
Register 1: Register 2: Register 3:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018	91 93 94 95
Register 1: Register 2: Register 3: Register 4:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200	91 93 94 95 96 97
Register 1: Register 2: Register 3: Register 4: Register 5:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280	91 93 94 95 96 97 98
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300	91 93 94 95 96 97 98 99
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400	91 93 94 95 96 97 98 99 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x404	91 93 94 95 96 97 98 99 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 9: Register 10: Register 11:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408	91 93 94 95 96 97 98 99 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C	. 91 . 93 . 94 . 95 . 96 . 97 . 98 . 99 100 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x400 Interrupt 16-19 Priority (PRI4), offset 0x410	91 93 94 95 96 97 98 99 100 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x400 Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414	91 93 94 95 96 97 98 99 100 100 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 6: Register 7: Register 8: Register 9: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x418	91 93 94 95 96 97 98 99 100 100 100 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x418 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C	91 93 94 95 96 97 98 99 100 100 100 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0x400	91 93 94 95 96 97 98 99 100 100 100 100 100 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x408 Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00 CPU ID Base (CPUID), offset 0xD00	91 93 94 95 96 97 98 99 100 100 100 100 100 100 100 100
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x406 Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00 CPU ID Base (CPUID), offset 0xD00 Interrupt Control and State (INTCTRL), offset 0xD04	91 93 94 95 96 97 98 99 100 100 100 100 100 100 100 100 100 1
Register 1: Register 2: Register 3: Register 4: Register 5: Register 5: Register 6: Register 7: Register 8: Register 9: Register 9: Register 10: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 17: Register 18: Register 19: Register 19: Register 19:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x40C Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0x400 Interrupt Control and State (INTCTRL), offset 0xD04 Vector Table Offset (VTABLE), offset 0xD08	91 93 94 95 96 97 98 99 100 100 100 100 100 100 100 100 100 1
Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19:	SysTick Control and Status Register (STCTRL), offset 0x010 SysTick Reload Value Register (STRELOAD), offset 0x014 SysTick Current Value Register (STCURRENT), offset 0x018 Interrupt 0-29 Set Enable (EN0), offset 0x100 Interrupt 0-29 Clear Enable (DIS0), offset 0x180 Interrupt 0-29 Set Pending (PEND0), offset 0x200 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 Interrupt 0-3 Priority (PRI0), offset 0x400 Interrupt 4-7 Priority (PRI1), offset 0x404 Interrupt 8-11 Priority (PRI2), offset 0x408 Interrupt 12-15 Priority (PRI3), offset 0x406 Interrupt 16-19 Priority (PRI4), offset 0x410 Interrupt 20-23 Priority (PRI5), offset 0x414 Interrupt 24-27 Priority (PRI6), offset 0x418 Interrupt 28-29 Priority (PRI7), offset 0x41C Software Trigger Interrupt (SWTRIG), offset 0xF00 CPU ID Base (CPUID), offset 0xD00 Interrupt Control and State (INTCTRL), offset 0xD04	91 93 94 95 96 97 98 99 100 100 100 100 100 100 100 100 100 1

Register 23:	Configuration and Control (CFGCTRL), offset 0xD14	112
Register 24:	System Handler Priority 1 (SYSPRI1), offset 0xD18	114
Register 25:	System Handler Priority 2 (SYSPRI2), offset 0xD1C	115
Register 26:	System Handler Priority 3 (SYSPRI3), offset 0xD20	116
Register 27:	System Handler Control and State (SYSHNDCTRL), offset 0xD24	117
Register 28:	Configurable Fault Status (FAULTSTAT), offset 0xD28	121
Register 29:	Hard Fault Status (HFAULTSTAT), offset 0xD2C	127
Register 30:	Memory Management Fault Address (MMADDR), offset 0xD34	128
Register 31:	Bus Fault Address (FAULTADDR), offset 0xD38	129
Register 32:	MPU Type (MPUTYPE), offset 0xD90	130
Register 33:	MPU Control (MPUCTRL), offset 0xD94	131
Register 34:	MPU Region Number (MPUNUMBER), offset 0xD98	133
Register 35:	MPU Region Base Address (MPUBASE), offset 0xD9C	134
Register 36:	MPU Region Base Address Alias 1 (MPUBASE1), offset 0xDA4	134
Register 37:	MPU Region Base Address Alias 2 (MPUBASE2), offset 0xDAC	
Register 38:	MPU Region Base Address Alias 3 (MPUBASE3), offset 0xDB4	134
Register 39:	MPU Region Attribute and Size (MPUATTR), offset 0xDA0	
Register 40:	MPU Region Attribute and Size Alias 1 (MPUATTR1), offset 0xDA8	136
Register 41:	MPU Region Attribute and Size Alias 2 (MPUATTR2), offset 0xDB0	
Register 42:	MPU Region Attribute and Size Alias 3 (MPUATTR3), offset 0xDB8	
•	ntrol	
Register 1:	Device Identification 0 (DID0), offset 0x000	
Register 2:	Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030	
Register 3:	LDO Power Control (LDOPCTL), offset 0x034	
Register 4:	Raw Interrupt Status (RIS), offset 0x050	
Register 5:	Interrupt Mask Control (IMC), offset 0x054	
Register 6:	Masked Interrupt Status and Clear (MISC), offset 0x058	
Register 7:	Reset Cause (RESC), offset 0x05C	
Register 8:	Run-Mode Clock Configuration (RCC), offset 0x060	
Register 9:	XTAL to PLL Translation (PLLCFG), offset 0x064	
Register 10:	Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144	
Register 11:	Clock Verification Clear (CLKVCLR), offset 0x150	
Register 12:	Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160	
Register 13:	Device Identification 1 (DID1), offset 0x004	
Register 14:	Device Capabilities 0 (DC0), offset 0x008	
Register 15:	Device Capabilities 1 (DC1), offset 0x010	
Register 16:	Device Capabilities 2 (DC2), offset 0x014	
Register 17:	Device Capabilities 3 (DC3), offset 0x018	
Register 18:	Device Capabilities 4 (DC4), offset 0x01C	
Register 19:	Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100	
Register 20:	Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110	
Register 21:	Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120	
Register 22:	Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104	
Register 23:	Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114	
Register 24:	Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124	
Register 25:	Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108	
Register 26:	Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x108	
Register 27:	Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128	

Software Reset Control 0 (SRCR0), offset 0x040	200
Software Reset Control 1 (SRCR1), offset 0x044	201
Software Reset Control 2 (SRCR2), offset 0x048	203
Flash Memory Address (FMA), offset 0x000	210
Flash Memory Data (FMD), offset 0x004	211
Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C	214
Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	216
Flash Memory Protection Read Enable (FMPRE), offset 0x130	219
Flash Memory Protection Program Enable (FMPPE), offset 0x134	220
,	
· ,	
,	
GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	258
•	
GPIM limerB Mode (GPTMTBMR), offset 0x008	274
	Software Reset Control 1 (SRCR0), offset 0x044 Software Reset Control 2 (SRCR2), offset 0x044 Software Reset Control 2 (SRCR2), offset 0x048 Mory Flash Memory Data (FMD), offset 0x000 Flash Memory Control (FMC), offset 0x004 Flash Memory Control (FMC), offset 0x004 Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C Flash Controller Raw Interrupt Status (FCRIS), offset 0x000 Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 USec Reioad (USECRL), offset 0x140 Flash Memory Protection Read Enable (FMPRE), offset 0x130 Flash Memory Protection Program Enable (FMPRE), offset 0x134 pose Input/Outputs (GPIOS) GPIO Data (CPIODATA), offset 0x400 GPIO Direction (GPIODIR), offset 0x404 GPIO Interrupt Sense (CPIOIS), offset 0x404 GPIO Interrupt Sense (CPIOIS), offset 0x404 GPIO Interrupt Sense (CPIOIS), offset 0x402 GPIO Interrupt Sense (CPIOIS), offset 0x402 GPIO Interrupt Sense (CPIOIS), offset 0x410 GPIO Raw Interrupt Status (GPIORIS), offset 0x414 GPIO Masked Interrupt Status (GPIORIS), offset 0x414 GPIO Masked Interrupt Status (GPIORIS), offset 0x416 GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 GPIO 2-mA Drive Select (GPIODR4R), offset 0x504 GPIO Pull-Up Select (GPIODR4R), offset 0x504 GPIO Pull-Up Select (GPIODR4R), offset 0x514 GPIO Sew Rate Control Select (GPIOSLR), offset 0x518 GPIO Deripheral Identification 4 (GPIOPeriphID5), offset 0xFD0 GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD0 GPIO Peripheral Identification 7 (GPIOPeriphID5), offset 0xFD0 GPIO Peripheral Identification 1 (GPIOPeriphID7), offset 0xFD2 GPIO Peripheral Identification 1 (GPIOPeriphID5), offset 0xFD4 GPIO Peripheral Identification 1 (GPIOPeriphID7), offset 0xFE4 GPIO Peripheral Identification 1 (GPIOPeriphID7), offset 0xFE4 GPIO Peripheral Identification 3 (GPIOPeriphID5), offset 0xFE4 GPIO Peripheral Identification 3 (GPIOPeriphID7), offset 0xFE4 GPIO Peripheral Identification 3 (GPIOPeriphID7), o

Register 4:	GPTM Control (GPTMCTL), offset 0x00C	
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x028	
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	
Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	289
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	290
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	291
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	292
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	293
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	294
Watchdog T	ïmer	295
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	
Register 2:	Watchdog Value (WDTVALUE), offset 0x004	
Register 3:	Watchdog Control (WDTCTL), offset 0x008	
Register 4:	Watchdog Interrupt Clear (WDTICR), offset 0x00C	
Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x010	
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x014	
Register 7:	Watchdog Test (WDTTEST), offset 0x418	
Register 8:	Watchdog Lock (WDTLOCK), offset 0xC00	
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8	
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	
Register 13:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4	
Register 15:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	
Register 16:	Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC	
Register 17:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0	
Register 18:	Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4	
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	
Register 20:	Watchdog PrimeCell Identification 2 (WDTPCellID3), offset 0xFFC	
-	igital Converter (ADC)	
Register 1:	ADC Active Sample Sequencer (ADCACTSS), offset 0x000	
Register 2:	ADC Raw Interrupt Status (ADCRIS), offset 0x004	
Register 3:	ADC Interrupt Mask (ADCIM), offset 0x008	
Register 4:	ADC Interrupt Status and Clear (ADCISC), offset 0x00C	
Register 5:	ADC Overflow Status (ADCOSTAT), offset 0x010	
Register 6:	ADC Event Multiplexer Select (ADCEMUX), offset 0x014	
Register 7:	ADC Underflow Status (ADCUSTAT), offset 0x018	
Register 8:	ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020	
Register 9:	ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028	
Register 10:	ADC Sample Averaging Control (ADCSAC), offset 0x030	
Register 11:	ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040	

www.BSD Tic.com/TI

Register 12:	ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044	343
Register 13:	ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048	346
Register 14:	ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068	346
Register 15:	ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088	346
Register 16:	ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8	346
Register 17:	ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C	347
Register 18:	ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C	347
Register 19:	ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C	347
Register 20:	ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC	347
Register 21:	ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060	348
Register 22:	ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080	348
Register 23:	ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064	349
Register 24:	ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084	349
Register 25:	ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0	351
Register 26:	ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4	352
Register 27:	ADC Test Mode Loopback (ADCTMLB), offset 0x100	353
Universal A	synchronous Receivers/Transmitters (UARTs)	354
Register 1:	UART Data (UARTDR), offset 0x000	
Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	363
Register 3:	UART Flag (UARTFR), offset 0x018	
Register 4:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	367
Register 5:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	368
Register 6:	UART Line Control (UARTLCRH), offset 0x02C	369
Register 7:	UART Control (UARTCTL), offset 0x030	371
Register 8:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	373
Register 9:	UART Interrupt Mask (UARTIM), offset 0x038	375
Register 10:	UART Raw Interrupt Status (UARTRIS), offset 0x03C	377
Register 11:	UART Masked Interrupt Status (UARTMIS), offset 0x040	378
Register 12:	UART Interrupt Clear (UARTICR), offset 0x044	379
Register 13:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	381
Register 14:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	382
Register 15:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	
Register 16:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	384
Register 17:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	
Register 18:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	386
Register 19:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	
Register 20:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	
Register 21:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	
Register 22:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	
Register 23:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	
Register 24:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	392
Synchronou	is Serial Interface (SSI)	393
Register 1:	SSI Control 0 (SSICR0), offset 0x000	405
Register 2:	SSI Control 1 (SSICR1), offset 0x004	
Register 3:	SSI Data (SSIDR), offset 0x008	
Register 4:	SSI Status (SSISR), offset 0x00C	410
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	

www.BSDI TIC.com/TI

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018 4 Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x010 4 Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0x7D0 4 Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0x7D4 4 Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0x7D4 4 Register 13: SSI Peripheral Identification 7 (SSIPeriphID0), offset 0xFD6 4 Register 14: SSI Peripheral Identification 1 (SSIPeriphID0), offset 0xFE0 4 Register 15: SSI Peripheral Identification 3 (SSIPeriphID1), offset 0xFE4 4 Register 16: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFE6 4 Register 18: SSI PrimeCeII Identification 3 (SSIPCeIIID0), offset 0xFF6 4 Register 19: SSI PrimeCeII Identification 3 (SSIPCeIIID0), offset 0xFF6 4 Register 11: SSI PrimeCeII Identification 3 (SSIPCeIIID0), offset 0xFF6 4 Register 11: SSI PrimeCeII Identification 3 (SSIPCeIIID0), offset 0x004 4 Register 11: I ² C Master Slave Address (I2CMCS), offset 0x000 4 Register 11: I ² C Master Slave Address (I2CMCR), offset 0x000 4			
Register 9: SSI Interrupt Clear (SSIICR), offset 0x020 4 Register 10: SSI Peripheral Identification 4 (SSIPeriphID5), offset 0xFD4 4 Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 4 Register 12: SSI Peripheral Identification 7 (SSIPeriphID5), offset 0xFD6 4 Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFE0 4 Register 14: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 4 Register 15: SSI Peripheral Identification 3 (SSIPeriphID2), offset 0xFE4 4 Register 17: SSI Peripheral Identification 3 (SSIPCeIIID1), offset 0xFE6 4 Register 19: SSI PrimeCeII Identification 1 (SSIPCeIIID2), offset 0xFE6 4 Register 21: SSI PrimeCeII Identification 2 (SSIPCeIIID2), offset 0xFE6 4 Register 11: 12°C Master Slave Address (I2CMSA), offset 0x000 4 Register 12: 12°C Master Control/Status (I2CMSA), offset 0x000 4 Register 3: 12°C Master Data (I2CMDR), offset 0x000 4 Register 4: 12°C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 5: 12°C Master Interrupt Mask (I2CMINR), offset 0x010 4 Regist	Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	415
Register 10: SSI Peripheral Identification 4 (SSIPeriphID5), offset 0xFD4 4 Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 4 Register 12: SSI Peripheral Identification 7 (SSIPeriphID6), offset 0xFD6 4 Register 13: SSI Peripheral Identification 0 (SSIPeriphID7), offset 0xFE0 4 Register 14: SSI Peripheral Identification 0 (SSIPeriphID2), offset 0xFE0 4 Register 15: SSI Peripheral Identification 1 (SSIPeriphID2), offset 0xFE6 4 Register 16: SSI Peripheral Identification 3 (SSIPeriphID2), offset 0xFE6 4 Register 17: SSI Peripheral Identification 1 (SSIPCeIIID1), offset 0xFE4 4 Register 18: SSI PrimeCell Identification 1 (SSIPCeIIID2), offset 0xFF6 4 Register 21: SSI PrimeCell Identification 1 (SSIPCeIIID2), offset 0xFF6 4 Register 11: I ² C Master Control/Status (I2CMSA), offset 0x000 4 Register 3: I ² C Master Control/Status (I2CMSA), offset 0x004 4 Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x004 4 Register 5: I ² C Master Timer Period (I2CMTPR), offset 0x014 4 Register 6: I ² C Master Timerupt Mask (I2CMIMR), offset 0x014 4 <	Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	416
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 4 Register 12: SSI Peripheral Identification 7 (SSIPeriphID6), offset 0xFD2 4 Register 13: SSI Peripheral Identification 7 (SSIPeriphID0), offset 0xFE0 4 Register 14: SSI Peripheral Identification 1 (SSIPeriphID0), offset 0xFE0 4 Register 15: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE4 4 Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE6 4 Register 17: SSI Peripheral Identification 3 (SSIPeriphID2), offset 0xFE0 4 Register 18: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF0 4 Register 20: SSI PrimeCell Identification 3 (SSIPCellID2), offset 0xFF4 4 Register 11: If ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 11: If ² C Master Control/Status (I2CMCS), offset 0x004 4 Register 3: If ² C Master Timer Period (I2CMTPR), offset 0x004 4 Register 4: If ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 5: If ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 6: If ² C Master Interrupt Mask (I2CMINR), offset 0x014 4 <	Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	417
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8 4 Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFE0 4 Register 14: SSI Peripheral Identification 0 (SSIPeriphID1), offset 0xFE4 4 Register 15: SSI Peripheral Identification 1 (SSIPeriphID2), offset 0xFE8 4 Register 16: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFE6 4 Register 17: SSI PrimeCell Identification 1 (SSIPCellID0), offset 0xFF4 4 Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID2), offset 0xFF4 4 Register 11: I ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 21: SSI PrimeCell Identification 1 (SIPCellID3), offset 0x000 4 Register 31: I ² C Master Control/Status (I2CMCS), offset 0x000 4 Register 4: I ² C Master Control/Status (I2CMISP), offset 0x001 4 Register 5: I ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 6: I ² C Master Interrupt Mask (I2CMINR), offset 0x014 4 Register 7: I ² C Master Interrupt Mask (I2CMINS), offset 0x014 4	Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	418
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC 4 Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE4 4 Register 15: SSI Peripheral Identification 1 (SSIPeriphID2), offset 0xFE4 4 Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE6 4 Register 17: SSI Peripheral Identification 0 (SSIPCeIIID0), offset 0xFE6 4 Register 18: SSI PrimeCell Identification 1 (SSIPCeIIID1), offset 0xFF6 4 Register 20: SSI PrimeCell Identification 2 (SSIPCeIIID2), offset 0xFF6 4 Register 21: SSI PrimeCell Identification 3 (SSIPCeIIID2), offset 0xFF6 4 Register 21: SSI PrimeCell Identification 3 (SSIPCeIIID2), offset 0xFF6 4 Register 3: I ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 3: I ² C Master Data (I2CMDR), offset 0x000 4 Register 3: I ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 5: I ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 7: I ² C Master Interrupt Mask (I2CMINR), offset 0x014 4 Register 9: I ² C Master Interrupt Mask (I2CMINR), offset 0x004 4 <	Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	419
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0 4 Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 4 Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFEC 4 Register 17: SSI Peripheral Identification 0 (SSIPCeIIID0), offset 0xFEC 4 Register 18: SSI PrimeCell Identification 0 (SSIPCeIIID1), offset 0xFF4 4 Register 20: SSI PrimeCell Identification 2 (SSIPCeIIID1), offset 0xFF4 4 Register 21: SSI PrimeCell Identification 3 (SSIPCeIIID1), offset 0xFF6 4 Register 1: I ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 1: I ² C Master Control/Status (I2CMCS), offset 0x000 4 Register 3: I ² C Master Control/Status (I2CMCR), offset 0x000 4 Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x010 4 Register 5: I ² C Master Interrupt Mask (I2CMIRS), offset 0x010 4 Register 6: I ² C Master Interrupt Status (I2CMIRS), offset 0x014 4 Register 7: I ² C Master Interrupt Clear (I2CMICR), offset 0x800 4 Register 10: I ² C Master Interrupt Clear (I2CMICR), offset 0x016 4 Reg	Register 12:		
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 4 Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE6 4 Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFE6 4 Register 18: SSI PrimeCell Identification 1 (SSIPCeIIID0), offset 0xFF6 4 Register 20: SSI PrimeCell Identification 1 (SSIPCeIIID1), offset 0xFF4 4 Register 21: SSI PrimeCell Identification 3 (SSIPCeIIID2), offset 0xFF4 4 Register 1: I ² C Master Control/Status (I2CMSA), offset 0x000 4 Register 2: I ² C Master Control/Status (I2CMCS), offset 0x000 4 Register 3: I ² C Master Control/Status (I2CMCS), offset 0x000 4 Register 4: I ² C Master Interrupt Mask (I2CMINR), offset 0x000 4 Register 5: I ² C Master Interrupt Mask (I2CMINS), offset 0x010 4 Register 6: I ² C Master Interrupt Status (I2CMIS), offset 0x014 4 Register 7: I ² C Master Interrupt Status (I2CMIS), offset 0x014 4 Register 8: I ² C Master Interrupt Status (I2CMIS), offset 0x016 4 Register 11: I ² C Slave Control/Status (I2CSAR), offset 0x800 4 Register 11:	Register 13:		
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8 4 Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC 4 Register 18: SSI PrimeCell Identification 1 (SSIPCellID0), offset 0xFF4 4 Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF4 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID2), offset 0xFF6 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFF6 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0x000 4 Register 1: I ² C Master Control/Status (I2CMCS), offset 0x000 4 Register 3: I ² C Master Control/Status (I2CMICR), offset 0x004 4 Register 4: I ² C Master Interrupt Mask (I2CMINR), offset 0x001 4 Register 5: I ² C Master Interrupt Status (I2CMINS), offset 0x010 4 Register 6: I ² C Master Interrupt Status (I2CMINS), offset 0x014 4 Register 10: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 11: I ² C Slave Control/Status (I2CSOAR), offset 0x804 4 Register 11: I ² C Slave Control/Status (I2CSOAR), offset 0x804 4 Reg	Register 14:		
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC 4 Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 4 Register 19: SSI PrimeCell Identification 1 (SSIPCellID2), offset 0xFF4 4 Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC 4 Inter-Integrated Circuit (I ² C) Interface 44 Register 1: I ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 3: I ² C Master Control/Status (I2CMCS), offset 0x004 4 Register 4: I ² C Master Control/Status (I2CMTPR), offset 0x000 4 Register 5: I ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 6: I ² C Master Interrupt Status (I2CMRIS), offset 0x014 4 Register 7: I ² C Master Interrupt Status (I2CMINS), offset 0x014 4 Register 9: I ² C Master Interrupt Status (I2CMINS), offset 0x016 4 Register 11: I ² C Save Control/Status (I2CSOR), offset 0x804 4 Register 12: I ² C Slave Control/Status (I2CSCRS), offset 0x804 4 Register 13: I ² C Slave Raw Interrupt Sta	Register 15:		
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 4 Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 4 Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFF8 4 Inter-Integrated Circuit (1 ² C) Interface 44 Register 1: 1 ² C Master Slave Address (12CMCS), offset 0x000 4 Register 2: 1 ² C Master Control/Status (12CMCS), offset 0x004 4 Register 3: 1 ² C Master Imer Period (12CMTPR), offset 0x000 4 Register 4: 1 ² C Master Interrupt Mask (12CMINR), offset 0x010 4 Register 5: 1 ² C Master Interrupt Status (12CMRIS), offset 0x014 4 Register 6: 1 ² C Master Interrupt Clear (12CMICR), offset 0x010 4 Register 7: 1 ² C Master Interrupt Clear (12CMICR), offset 0x014 4 Register 8: 1 ² C Master Configuration (12CMCR), offset 0x016 4 Register 10: 1 ² C Slave Control/Status (12CSCRS), offset 0x800 4 Register 11: 1 ² C Slave Control/Status (12CSIMR), offset 0x804 4 Register 12: 1 ² C Slave Control/Status (12CSCRS), offset	Register 16:		
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 4 Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC 4 Inter-Integrated Circuit (I ² C) Interface 44 Register 1: I ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 2: I ² C Master Control/Status (I2CMCS), offset 0x004 4 Register 3: I ² C Master Data (I2CMDR), offset 0x008 4 Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x000 4 Register 5: I ² C Master Interrupt Mask (I2CMIMR), offset 0x010 4 Register 6: I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014 4 Register 7: I ² C Master Interrupt Clear (I2CMICR), offset 0x010 4 Register 8: I ² C Master Configuration (I2CMCR), offset 0x014 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 11: I ² C Slave Own Address (I2CSOAR), offset 0x800 4 Register 12: I ² C Slave Control/Status (I2CSCSR), offset 0x802 4 Register 13: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814	Register 17:	,	
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 4 Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC 4 Inter-Integrated Circuit (I ² C) Interface 4 Register 1: I ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 2: I ² C Master Control/Status (I2CMCS), offset 0x004 4 Register 3: I ² C Master Control/Status (I2CMCS), offset 0x006 4 Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x000 4 Register 5: I ² C Master Interrupt Mask (I2CMIMR), offset 0x010 4 Register 6: I ² C Master Interrupt Status (I2CMIS), offset 0x014 4 Register 7: I ² C Master Interrupt Clear (I2CMICR), offset 0x010 4 Register 8: I ² C Master Configuration (I2CMCR), offset 0x01C 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 10: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 11: I ² C Slave Data (I2CSDR), offset 0x806 4 Register 12: I ² C Slave Data (I2CSIMR), offset 0x80C 4 Register 13: I ² C Slave Raw Interrupt Status (I2CSIMS), offset 0x80C 4 <td>Register 18:</td> <td></td> <td></td>	Register 18:		
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC 4 Inter-Integrated Circuit (I ² C) Interface 44 Register 1: I ² C Master Slave Address (I2CMSA), offset 0x000 4 Register 2: I ² C Master Control/Status (I2CMCS), offset 0x004 4 Register 3: I ² C Master Data (I2CMDR), offset 0x008 4 Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x00C 4 Register 5: I ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 6: I ² C Master Interrupt Status (I2CMRIS), offset 0x014 4 Register 7: I ² C Master Interrupt Status (I2CMINR), offset 0x014 4 Register 8: I ² C Master Interrupt Clear (I2CMICR), offset 0x012 4 Register 8: I ² C Master Interrupt Clear (I2CMICR), offset 0x020 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x800 4 Register 11: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 12: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x802 4 Register 13: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4	Register 19:		
Inter-Integrated Circuit (I²C) Interface44Register 1:I²C Master Slave Address (I2CMSA), offset 0x0004Register 2:I²C Master Control/Status (I2CMCS), offset 0x0044Register 3:I²C Master Data (I2CMDR), offset 0x0084Register 4:I²C Master Timer Period (I2CMTPR), offset 0x0004Register 5:I²C Master Interrupt Mask (I2CMIMR), offset 0x0104Register 6:I²C Master Interrupt Mask (I2CMIRS), offset 0x0104Register 7:I²C Master Raw Interrupt Status (I2CMRIS), offset 0x0144Register 8:I²C Master Interrupt Clear (I2CMICR), offset 0x0104Register 9:I²C Master Configuration (I2CMCR), offset 0x0104Register 9:I²C Master Configuration (I2CMCR), offset 0x0204Register 10:I²C Slave Own Address (I2CSOAR), offset 0x8004Register 11:I²C Slave Ournol/Status (I2CSCSR), offset 0x8004Register 12:I²C Slave Data (I2CSDR), offset 0x8084Register 13:I²C Slave Raw Interrupt Status (I2CSMIS), offset 0x8104Register 14:I²C Slave Raw Interrupt Status (I2CSMIS), offset 0x8104Register 15:I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x8144Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Analog Comparator4Register 13:Analog Comparator Masked Interrupt Status (ACRIS), offset 0x0004Register 14:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 3:Analog Comparator Raw Interrupt	Register 20:		
Register 1:I²C Master Slave Address (I2CMSA), offset 0x0004Register 2:I²C Master Control/Status (I2CMCS), offset 0x0044Register 3:I²C Master Data (I2CMDR), offset 0x0084Register 4:I²C Master Timer Period (I2CMTPR), offset 0x00C4Register 5:I²C Master Interrupt Mask (I2CMINR), offset 0x0104Register 6:I²C Master Interrupt Mask (I2CMIRS), offset 0x0144Register 7:I²C Master Masked Interrupt Status (I2CMRIS), offset 0x0144Register 8:I²C Master Interrupt Clear (I2CMICR), offset 0x0124Register 9:I²C Master Configuration (I2CMCR), offset 0x0204Register 9:I²C Slave Own Address (I2CSOAR), offset 0x0204Register 10:I²C Slave Control/Status (I2CSCSR), offset 0x8004Register 11:I²C Slave Data (I2CSDR), offset 0x8044Register 12:I²C Slave Raw Interrupt Status (I2CSIR), offset 0x8044Register 13:I²C Slave Raw Interrupt Status (I2CSIS), offset 0x8104Register 14:I²C Slave Masked Interrupt Status (I2CSIS), offset 0x8104Register 15:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Analog Comparator4Register 11:Analog Comparator Masked Interrupt Status (ACRIS), offset 0x0004Register 12:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 3:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0004Register 3:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044	Register 21:	SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC	429
Register 2: I ² C Master Control/Status (I2CMCS), offset 0x004 4 Register 3: I ² C Master Data (I2CMDR), offset 0x008 4 Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x000 4 Register 5: I ² C Master Interrupt Mask (I2CMIMR), offset 0x010 4 Register 6: I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014 4 Register 7: I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018 4 Register 8: I ² C Master Configuration (I2CMCR), offset 0x01C 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x800 4 Register 11: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 12: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x806 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x806 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x814 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSICR), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator Masked Interrupt Status (ACMIS), offs	Inter-Integra	ated Circuit (I ² C) Interface	430
Register 3: I ² C Master Data (I2CMDR), offset 0x008 4 Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x00C 4 Register 5: I ² C Master Interrupt Mask (I2CMINR), offset 0x010 4 Register 6: I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014 4 Register 7: I ² C Master Masked Interrupt Status (I2CMRIS), offset 0x018 4 Register 8: I ² C Master Interrupt Clear (I2CMICR), offset 0x010 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x800 4 Register 11: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 12: I ² C Slave Data (I2CSDR), offset 0x808 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x806 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Interrupt Clear (I2CSICR), offset 0x810 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 4	Register 1:	I ² C Master Slave Address (I2CMSA), offset 0x000	445
Register 4: I ² C Master Timer Period (I2CMTPR), offset 0x00C 4 Register 5: I ² C Master Interrupt Mask (I2CMIMR), offset 0x010 4 Register 6: I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014 4 Register 7: I ² C Master Interrupt Clear (I2CMICR), offset 0x016 4 Register 8: I ² C Master Interrupt Clear (I2CMICR), offset 0x01C 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x800 4 Register 11: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 12: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x804 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x804 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 11: Analog Comp	Register 2:	I ² C Master Control/Status (I2CMCS), offset 0x004	446
Register 5:I²C Master Interrupt Mask (I2CMIMR), offset 0x0104Register 6:I²C Master Raw Interrupt Status (I2CMRIS), offset 0x0144Register 7:I²C Master Masked Interrupt Status (I2CMMIS), offset 0x0184Register 8:I²C Master Interrupt Clear (I2CMICR), offset 0x01C4Register 9:I²C Master Configuration (I2CMCR), offset 0x0204Register 10:I²C Slave Own Address (I2CSOAR), offset 0x8004Register 11:I²C Slave Control/Status (I2CSCSR), offset 0x8044Register 12:I²C Slave Data (I2CSDR), offset 0x8084Register 13:I²C Slave Interrupt Mask (I2CSIMR), offset 0x80C4Register 14:I²C Slave Interrupt Status (I2CSCRIS), offset 0x8104Register 15:I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x8104Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Register 11:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x0004Register 12:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 13:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 14:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 14:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 14:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044	Register 3:	I ² C Master Data (I2CMDR), offset 0x008	450
Register 6:I²C Master Raw Interrupt Status (I2CMRIS), offset 0x0144Register 7:I²C Master Masked Interrupt Status (I2CMMIS), offset 0x0184Register 8:I²C Master Interrupt Clear (I2CMICR), offset 0x01C4Register 9:I²C Master Configuration (I2CMCR), offset 0x0204Register 10:I²C Slave Own Address (I2CSOAR), offset 0x8004Register 11:I²C Slave Control/Status (I2CSCSR), offset 0x8044Register 12:I²C Slave Control/Status (I2CSCR), offset 0x8044Register 13:I²C Slave Interrupt Mask (I2CSIMR), offset 0x8064Register 14:I²C Slave Interrupt Mask (I2CSIMR), offset 0x8064Register 15:I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x8104Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8144Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Register 11:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x0004Register 12:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 31:Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x0044Register 32:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 41:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 51:Analog Comparator Status 0 (ACSTAT0), offset 0x0204	Register 4:	I ² C Master Timer Period (I2CMTPR), offset 0x00C	451
Register 7: I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018 4 Register 8: I ² C Master Interrupt Clear (I2CMICR), offset 0x01C 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x800 4 Register 11: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 12: I ² C Slave Control/Status (I2CSIMR), offset 0x808 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x806 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x810 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 40 Register 11: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x004 4 Register 4: Analog Comparator Reference Voltage Control	Register 5:	I ² C Master Interrupt Mask (I2CMIMR), offset 0x010	452
Register 8: I ² C Master Interrupt Clear (I2CMICR), offset 0x01C 4 Register 9: I ² C Master Configuration (I2CMCR), offset 0x020 4 Register 10: I ² C Slave Own Address (I2CSOAR), offset 0x800 4 Register 11: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 12: I ² C Slave Data (I2CSDR), offset 0x808 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x80C 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Interrupt Clear (I2CSICR), offset 0x810 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 4 Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 3: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x004 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offse	Register 6:	I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014	453
Register 9:I²C Master Configuration (I2CMCR), offset 0x0204Register 10:I²C Slave Own Address (I2CSOAR), offset 0x8004Register 11:I²C Slave Control/Status (I2CSCSR), offset 0x8044Register 12:I²C Slave Data (I2CSDR), offset 0x8084Register 13:I²C Slave Interrupt Mask (I2CSIMR), offset 0x80C4Register 14:I²C Slave Interrupt Mask (I2CSIMR), offset 0x80C4Register 15:I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x8104Register 16:I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x8144Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Analog Comparator4Register 11:Analog Comparator Raw Interrupt Status (ACMIS), offset 0x0004Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 3:Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x0084Register 4:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 5:Analog Comparator Status 0 (ACSTAT0), offset 0x0204	Register 7:	I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018	454
Register 10:I²C Slave Own Address (I2CSOAR), offset 0x8004Register 11:I²C Slave Control/Status (I2CSCSR), offset 0x8044Register 12:I²C Slave Data (I2CSDR), offset 0x8084Register 13:I²C Slave Interrupt Mask (I2CSIMR), offset 0x80C4Register 14:I²C Slave Raw Interrupt Mask (I2CSRIS), offset 0x8104Register 15:I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x8104Register 16:I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x8144Register 16:I²C Slave Interrupt Clear (I2CSICR), offset 0x8184Analog Comparator44Register 11:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x0004Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 3:Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x0084Register 4:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 5:Analog Comparator Status 0 (ACSTATO), offset 0x0204	Register 8:	I ² C Master Interrupt Clear (I2CMICR), offset 0x01C	455
Register 11: I ² C Slave Control/Status (I2CSCSR), offset 0x804 4 Register 12: I ² C Slave Data (I2CSDR), offset 0x808 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x80C 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Register 17: Analog Comparator 4 Register 11: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x008 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	Register 9:	I ² C Master Configuration (I2CMCR), offset 0x020	456
Register 12: I ² C Slave Data (I2CSDR), offset 0x808 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x80C 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 11: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	Register 10:	I ² C Slave Own Address (I2CSOAR), offset 0x800	458
Register 12: I ² C Slave Data (I2CSDR), offset 0x808 4 Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x80C 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 11: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	-		
Register 13: I ² C Slave Interrupt Mask (I2CSIMR), offset 0x80C 4 Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Raw Interrupt Enable (ACINTEN), offset 0x008 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	-		
Register 14: I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 4 Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	-	-	
Register 15: I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 4 Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	-		
Register 16: I ² C Slave Interrupt Clear (I2CSICR), offset 0x818 4 Analog Comparator 4 Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 4 Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 4 Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 4 Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 4 Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	-		
Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x0004Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x0084Register 4:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 5:Analog Comparator Status 0 (ACSTAT0), offset 0x0204	-		
Register 1:Analog Comparator Masked Interrupt Status (ACMIS), offset 0x0004Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x0084Register 4:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 5:Analog Comparator Status 0 (ACSTAT0), offset 0x0204		nparator	466
Register 2:Analog Comparator Raw Interrupt Status (ACRIS), offset 0x0044Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x0084Register 4:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 5:Analog Comparator Status 0 (ACSTAT0), offset 0x0204	-		
Register 3:Analog Comparator Interrupt Enable (ACINTEN), offset 0x0084Register 4:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x0104Register 5:Analog Comparator Status 0 (ACSTAT0), offset 0x0204	-		
Register 4:Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010	-	•	
Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 4	-		
	-		
Analog Comparator Control C (ACCTEC), Check CACZ4	Register 6:	Analog Comparator Control 0 (ACCTL0), offset 0x024	475

Revision History

The revision history table notes changes made between the indicated revisions of the LM3S808 data sheet.

Table 1. Revision History

Date	Revision	Description
January 2011	9102	 In Application Interrupt and Reset Control (APINT) register, changed bit name from SYSRESETREQ to SYSRESREQ.
		Added DEBUG (Debug Priority) bit field to System Handler Priority 3 (SYSPRI3) register.
		Added "Reset Sources" table to System Control chapter.
		Removed mention of false-start bit detection in the UART chapter. This feature is not supported.
		 Added note that specific module clocks must be enabled before that module's registers can be programmed. There must be a delay of 3 system clocks after the module clock is enabled before any of that module's registers are accessed.
		Changed I ² C slave register base addresses and offsets to be relative to the I ² C module base address of 0x4002.0000, so register bases and offsets were changed for all I ² C slave registers. Note that the hw_i2c.h file in the StellarisWare Driver Library uses a base address of 0x4002.0800 for the I ² C slave registers. Be aware when using registers with offsets between 0x800 and 0x818 that StellarisWare uses the old slave base address for these offsets.
		• Corrected nonlinearity and offset error parameters (E _L , E _D and E _O) in ADC Characteristics table.
		 Added specification for maximum input voltage on a non-power pin when the microcontroller is unpowered (V_{NON} parameter in Maximum Ratings table).
		 Additional minor data sheet clarifications and corrections.
September 2010	7783	 Reorganized ARM Cortex-M3 Processor Core, Memory Map and Interrupts chapters, creating two new chapters, The Cortex-M3 Processor and Cortex-M3 Peripherals. Much additional content was added, including all the Cortex-M3 registers.
		Changed register names to be consistent with StellarisWare [®] names: the Cortex-M3 Interrupt Control and Status (ICSR) register to the Interrupt Control and State (INTCTRL) register, and the Cortex-M3 Interrupt Set Enable (SETNA) register to the Interrupt 0-31 Set Enable (EN0) register.
		 Added clarification of instruction execution during Flash operations.
		 Modified Figure 7-1 on page 222 to clarify operation of the GPIO inputs when used as an alternate function.
		 Added caution not to apply a Low value to PB7 when debugging; a Low value on the pin causes the JTAG controller to be reset, resulting in a loss of JTAG communication.
		 In General-Purpose Timers chapter, clarified operation of the 32-bit RTC mode.
		Added missing table "Connections for Unused Signals" (Table 16-5 on page 485).
		 In Electrical Characteristics chapter: Added I_{LKG} parameter (GPIO input leakage current) to Table 18-4 on page 488. Corrected values for t_{CLKRF} parameter (SSIClk rise/fall time) in Table 18-16 on page 496.
		 Added dimensions for Tray and Tape and Reel shipping mediums.

www.BDTIC.com/TI

Table 1. Revision History (continued)

Date	Revision	Description
June 2010	7393	Corrected base address for SRAM in architectural overview chapter.
		 Clarified system clock operation, adding content to "Clock Control" on page 154.
		 In Signal Tables chapter, added table "Connections for Unused Signals."
		 In "Reset Characteristics" table, corrected value for supply voltage (VDD) rise time.
		 Additional minor data sheet clarifications and corrections.
April 2010	7004	 Added caution note to the I²C Master Timer Period (I2CMTPR) register description and changed field width to 7 bits.
		■ Added note about RST signal routing.
		■ Clarified the function of the TnSTALL bit in the GPTMCTL register.
		 Additional minor data sheet clarifications and corrections.
January 2010	6712	In "System Control" section, clarified Debug Access Port operation after Sleep modes.
		 Clarified wording on Flash memory access errors.
		 Added section on Flash interrupts.
		 Changed the reset value of the ADC Sample Sequence Result FIFO n (ADCSSFIFOn) registers to be indeterminate.
		 Clarified operation of SSI transmit FIFO.
		 Made these changes to the Operating Characteristics chapter:
		 Added storage temperature ratings to "Temperature Characteristics" table
		 Added "ESD Absolute Maximum Ratings" table
		 Made these changes to the Electrical Characteristics chapter:
		 In "Flash Memory Characteristics" table, corrected Mass erase time
		 Added sleep and deep-sleep wake-up times ("Sleep Modes AC Characteristics" table)
		 In "Reset Characteristics" table, corrected supply voltage (VDD) rise time
October 2009	6438	The reset value for the DID1 register may change, depending on the package.
		Deleted MAXADCSPD bit field from DCGC0 register as it is not applicable in Deep-Sleep mode.
		 Deleted reset value for 16-bit mode from GPTMTAILR, GPTMTAMATCHR, and GPTMTAR registers because the module resets in 32-bit mode.
		 Made these changes to the Electrical Characteristics chapter:
		 Removed VSIH and VSIL parameters from Operating Conditions table.
		 Changed SSI set up and hold times to be expressed in system clocks, not ns.
		- Revised ADC electrical specifications to clarify, including reorganizing and adding new data.
		 Added 48QFN package.
		 Additional minor data sheet clarifications and corrections.

Date	Revision	Description
July 2009	5953	■ Clarified Power-on reset and RST pin operation; added new diagrams.
		• Added DBG bits missing from FMPRE register. This changes register reset value.
		 In ADC characteristics table, changed Max value for GAIN parameter from ±1 to ±3 and added E_{IR} (Internal voltage reference error) parameter.
		Corrected ordering numbers.
		 Additional minor data sheet clarifications and corrections.
April 2009	5369	Added JTAG/SWD clarification (see "Communication with JTAG/SWD" on page 144).
		Added "GPIO Module DC Characteristics" table (see Table 18-4 on page 488).
		 Additional minor data sheet clarifications and corrections.
January 2009	4644	Incorrect bit type for RELOAD bit field in SysTick Reload Value register; changed to R/W.
		 Clarification added as to what happens when the SSI in slave mode is required to transmit but there is no data in the TX FIFO.
		 Minor corrections to comparator operating mode tables.
		 Additional minor data sheet clarifications and corrections.
November 2008	4283	Revised High-Level Block Diagram.
		 Corrected descriptions for UART1 signals.
		 Additional minor data sheet clarifications and corrections were made.
October 2008	4149	Added note on clearing interrupts to the Interrupts chapter:
		Note: It may take several processor cycles after a write to clear an interrupt source in order for NVIC to see the interrupt source de-assert. This means if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer)
		 Step 1 of the Initialization and Configuration procedure in the ADC chapter states the wrong register to use to enable the ADC clock. Sentence changed to:
		1. Enable the ADC clock by writing a value of 0x0001.0000 to the RCGC0 register.
		 Additional minor data sheet clarifications and corrections were made.
June 2008	2972	Started tracking revision history.

Table 1. Revision History (continued)

About This Document

This data sheet provides reference information for the LM3S808 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following related documents are available on the Stellaris[®] web site at www.ti.com/stellaris:

- Stellaris® Errata
- ARM® Cortex[™]-M3 Errata
- Cortex[™]-M3 Instruction Set Technical User's Manual
- Stellaris® Graphics Library User's Guide
- Stellaris® Peripheral Driver Library User's Guide

The following related documents are also referenced:

- ARM® Debug Interface V5 Architecture Specification
- IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 2 on page 23.

Table 2. Documentation Conventions

Notation	Meaning
General Register Not	ation
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0, SRCR1 , and SRCR2 .
bit	A single bit in a register.
bit field	Two or more consecutive and related bits.
offset 0xnnn	A hexadecimal increment to a register's address, relative to that module's base address as specified in Table 2-4 on page 58.
Register N	Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.
reserved	Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
уу:хх	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.
Register Bit/Field Types	This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.
RC	Software can read this field. The bit or field is cleared by hardware after reading the bit/field.
RO	Software can read this field. Always write the chip reset value.
R/W	Software can read or write this field.
R/WC	Software can read or write this field. Writing to it with any value clears the register.
R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.
R/W1S	Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register.
W1C	Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data. This register is typically used to clear the corresponding bit in an interrupt register.
WO	Only a write by software is valid; a read of the register returns no meaningful data.
Register Bit/Field Reset Value	This value in the register bit diagram shows the bit/field value after any reset, unless noted.
0	Bit cleared to 0 on chip reset.
1	Bit set to 1 on chip reset.
-	Nondeterministic.
Pin/Signal Notation	
[]	Pin alternate function; a pin defaults to the signal without the brackets.
pin	Refers to the physical connection on the package.
signal	Refers to the electrical signal encoding of a pin.

www.BDTIC.com/TI

Notation	Meaning
assert a signal	Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).
deassert a signal	Change the value of the signal from the logically True state to the logically False state.
SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.
SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.
Numbers	
X	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.
0x	Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF. All other numbers within register tables are assumed to be binary. Within conceptual information, binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written without a prefix or suffix.

Table 2. Documentation Conventions (continued)

www.BSD TIC.com/TI

1 Architectural Overview

The Stellaris[®] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The LM3S808 microcontroller is targeted for industrial applications, including test and measurement equipment, factory automation, HVAC and building control, motion control, medical instrumentation, fire and security, and power/energy.

In addition, the LM3S808 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S808 microcontroller is code-compatible to all members of the extensive Stellaris family; providing flexibility to fit our customers' precise needs.

Texas Instruments offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network. See "Ordering and Contact Information" on page 522 for ordering information for Stellaris family devices.

1.1 **Product Features**

The LM3S808 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications
 - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
 - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
 - 50-MHz operation
 - Hardware-division and single-cycle-multiplication
 - Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
 - 23 interrupts with eight priority levels
 - Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
 - Unaligned data access, enabling data to be efficiently packed into memory
 - Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- ARM® Cortex[™]-M3 Processor Core

- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide
- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz
- JTAG
 - IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
 - Four-bit Instruction Register (IR) chain for storing JTAG instructions
 - IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST
 - ARM additional instructions: APACC, DPACC and ABORT
 - Integrated ARM Serial Wire Debug (SWD)

- Internal Memory
 - 64 KB single-cycle flash
 - · User-managed flash block protection on a 2-KB block basis
 - User-managed flash data programming
 - User-defined and managed flash-protection block
 - 8 KB single-cycle SRAM
- GPIOs
 - 5-28 GPIOs, depending on configuration
 - 5-V-tolerant in input configuration
 - Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - · Level-sensitive on High or Low values
 - Bit masking in both read and write operations through address lines
 - Can initiate an ADC sample sequence
 - Pins configured as digital inputs are Schmitt-triggered.
 - Programmable control for GPIO pad configuration
 - · Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - · Digital input enables
- General-Purpose Timers
 - Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers/counters. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)
 - To trigger analog-to-digital conversions

- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable
 - Programmable interrupt generation logic with interrupt masking
 - Lock register protection from runaway software
 - Reset generation logic with an enable/disable
 - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- ADC
 - Eight analog input channels
 - Single-ended and differential-input configurations
 - On-chip internal temperature sensor

- Sample rate of 500 thousand samples/second
- Flexible, configurable analog-to-digital conversion
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
 - Controller (software)
 - Timers
 - Analog Comparators
 - GPIO
- Hardware averaging of up to 64 samples for improved accuracy
- Converter uses an internal 3-V reference
- UART
 - Two fully programmable 16C550-type UARTs
 - Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading
 - Programmable baud-rate generator allowing speeds up to 3.125 Mbps
 - Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
 - FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
 - Standard asynchronous communication bits for start, stop, and parity
 - Line-break generation and detection
 - Fully programmable serial interface characteristics
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation
- Synchronous Serial Interface (SSI)
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep

Tix's issuments Production Data

 Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces

- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing
- ∎ l²C
 - Devices on the I²C bus can be designated as either a master or a slave
 - · Supports both sending and receiving data as either a master or a slave
 - · Supports simultaneous master and slave operation
 - Four I²C modes
 - Master transmit
 - Master receive
 - Slave transmit
 - Slave receive
 - Two transmission speeds: Standard (100 Kbps) and Fast (400 Kbps)
 - Master and slave interrupt generation
 - Master generates interrupts when a transmit or receive operation completes (or aborts due to an error)
 - · Slave generates interrupts when data has been sent or requested by a master
 - Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode
- Analog Comparators
 - One integrated analog comparator
 - Configurable for output to drive an output pin, generate an interrupt, or initiate an ADC sample sequence
 - Compare external pin input to external pin input or to internal programmable voltage reference
 - Compare a test voltage against any one of these voltages

Tix s is um ints Production Data

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V

- Low-power options on controller: Sleep and Deep-sleep modes
- Low-power options for peripherals: software controls shutdown of individual peripherals
- User-enabled LDO unregulated voltage detection and automatic reset
- 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
 - Power-on reset (POR)
 - Reset pin assertion
 - Brown-out (BOR) detector alerts to system power drops
 - Software reset
 - Watchdog timer reset
 - Internal low drop-out (LDO) regulator output goes unregulated
- Industrial and extended temperature 48-pin RoHS-compliant LQFP package
- Industrial and extended temperature 48-pin RoHS-compliant QFN package

1.2 Target Applications

- Factory automation and control
- Industrial control power devices
- Building and home automation
- Stepper motors
- Brushless DC motors
- AC induction motors

1.3 High-Level Block Diagram

Figure 1-1 on page 32 depicts the features on the Stellaris LM3S808 microcontroller.

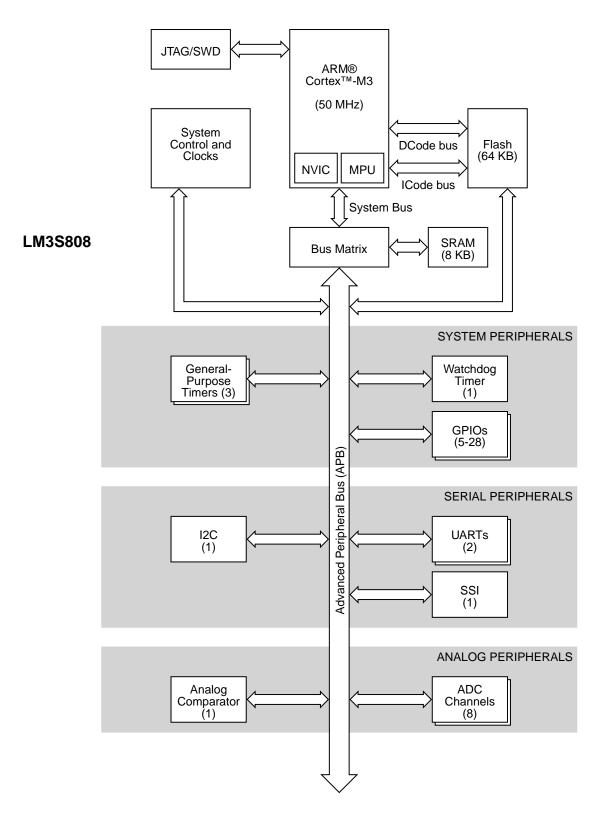


Figure 1-1. Stellaris LM3S808 Microcontroller High-Level Block Diagram

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S808 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 522.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 Processor Core (see page 39)

All members of the Stellaris product family, including the LM3S808 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

1.4.1.2 Memory Map (see page 58)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S808 controller can be found in Table 2-4 on page 58. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

1.4.1.3 System Timer (SysTick) (see page 81)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

1.4.1.4 Nested Vectored Interrupt Controller (NVIC) (see page 82)

The LM3S808 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM® Cortex[™]-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 23 interrupts.

www.bbutter.com/TI

1.4.1.5 System Control Block (SCB) (see page 84)

The SCB provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

1.4.1.6 Memory Protection Unit (MPU) (see page 84)

The MPU supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S808 controller features Pulse Width Modulation (PWM) outputs.

1.4.2.1 PWM

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

On the LM3S808, PWM motion control functionality can be achieved through:

The motion control features of the general-purpose timers using the CCP pins

CCP Pins (see page 265)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

1.4.3 Analog Peripherals

To handle analog signals, the LM3S808 microcontroller offers an Analog-to-Digital Converter (ADC).

For support of analog signals, the LM3S808 microcontroller offers one analog comparator.

1.4.3.1 ADC (see page 319)

An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The LM3S808 ADC module features 10-bit conversion resolution and supports eight input channels, plus an internal temperature sensor. Four buffered sample sequences allow rapid sampling of up to eight analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

1.4.3.2 Analog Comparators (see page 466)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S808 microcontroller provides one analog comparator that can be configured to drive an output or generate an interrupt or ADC event.

A comparator can compare a test voltage against any one of these voltages:

WWW.BDD ints Production Data

An individual external reference voltage

- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

1.4.4 Serial Communications Peripherals

The LM3S808 controller supports both asynchronous and synchronous serial communications with:

- Two fully programmable 16C550-type UARTs
- One SSI module
- One I²C module

1.4.4.1 UART (see page 354)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S808 controller includes two fully programmable 16C550-type UARTs that support data transfer speeds up to 3.125 Mbps. (Although similar in functionality to a 16C550 UART, it is not register-compatible.)

Separate 16x8 transmit (TX) and receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (see page 393)

Synchronous Serial Interface (SSI) is a four-wire bi-directional full and low-speed communications interface.

The LM3S808 controller includes one SSI module that provides the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

WWW BD Is um ints Production Data

1.4.4.3 I²C (see page 430)

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The I²C bus interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The LM3S808 controller includes one I^2C module that provides the ability to communicate to other IC devices over an I^2C bus. The I^2C bus supports devices that can both transmit and receive (write and read) data.

Devices on the I^2C bus can be designated as either a master or a slave. The I^2C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four I^2C modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

A Stellaris I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts. The I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I^2C slave generates interrupts when data has been sent or requested by a master.

1.4.5 System Peripherals

1.4.5.1 Programmable GPIOs (see page 221)

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris GPIO module is comprised of five physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 5-28 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 479 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines. Pins configured as digital inputs are Schmitt-triggered.

1.4.5.2 Three Programmable Timers (see page 259)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM block provides two 16-bit timers/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions.

When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 295)

A watchdog timer can generate an interrupt or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The LM3S808 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 204)

The LM3S808 static random access memory (SRAM) controller supports 8 KB SRAM. The internal SRAM of the Stellaris devices starts at base address 0x2000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 205)

The LM3S808 Flash controller supports 64 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

1.4.7.1 JTAG TAP Controller (see page 139)

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is composed of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Stellaris JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Stellaris JTAG instructions select the Stellaris TDO

WWW BD Is um ints Production Data

outputs. The multiplexer is controlled by the Stellaris JTAG controller, which has comprehensive programming for the ARM, Stellaris, and unimplemented JTAG instructions.

1.4.7.2 System Control and Clocks (see page 149)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 477
- "Signal Tables" on page 479
- "Operating Characteristics" on page 486
- "Electrical Characteristics" on page 487
- "Package Information" on page 524

www.BDTIC.com/TI

2 The Cortex-M3 Processor

The ARM® Cortex[™]-M3 processor provides a high-performance, low-cost platform that meets the system requirements of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:

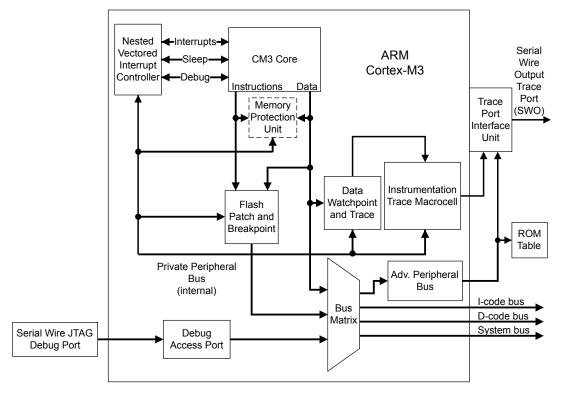
- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide

WWW BD Is um ints Production Data

- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz

The Stellaris[®] family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motor control.

This chapter provides information on the Stellaris implementation of the Cortex-M3 processor, including the programming model, the memory model, the exception model, fault handling, and power management.


For technical details on the instruction set, see the *Cortex*[™]-*M*3 *Instruction Set Technical User's Manual.*

2.1 Block Diagram

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an efficient instruction set and extensively optimized design, providing high-end processing hardware including single-cycle 32x32 multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly coupled system components that reduce processor area while significantly improving interrupt handling and system debug capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set, ensuring high code density and reduced program memory requirements. The Cortex-M3 instruction set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a nested interrupt controller (NVIC), to deliver industry-leading interrupt performance. The Stellaris NVIC includes a non-maskable interrupt (NMI) and provides eight interrupt priority levels. The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing interrupt latency. The hardware stacking of registers and the ability to suspend load-multiple and store-multiple operations further reduce interrupt latency. Interrupt handlers do not require any assembler stubs which removes code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, including Deep-sleep mode, which enables the entire device to be rapidly powered down.

Figure 2-1. CPU Block Diagram

2.2 Overview

2.2.1 System-Level Interface

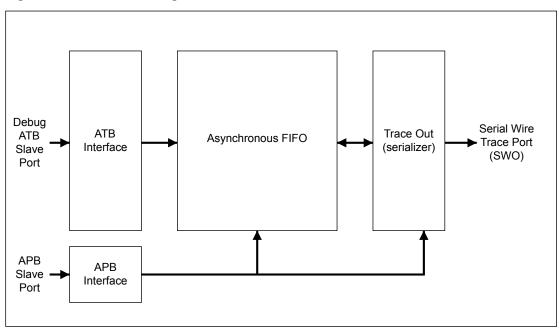
The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high-speed, low-latency memory accesses. The core supports unaligned data accesses and implements atomic bit manipulation that enables faster peripheral controls, system spinlocks, and thread-safe Boolean data handling.

The Cortex-M3 processor has a memory protection unit (MPU) that provides fine-grain memory control, enabling applications to implement security privilege levels and separate code, data and stack on a task-by-task basis.

2.2.2 Integrated Configurable Debug

The Cortex-M3 processor implements a complete hardware debug solution, providing high system visibility of the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices. The Stellaris implementation replaces the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *ARM*® *Debug Interface V5 Architecture Specification* for details on SWJ-DP.

For system trace, the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system trace events, a Serial Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin.


WWW.BDD Is um inits Production Data

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers can use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the CODE memory region. This enables applications stored in a read-only area of Flash memory to be patched in another area of on-chip SRAM or Flash memory. If a patch is required, the application programs the FPB to remap a number of addresses. When those addresses are accessed, the accesses are redirected to a remap table specified in the FPB configuration.

For more information on the Cortex-M3 debug capabilities, see the *ARM*® *Debug Interface V5 Architecture Specification*.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer, as shown in Figure 2-2 on page 42.

2.2.4 Cortex-M3 System Component Details

The Cortex-M3 includes the following system components:

WWW BD Is with interview of the second secon

SysTick

A 24-bit count-down timer that can be used as a Real-Time Operating System (RTOS) tick timer or as a simple counter (see "System Timer (SysTick)" on page 81).

Nested Vectored Interrupt Controller (NVIC)

An embedded interrupt controller that supports low latency interrupt processing (see "Nested Vectored Interrupt Controller (NVIC)" on page 82).

System Control Block (SCB)

The programming model interface to the processor. The SCB provides system implementation information and system control, including configuration, control, and reporting of system exceptions(see "System Control Block (SCB)" on page 84).

Memory Protection Unit (MPU)

Improves system reliability by defining the memory attributes for different memory regions. The MPU provides up to eight different regions and an optional predefined background region (see "Memory Protection Unit (MPU)" on page 84).

2.3 Programming Model

This section describes the Cortex-M3 programming model. In addition to the individual core register descriptions, information about the processor modes and privilege levels for software execution and stacks is included.

2.3.1 Processor Mode and Privilege Levels for Software Execution

The Cortex-M3 has two modes of operation:

Thread mode

Used to execute application software. The processor enters Thread mode when it comes out of reset.

Handler mode

Used to handle exceptions. When the processor has finished exception processing, it returns to Thread mode.

In addition, the Cortex-M3 has two privilege levels:

Unprivileged

In this mode, software has the following restrictions:

- Limited access to the MSR and MRS instructions and no use of the CPS instruction
- No access to the system timer, NVIC, or system control block
- Possibly restricted access to memory or peripherals
- Privileged

In this mode, software can use all the instructions and has access to all resources.

In Thread mode, the **CONTROL** register (see page 57) controls whether software execution is privileged or unprivileged. In Handler mode, software execution is always privileged.

Only privileged software can write to the **CONTROL** register to change the privilege level for software execution in Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to privileged software.

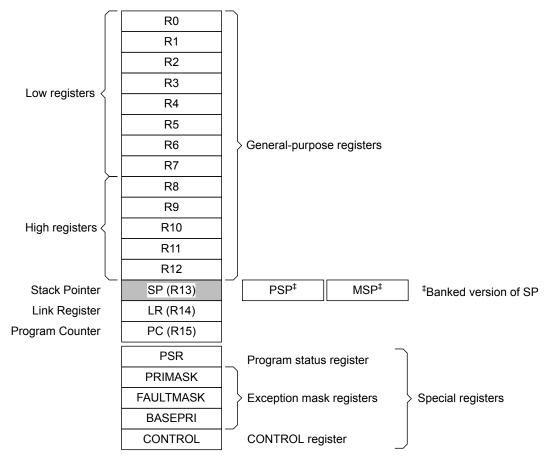
2.3.2 Stacks

The processor uses a full descending stack, meaning that the stack pointer indicates the last stacked item on the stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item to the new memory location. The processor implements

WWW.BDD ints Production Data

two stacks: the main stack and the process stack, with independent copies of the stack pointer (see the **SP** register on page 47).

In Thread mode, the **CONTROL** register (see page 57) controls whether the processor uses the main stack or the process stack. In Handler mode, the processor always uses the main stack. The options for processor operations are shown in Table 2-1 on page 44.


Table 2-1. Summary of Processor Mode, Privilege Level, and Stack Use

Processor Mode	Use	Privilege Level	Stack Used
Thread	Applications	Privileged or unprivileged ^a	Main stack or process stack ^a
Handler	Exception handlers	Always privileged	Main stack

a. See CONTROL (page 57).

2.3.3 Register Map

Figure 2-3 on page 44 shows the Cortex-M3 register set. Table 2-2 on page 45 lists the Core registers. The core registers are not memory mapped and are accessed by register name, so the base address is n/a (not applicable) and there is no offset.

Figure 2-3. Cortex-M3 Register Set

www.BDTIC.com/1

Offset	Name	Туре	Reset	Description	See page
-	R0	R/W	-	Cortex General-Purpose Register 0	46
-	R1	R/W	-	Cortex General-Purpose Register 1	46
-	R2	R/W	-	Cortex General-Purpose Register 2	46
-	R3	R/W	-	Cortex General-Purpose Register 3	46
-	R4	R/W	-	Cortex General-Purpose Register 4	46
-	R5	R/W	-	Cortex General-Purpose Register 5	46
-	R6	R/W	-	Cortex General-Purpose Register 6	46
-	R7	R/W	-	Cortex General-Purpose Register 7	46
-	R8	R/W	-	Cortex General-Purpose Register 8	46
-	R9	R/W	-	Cortex General-Purpose Register 9	46
-	R10	R/W	-	Cortex General-Purpose Register 10	46
-	R11	R/W	-	Cortex General-Purpose Register 11	46
-	R12	R/W	-	Cortex General-Purpose Register 12	46
-	SP	R/W	-	Stack Pointer	47
-	LR	R/W	0xFFFF.FFFF	Link Register	48
-	PC	R/W	-	Program Counter	49
-	PSR	R/W	0x0100.0000	Program Status Register	50
-	PRIMASK	R/W	0x0000.0000	Priority Mask Register	54
-	FAULTMASK	R/W	0x0000.0000	Fault Mask Register	55
-	BASEPRI	R/W	0x0000.0000	Base Priority Mask Register	56
-	CONTROL	R/W	0x0000.0000	Control Register	57

Table 2-2. Processor Register Map

2.3.4 Register Descriptions

This section lists and describes the Cortex-M3 registers, in the order shown in Figure 2-3 on page 44. The core registers are not memory mapped and are accessed by register name rather than offset.

Note: The register type shown in the register descriptions refers to type during program execution in Thread mode and Handler mode. Debug access can differ.

Cortex General-Purpose Register 0 (R0)

Register 1: Cortex General-Purpose Register 0 (R0) Register 2: Cortex General-Purpose Register 1 (R1) Register 3: Cortex General-Purpose Register 2 (R2) Register 4: Cortex General-Purpose Register 3 (R3) Register 5: Cortex General-Purpose Register 4 (R4) Register 6: Cortex General-Purpose Register 5 (R5) Register 7: Cortex General-Purpose Register 6 (R6) Register 8: Cortex General-Purpose Register 7 (R7) Register 9: Cortex General-Purpose Register 8 (R8) Register 10: Cortex General-Purpose Register 9 (R9) Register 11: Cortex General-Purpose Register 10 (R10) Register 12: Cortex General-Purpose Register 11 (R11) Register 13: Cortex General-Purpose Register 12 (R12)

The **Rn** registers are 32-bit general-purpose registers for data operations and can be accessed from either privileged or unprivileged mode.

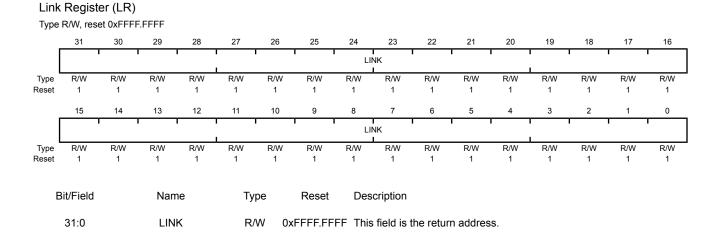
Type R/W, reset -31 30 29 28 27 25 24 17 16 26 23 22 21 20 19 18 DATA R/W Туре Reset 15 12 2 14 13 11 10 9 8 7 6 3 0 5 4 1 DATA Туре R/W Reset Bit/Field Name Description Туре Reset 31:0 DATA R/W Register data.

www.BDTTC.com/T]

Register 14: Stack Pointer (SP)

The **Stack Pointer (SP)** is register R13. In Thread mode, the function of this register changes depending on the ASP bit in the **Control Register (CONTROL)** register. When the ASP bit is clear, this register is the **Main Stack Pointer (MSP)**. When the ASP bit is set, this register is the **Process Stack Pointer (PSP)**. On reset, the ASP bit is clear, and the processor loads the **MSP** with the value from address 0x0000.0000. The **MSP** can only be accessed in privileged mode; the **PSP** can be accessed in either privileged or unprivileged mode.

Туре	R/W, res	et -														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1	[I	1	I		S	P	[1		1	1	I	
Type Reset	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		1	1 1	1		S	P		1		1	1	1	1
Type Reset	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:0 SP R/W - This field is the address of the stack pointer.															


Stack Pointer (SP)

www.BDUIts Production Data WWW.BDUIts Production Data

Register 15: Link Register (LR)

The **Link Register (LR)** is register R14, and it stores the return information for subroutines, function calls, and exceptions. **LR** can be accessed from either privileged or unprivileged mode.

EXC_RETURN is loaded into **LR** on exception entry. See Table 2-10 on page 73 for the values and description.

January 09, 2011

www.BDTTC.com/T

Register 16: Program Counter (PC)

Program Counter (PC)

The **Program Counter (PC)** is register R15, and it contains the current program address. On reset, the processor loads the **PC** with the value of the reset vector, which is at address 0x0000.0004. Bit 0 of the reset vector is loaded into the THUMB bit of the **EPSR** at reset and must be 1. The **PC** register can be accessed in either privileged or unprivileged mode.

Туре	R/W, res	set -														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1	ſ	1	ſ	i i	Р		ſ			1	r	I	
Type Reset	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		1		1 1	P	ו ו יכ ו				1	I	I	•
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:0		PC	;	R/	W	-	This	s field is t	he curre	nt progra	am addre	ess.			

January 09, 2011

www.BDJIC.com/TI

Register 17: Program Status Register (PSR)

Note: This register is also referred to as **xPSR**.

The **Program Status Register (PSR)** has three functions, and the register bits are assigned to the different functions:

- Application Program Status Register (APSR), bits 31:27,
- Execution Program Status Register (EPSR), bits 26:24, 15:10
- Interrupt Program Status Register (IPSR), bits 5:0

The **PSR**, **IPSR**, and **EPSR** registers can only be accessed in privileged mode; the **APSR** register can be accessed in either privileged or unprivileged mode.

APSR contains the current state of the condition flags from previous instruction executions.

EPSR contains the Thumb state bit and the execution state bits for the If-Then (IT) instruction or the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction. Attempts to read the **EPSR** directly through application software using the MSR instruction always return zero. Attempts to write the **EPSR** using the MSR instruction in application software are always ignored. Fault handlers can examine the **EPSR** value in the stacked **PSR** to determine the operation that faulted (see "Exception Entry and Return" on page 71).

IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

These registers can be accessed individually or as a combination of any two or all three registers, using the register name as an argument to the MSR or MRS instructions. For example, all of the registers can be read using **PSR** with the MRS instruction, or **APSR** only can be written to using **APSR** with the MSR instruction. page 50 shows the possible register combinations for the **PSR**. See the MRS and MSR instruction descriptions in the *Cortex*™-*M3 Instruction Set Technical User's Manual* for more information about how to access the program status registers.

Register	Туре	Combination
PSR	R/W ^{a, b}	APSR, EPSR, and IPSR
IEPSR	RO	EPSR and IPSR
IAPSR	R/W ^a	APSR and IPSR
EAPSR	R/W ^b	APSR and EPSR

Table 2-3. PSR Register Combinations

a. The processor ignores writes to the IPSR bits.

b. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

Program Status Register (PSR)

Type R/W, reset 0x0100.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Ν	Z	С	V	Q	ICI	/ IT	THUMB				rese	rved		I	
Туре	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I I	ICI	I / IT	1	1		rese	rved				ISRI	NUM	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31	Ν	R/W	0	APSR Negative or Less Flag
				Value Description
				1 The previous operation result was negative or less than.
				0 The previous operation result was positive, zero, greater than, or equal.
				The value of this bit is only meaningful when accessing PSR or APSR .
30	Z	R/W	0	APSR Zero Flag
				Value Description
				1 The previous operation result was zero.
				0 The previous operation result was non-zero.
				The value of this bit is only meaningful when accessing PSR or APSR .
29	С	R/W	0	APSR Carry or Borrow Flag
				Value Description
				1 The previous add operation resulted in a carry bit or the previous subtract operation did not result in a borrow bit.
				0 The previous add operation did not result in a carry bit or the previous subtract operation resulted in a borrow bit.
				The value of this bit is only meaningful when accessing PSR or APSR .
28	V	R/W	0	APSR Overflow Flag
				Value Description
				1 The previous operation resulted in an overflow.
				0 The previous operation did not result in an overflow.
				The value of this bit is only meaningful when accessing PSR or APSR .
27	Q	R/W	0	APSR DSP Overflow and Saturation Flag
				Value Description
				1 DSP Overflow or saturation has occurred.
				0 DSP overflow or saturation has not occurred since reset or since the bit was last cleared.
				The value of this bit is only meaningful when accessing PSR or APSR . This bit is cleared by software using an MRS instruction.

Bit/Field	Name	Туре	Reset	Description
26:25	ICI / IT	RO	0x0	EPSR ICI / IT status These bits, along with bits 15:10, contain the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction or the execution state bits of the IT instruction. When EPSR holds the ICI execution state, bits 26:25 are zero. The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruction in the block is conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See the <i>Cortex</i> ™- <i>M3 Instruction Set Technical User's Manual</i> for more information. The value of this field is only meaningful when accessing PSR or EPSR .
24	THUMB	RO	1	 EPSR Thumb State This bit indicates the Thumb state and should always be set. The following can clear the THUMB bit: The BLX, BX and POP{PC} instructions Restoration from the stacked xPSR value on an exception return Bit 0 of the vector value on an exception entry Attempting to execute instructions when this bit is clear results in a fault or lockup. See "Lockup" on page 75 for more information.
23:16	reserved	RO	0x00	The value of this bit is only meaningful when accessing PSR or EPSR . Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15:10	ICI / IT	RO	0x0	EPSR ICI / IT status These bits, along with bits 26:25, contain the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction or the execution state bits of the IT instruction. When an interrupt occurs during the execution of an LDM, STM, PUSH or POP instruction, the processor stops the load multiple or store multiple instruction operation temporarily and stores the next register operand in the multiple operation to bits 15:12. After servicing the interrupt, the processor returns to the register pointed to by bits 15:12 and resumes execution of the multiple load or store instruction. When EPSR holds the ICI execution state, bits 11:10 are zero. The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruction in the block is conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See the <i>Cortex</i> ™- <i>M3 Instruction Set Technical User's Manual</i> for more information.
9:6	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description	
5:0	ISRNUM	RO	0x00	IPSR ISR N This field co Service Rou	ntains the exception type number of the current Interrupt
				Value	Description
				0x00	Thread mode
				0x01	Reserved
				0x02	NMI
				0x03	Hard fault
				0x04	Memory management fault
				0x05	Bus fault
				0x06	Usage fault
				0x07-0x0A	Reserved
				0x0B	SVCall
				0x0C	Reserved for Debug
				0x0D	Reserved
				0x0E	PendSV
				0x0F	SysTick
				0x10	Interrupt Vector 0
				0x11	Interrupt Vector 1
				0x2D	Interrupt Vector 29
				0x2E-0x3F	Reserved
				o "F	

See "Exception Types" on page 67 for more information. The value of this field is only meaningful when accessing **PSR** or **IPSR**.

Register 18: Priority Mask Register (PRIMASK)

The **PRIMASK** register prevents activation of all exceptions with programmable priority. Reset, non-maskable interrupt (NMI), and hard fault are the only exceptions with fixed priority. Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. The MSR and MRS instructions are used to access the **PRIMASK** register, and the CPS instruction may be used to change the value of the **PRIMASK** register. See the *Cortex™-M3 Instruction Set Technical User's Manual* for more information on these instructions. For more information on exception priority levels, see "Exception Types" on page 67.

Туре	R/W, rese	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1		r r		1 I	rese	rved				1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		г г 1		1 I	reserved						1	1	PRIMASK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:1		reserv	/ed	R) С)x0000.00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		vide hould be
	0		PRIMA	ASK	R۸	N	0	Prio	rity Masl	ĸ						
								Valu	ue Desc	ription						
								1	Prev priori		activatio	n of all e	xceptior	ns with c	onfigura	ble
								0	No e	ffect.						

Priority Mask Register (PRIMASK)

www.BDTIC.com/T

16

RO

0

0

AULTMAS

R/W

0

17

RO

0

1

RO

0

Register 19: Fault Mask Register (FAULTMASK)

The FAULTMASK register prevents activation of all exceptions except for the Non-Maskable Interrupt (NMI). Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. The MSR and MRS instructions are used to access the FAULTMASK register, and the CPS instruction may be used to change the value of the FAULTMASK register. See the Cortex™-M3 Instruction Set Technical User's Manual for more information on these instructions. For more information on exception priority levels, see "Exception Types" on page 67.

Fault Mask Register (FAULTMASK) Type R/W, reset 0x0000.0000 31 30 29 27 26 25 24 23 22 21 20 19 28 18 reserved RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 reserved RO RO RO RO RO RO RO RO RO 0 RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Type Reset Description 31:1 RO 0x0000.000 Software should not rely on the value of a reserved bit. To provide reserved preserved across a read-modify-write operation. 0 FAULTMASK R/W 0

compatibility with future products, the value of a reserved bit should be

Fault Mask

Value Description

1 Prevents the activation of all exceptions except for NMI.

0 No effect.

The processor clears the FAULTMASK bit on exit from any exception handler except the NMI handler.

Туре

Reset

Туре

Reset

Register 20: Base Priority Mask Register (BASEPRI)

The **BASEPRI** register defines the minimum priority for exception processing. When **BASEPRI** is set to a nonzero value, it prevents the activation of all exceptions with the same or lower priority level as the **BASEPRI** value. Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. For more information on exception priority levels, see "Exception Types" on page 67.

Base Priority Mask Register (BASEPRI)

Type R/W, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 100		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1	1 1	rese	rved	1 1						1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					rved	1				BASEPRI				reserved		
Type	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W	RO 0	RO 0	RO 0	RO 0	RO
Reset	U	0	U	U	0	0	U	U	0	U	0	0	0	0	U	0
-			Nas		т.		Deeet	Dee								
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:8		reser	ved	R	0	0x0000.00			ould not i						
										with futu					ed bit sh	nould be
								pres	served a	cross a re	ead-mod	dify-write	operatio	on.		
	7:5		BASE	PRI	R/	W	0x0	Base	e Priorit	/						
										on that ha						
										as the v						
										to mask		•			e priority	levels.
								пу		ity except	uons na	ve iowei	priority i	evels.		
								Valu	ue Deso	cription						
								0x0	All e	xceptions	s are uni	masked.				
								0x1		xceptions	•					
								0x2	All e	xceptions	s with pr	iority leve	el 2-7 ar	e maske	d.	
								0x3	All e	xceptions	s with pr	iority leve	el 3-7 ar	e maske	d.	
								0x4	Alle	xceptions	s with pr	iority leve	el 4-7 ar	e maske	d.	
								0x5	All e	xceptions	s with pr	iority leve	el 5-7 ar	e maske	d.	
								0x6	All e	xceptions	s with pr	iority leve	el 6-7 ar	e maske	d.	
								0x7	Alle	xceptions	s with pr	iority leve	el 7 are i	masked.		
	4.0			wod	R	0	0×0	<u>م</u>	wara ch	ould not :	roly on t	ho voluo	of a rea	on od hit	To prov	ido
	4:0		reser	veu	К	0	0x0			ould not i with futu					•	
									• •	cross a re	•					

www.BDTIC.com/TI

Register 21: Control Register (CONTROL)

The **CONTROL** register controls the stack used and the privilege level for software execution when the processor is in Thread mode. This register is only accessible in privileged mode.

Handler mode always uses **MSP**, so the processor ignores explicit writes to the ASP bit of the **CONTROL** register when in Handler mode. The exception entry and return mechanisms automatically update the **CONTROL** register based on the EXC_RETURN value (see Table 2-10 on page 73). In an OS environment, threads running in Thread mode should use the process stack and the kernel and exception handlers should use the main stack. By default, Thread mode uses **MSP**. To switch the stack pointer used in Thread mode to **PSP**, either use the MSR instruction to set the ASP bit, as detailed in the *Cortex*[™]-*M3 Instruction Set Technical User's Manual*, or perform an exception return to Thread mode with the appropriate EXC_RETURN value, as shown in Table 2-10 on page 73.

Note: When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction, ensuring that instructions after the ISB execute use the new stack pointer. See the *Cortex™-M3 Instruction Set Technical User's Manual*.

Туре	R/W, res	et 0x0000	0.0000	,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	· ·			rese	erved	1			1		1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	1	г т 1		reser	ved		1	1			I	ASP	TMPL
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Тур	e	Reset	Des	cription							
	31:2		reser	ved	RC)	0x0000.00	com	ware sho patibility served a	with fut	ure produ	ucts, the	value of	a reserv	•	
	1		ASI	Ρ	R/V	V	0	Acti	ve Stack	Pointer						
								Val	ue Desc	ription						
								1	PSP	is the cu	irrent sta	ick point	er.			
								0	MSP	is the c	urrent sta	ack point	ter			
									landler m tex-M3 u	-			0			e
	0		TMF	ռ	R/V	V	0	Thre	ead Mod	e Privile	ge Level					
								Val	ue Desc	ription						
								1	Unpr	ivileged	software	can be	executed	d in Thre	ad mod	e.
								0	Only	privilege	ed softwa	are can b	be execu	ted in Th	nread mo	ode.

Control Register (CONTROL)

2.3.5 Exceptions and Interrupts

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The processor uses Handler mode to handle all exceptions except for reset. See "Exception Entry and Return" on page 71 for more information.

The NVIC registers control interrupt handling. See "Nested Vectored Interrupt Controller (NVIC)" on page 82 for more information.

2.3.6 Data Types

The Cortex-M3 supports 32-bit words, 16-bit halfwords, and 8-bit bytes. The processor also supports 64-bit data transfer instructions. All instruction and data memory accesses are little endian. See "Memory Regions, Types and Attributes" on page 59 for more information.

2.4 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features. The processor has a fixed memory map that provides up to 4 GB of addressable memory.

The memory map for the LM3S808 controller is provided in Table 2-4 on page 58. In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data (see "Bit-Banding" on page 62).

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers (see "Cortex-M3 Peripherals" on page 81).

Note: Within the memory map, all reserved space returns a bus fault when read or written.

Start	End	Description	For details, see page
Memory			l
0x0000.0000	0x0000.FFFF	On-chip Flash	205
0x0001.0000	0x1FFF.FFFF	Reserved	-
0x2000.0000	0x2000.1FFF	Bit-banded on-chip SRAM	204
0x2000.2000	0x21FF.FFFF	Reserved	-
0x2200.0000	0x2203.FFFF	Bit-band alias of 0x2000.0000 through 0x200F.FFFF	204
0x2204.0000	0x3FFF.FFFF	Reserved	-
FiRM Peripherals			1
0x4000.0000	0x4000.0FFF	Watchdog timer 0	298
0x4000.1000	0x4000.3FFF	Reserved	-
0x4000.4000	0x4000.4FFF	GPIO Port A	227
0x4000.5000	0x4000.5FFF	GPIO Port B	227
0x4000.6000	0x4000.6FFF	GPIO Port C 2	
0x4000.7000	0x4000.7FFF	GPIO Port D 227	
0x4000.8000	0x4000.8FFF	SSI0 404	

Table 2-4. Memory Map

Start	End	Description	For details, see page
0x4000.9000	0x4000.BFFF	Reserved	-
0x4000.C000	0x4000.CFFF	UART0	360
0x4000.D000	0x4000.DFFF	UART1	360
0x4000.E000	0x4001.FFFF	Reserved	-
Peripherals			l
0x4002.0000	0x4002.0FFF	I ² C 0	444
0x4002.1000	0x4002.3FFF	Reserved	-
0x4002.4000	0x4002.4FFF	GPIO Port E	227
0x4002.5000	0x4002.FFFF	Reserved	-
0x4003.0000	0x4003.0FFF	Timer 0	270
0x4003.1000	0x4003.1FFF	Timer 1	270
0x4003.2000	0x4003.2FFF	Timer 2	270
0x4003.3000	0x4003.7FFF	Reserved	-
0x4003.8000	0x4003.8FFF	ADC0	327
0x4003.9000	0x4003.BFFF	Reserved	-
0x4003.C000	0x4003.CFFF	Analog Comparators	466
0x4003.D000	0x400F.CFFF	Reserved	-
0x400F.D000	0x400F.DFFF	Flash memory control	209
0x400F.E000	0x400F.EFFF	System control	160
0x400F.F000	0x41FF.FFFF	Reserved	-
0x4200.0000	0x43FF.FFFF	Bit-banded alias of 0x4000.0000 through 0x400F.FFFF	-
0x4400.0000	0xDFFF.FFFF	Reserved	-
Private Peripheral B	us		•
0xE000.0000	0xE000.0FFF	Instrumentation Trace Macrocell (ITM)	41
0xE000.1000	0xE000.1FFF	Data Watchpoint and Trace (DWT)	41
0xE000.2000	0xE000.2FFF	Flash Patch and Breakpoint (FPB)	41
0xE000.3000	0xE000.DFFF	Reserved	-
0xE000.E000	0xE000.EFFF	Cortex-M3 Peripherals (SysTick, NVIC, SCB, and MPU)	66
0xE000.F000	0xE003.FFFF	Reserved -	
0xE004.0000	0xE004.0FFF	Trace Port Interface Unit (TPIU) 42	
0xE004.1000	0xFFFF.FFFF	Reserved	-

Table 2-4. Memory Map (continued)

2.4.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined memory type, and some regions have additional memory attributes. The memory type and attributes determine the behavior of accesses to the region.

The memory types are:

- Normal: The processor can re-order transactions for efficiency and perform speculative reads.
- Device: The processor preserves transaction order relative to other transactions to Device or Strongly Ordered memory.

Strongly Ordered: The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly Ordered memory mean that the memory system can buffer a write to Device memory but must not buffer a write to Strongly Ordered memory.

An additional memory attribute is Execute Never (XN), which means the processor prevents instruction accesses. A fault exception is generated only on execution of an instruction executed from an XN region.

2.4.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that the order in which the accesses complete matches the program order of the instructions, providing the order does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses completing in program order, software must insert a memory barrier instruction between the memory access instructions (see "Software Ordering of Memory Accesses" on page 61).

However, the memory system does guarantee ordering of accesses to Device and Strongly Ordered memory. For two memory access instructions A1 and A2, if both A1 and A2 are accesses to either Device or Strongly Ordered memory, and if A1 occurs before A2 in program order, A1 is always observed before A2.

2.4.3 Behavior of Memory Accesses

Table 2-5 on page 60 shows the behavior of accesses to each region in the memory map. See "Memory Regions, Types and Attributes" on page 59 for more information on memory types and the XN attribute. Stellaris devices may have reserved memory areas within the address ranges shown below (refer to Table 2-4 on page 58 for more information).

Address Range	Memory Region	Memory Type	Execute Never (XN)	Description
0x0000.0000 - 0x1FFF.FFFF	Code	Normal	-	This executable region is for program code. Data can also be stored here.
0x2000.0000 - 0x3FFF.FFFF	SRAM	Normal	-	This executable region is for data. Code can also be stored here. This region includes bit band and bit band alias areas (see Table 2-6 on page 62).
0x4000.0000 - 0x5FFF.FFFF	Peripheral	Device	XN	This region includes bit band and bit band alias areas (see Table 2-7 on page 62).
0x6000.0000 - 0x9FFF.FFF	External RAM	Normal	-	This executable region is for data.
0xA000.0000 - 0xDFFF.FFF	External device	Device	XN	This region is for external device memory.
0xE000.0000- 0xE00F.FFFF	Private peripheral bus	Strongly Ordered	XN	This region includes the NVIC, system timer, and system control block.
0xE010.0000- 0xFFFF.FFFF	Reserved	-	-	-

Table 2-5. Memory Access Behavior

The Code, SRAM, and external RAM regions can hold programs. However, it is recommended that programs always use the Code region because the Cortex-M3 has separate buses that can perform instruction fetches and data accesses simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see "Memory Protection Unit (MPU)" on page 84.

WWW.DDD ints Production Data

The Cortex-M3 prefetches instructions ahead of execution and speculatively prefetches from branch target addresses.

2.4.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory transactions for the following reasons:

- The processor can reorder some memory accesses to improve efficiency, providing this does not affect the behavior of the instruction sequence.
- The processor has multiple bus interfaces.
- Memory or devices in the memory map have different wait states.
- Some memory accesses are buffered or speculative.

"Memory System Ordering of Memory Accesses" on page 60 describes the cases where the memory system guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory barrier instructions to force that ordering. The Cortex-M3 has the following memory barrier instructions:

- The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent memory transactions.
- The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before subsequent instructions execute.
- The Instruction Synchronization Barrier (ISB) instruction ensures that the effect of all completed memory transactions is recognizable by subsequent instructions.

Memory barrier instructions can be used in the following situations:

- MPU programming
 - If the MPU settings are changed and the change must be effective on the very next instruction, use a DSB instruction to ensure the effect of the MPU takes place immediately at the end of context switching.
 - Use an ISB instruction to ensure the new MPU setting takes effect immediately after programming the MPU region or regions, if the MPU configuration code was accessed using a branch or call. If the MPU configuration code is entered using exception mechanisms, then an ISB instruction is not required.
- Vector table

If the program changes an entry in the vector table and then enables the corresponding exception, use a DMB instruction between the operations. The DMB instruction ensures that if the exception is taken immediately after being enabled, the processor uses the new exception vector.

Self-modifying code

If a program contains self-modifying code, use an ISB instruction immediately after the code modification in the program. The ISB instruction ensures subsequent instruction execution uses the updated program.

WWW BD Is um ints Production Data

Memory map switching

If the system contains a memory map switching mechanism, use a DSB instruction after switching the memory map in the program. The DSB instruction ensures subsequent instruction execution uses the updated memory map.

Dynamic exception priority change

When an exception priority has to change when the exception is pending or active, use DSB instructions after the change. The change then takes effect on completion of the DSB instruction.

Memory accesses to Strongly Ordered memory, such as the System Control Block, do not require the use of DMB instructions.

For more information on the memory barrier instructions, see the *Cortex*[™]-*M*3 *Instruction Set Technical User's Manual*.

2.4.5 Bit-Banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions occupy the lowest 1 MB of the SRAM and peripheral memory regions. Accesses to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band region, as shown in Table 2-6 on page 62. Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral bit-band region, as shown in Table 2-7 on page 62. For the specific address range of the bit-band regions, see Table 2-4 on page 58.

Note: A word access to the SRAM or the peripheral bit-band alias region maps to a single bit in the SRAM or peripheral bit-band region.

A word access to a bit band address results in a word access to the underlying memory, and similarly for halfword and byte accesses. This allows bit band accesses to match the access requirements of the underlying peripheral.

Address Range	Memory Region	Instruction and Data Accesses
0x2000.0000 - 0x200F.FFFF	SRAM bit-band region	Direct accesses to this memory range behave as SRAM memory accesses, but this region is also bit addressable through bit-band alias.
0x2200.0000 - 0x23FF.FFFF	SRAM bit-band alias	Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write. Instruction accesses are not remapped.

Table 2-7. Peripheral Memory Bit-Banding Regions

Address Range	Memory Region	Instruction and Data Accesses
0x4000.0000 - 0x400F.FFFF	Peripheral bit-band region	Direct accesses to this memory range behave as peripheral memory accesses, but this region is also bit addressable through bit-band alias.
0x4200.0000 - 0x43FF.FFFF	Peripheral bit-band alias	Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write. Instruction accesses are not permitted.

The following formula shows how the alias region maps onto the bit-band region:

```
bit_word_offset = (byte_offset x 32) + (bit_number x 4)
```

WWW DD Is summits Production Data

bit_word_addr = bit_band_base + bit_word_offset

where:

```
bit_word_offset
```

The position of the target bit in the bit-band memory region.

bit_word_addr

The address of the word in the alias memory region that maps to the targeted bit.

bit_band_base

The starting address of the alias region.

byte_offset

The number of the byte in the bit-band region that contains the targeted bit.

```
bit_number
```

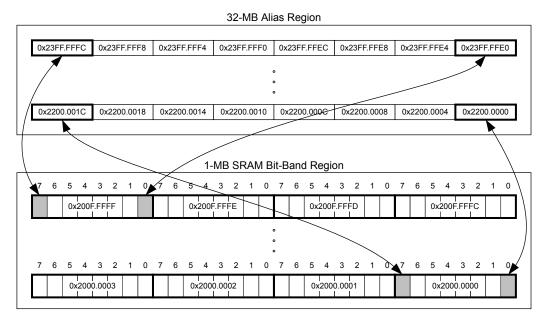
The bit position, 0-7, of the targeted bit.

Figure 2-4 on page 64 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band region:

■ The alias word at 0x23FF.FFE0 maps to bit 0 of the bit-band byte at 0x200F.FFFF:

0x23FF.FFE0 = 0x2200.0000 + (0x000F.FFFF*32) + (0*4)

■ The alias word at 0x23FF.FFFC maps to bit 7 of the bit-band byte at 0x200F.FFFF:


0x23FF.FFFC = 0x2200.0000 + (0x000F.FFFF*32) + (7*4)

■ The alias word at 0x2200.0000 maps to bit 0 of the bit-band byte at 0x2000.0000:

0x2200.0000 = 0x2200.0000 + (0*32) + (0*4)

■ The alias word at 0x2200.001C maps to bit 7 of the bit-band byte at 0x2000.0000:

0x2200.001C = 0x2200.0000+ (0*32) + (7*4)

Figure 2-4. Bit-Band Mapping

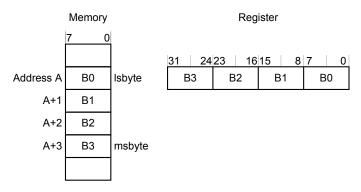
2.4.5.1 Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit 0 of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band region. Writing a value with bit 0 set writes a 1 to the bit-band bit, and writing a value with bit 0 clear writes a 0 to the bit-band bit.

Bits 31:1 of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing 0xFF. Writing 0x00 has the same effect as writing 0x0E.

When reading a word in the alias region, 0x0000.0000 indicates that the targeted bit in the bit-band region is clear and 0x0000.0001 indicates that the targeted bit in the bit-band region is set.


2.4.5.2 Directly Accessing a Bit-Band Region

"Behavior of Memory Accesses" on page 60 describes the behavior of direct byte, halfword, or word accesses to the bit-band regions.

2.4.6 Data Storage

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Data is stored in little-endian format, with the least-significant byte (lsbyte) of a word stored at the lowest-numbered byte, and the most-significant byte (msbyte) stored at the highest-numbered byte. Figure 2-5 on page 65 illustrates how data is stored.

Figure 2-5. Data Storage

2.4.7 Synchronization Primitives

The Cortex-M3 instruction set includes pairs of synchronization primitives which provide a non-blocking mechanism that a thread or process can use to obtain exclusive access to a memory location. Software can use these primitives to perform a guaranteed read-modify-write memory update sequence or for a semaphore mechanism.

A pair of synchronization primitives consists of:

- A Load-Exclusive instruction, which is used to read the value of a memory location and requests exclusive access to that location.
- A Store-Exclusive instruction, which is used to attempt to write to the same memory location and returns a status bit to a register. If this status bit is clear, it indicates that the thread or process gained exclusive access to the memory and the write succeeds; if this status bit is set, it indicates that the thread or process did not gain exclusive access to the memory and no write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

- The word instructions LDREX and STREX
- The halfword instructions LDREXH and STREXH
- The byte instructions LDREXB and STREXB

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform a guaranteed read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.

WWW.BDU I C.CO

- 2. Update the value, as required.
- **3.** Use a Store-Exclusive instruction to attempt to write the new value back to the memory location, and test the returned status bit. If the status bit is clear, the read-modify-write completed successfully; if the status bit is set, no write was performed, which indicates that the value returned at step 1 might be out of date. The software must retry the read-modify-write sequence.

Software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.

- **2.** If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.
- **3.** If the returned status bit from step 2 indicates that the Store-Exclusive succeeded, then the software has claimed the semaphore. However, if the Store-Exclusive failed, another process might have claimed the semaphore after the software performed step 1.

The Cortex-M3 includes an exclusive access monitor that tags the fact that the processor has executed a Load-Exclusive instruction. The processor removes its exclusive access tag if:

- It executes a CLREX instruction.
- It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
- An exception occurs, which means the processor can resolve semaphore conflicts between different threads.

For more information about the synchronization primitive instructions, see the *Cortex*[™]-*M*3 *Instruction Set Technical User's Manual.*

2.5 Exception Model

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions in Handler Mode. The processor state is automatically stored to the stack on an exception and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, enabling efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 2-8 on page 68 lists all exception types. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 23 interrupts (listed in Table 2-9 on page 69).

Priorities on the system handlers are set with the NVIC System Handler Priority n (SYSPRIn) registers. Interrupts are enabled through the NVIC Interrupt Set Enable n (ENn) register and prioritized with the NVIC Interrupt Priority n (PRIn) registers. Priorities can be grouped by splitting priority levels into preemption priorities and subpriorities. All the interrupt registers are described in "Nested Vectored Interrupt Controller (NVIC)" on page 82.

Internally, the highest user-programmable priority (0) is treated as fourth priority, after a Reset, Non-Maskable Interrupt (NMI), and a Hard Fault, in that order. Note that 0 is the default priority for all the programmable priorities.

Important: After a write to clear an interrupt source, it may take several processor cycles for the NVIC to see the interrupt source de-assert. Thus if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while the NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This situation can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer).

See "Nested Vectored Interrupt Controller (NVIC)" on page 82 for more information on exceptions and interrupts.

WWW DD Is no um ints Production Data

2.5.1 Exception States

Each exception is in one of the following states:

- Inactive. The exception is not active and not pending.
- **Pending.** The exception is waiting to be serviced by the processor. An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.
- Active. An exception that is being serviced by the processor but has not completed.
 - **Note:** An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the active state.
- Active and Pending. The exception is being serviced by the processor, and there is a pending exception from the same source.

2.5.2 Exception Types

The exception types are:

- Reset. Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as privileged execution in Thread mode.
- NMI. A non-maskable Interrupt (NMI) can be signaled using the NMI signal or triggered by software using the Interrupt Control and State (INTCTRL) register. This exception has the highest priority other than reset. NMI is permanently enabled and has a fixed priority of -2. NMIs cannot be masked or prevented from activation by any other exception or preempted by any exception other than reset.
- Hard Fault. A hard fault is an exception that occurs because of an error during exception processing, or because an exception cannot be managed by any other exception mechanism. Hard faults have a fixed priority of -1, meaning they have higher priority than any exception with configurable priority.
- Memory Management Fault. A memory management fault is an exception that occurs because of a memory protection related fault, including access violation and no match. The MPU or the fixed memory protection constraints determine this fault, for both instruction and data memory transactions. This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.
- Bus Fault. A bus fault is an exception that occurs because of a memory-related fault for an
 instruction or data memory transaction such as a prefetch fault or a memory access fault. This
 fault can be enabled or disabled.
- Usage Fault. A usage fault is an exception that occurs because of a fault related to instruction execution, such as:
 - An undefined instruction
 - An illegal unaligned access
 - Invalid state on instruction execution
 - An error on exception return

An unaligned address on a word or halfword memory access or division by zero can cause a usage fault when the core is properly configured.

- SVCall. A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can use SVC instructions to access OS kernel functions and device drivers.
- Debug Monitor. This exception is caused by the debug monitor (when not halting). This exception
 is only active when enabled. This exception does not activate if it is a lower priority than the
 current activation.
- PendSV. PendSV is a pendable, interrupt-driven request for system-level service. In an OS
 environment, use PendSV for context switching when no other exception is active. PendSV is
 triggered using the Interrupt Control and State (INTCTRL) register.
- SysTick. A SysTick exception is an exception that the system timer generates when it reaches zero when it is enabled to generate an interrupt. Software can also generate a SysTick exception using the Interrupt Control and State (INTCTRL) register. In an OS environment, the processor can use this exception as system tick.
- Interrupt (IRQ). An interrupt, or IRQ, is an exception signaled by a peripheral or generated by a software request and fed through the NVIC (prioritized). All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor. Table 2-9 on page 69 lists the interrupts on the LM3S808 controller.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 2-8 on page 68 shows as having configurable priority (see the **SYSHNDCTRL** register on page 117 and the **DIS0** register on page 96).

For more information about hard faults, memory management faults, bus faults, and usage faults, see "Fault Handling" on page 73.

Exception Type	Vector Number	Priority ^a	Vector Address or Offset ^b	Activation
-	0	-	0x0000.0000	Stack top is loaded from the first entry of the vector table on reset.
Reset	1	-3 (highest)	0x0000.0004	Asynchronous
Non-Maskable Interrupt (NMI)	2	-2	0x0000.0008	Asynchronous
Hard Fault	3	-1	0x0000.000C	-
Memory Management	4	programmable ^c	0x0000.0010	Synchronous
Bus Fault	5	programmable ^c	0x0000.0014	Synchronous when precise and asynchronous when imprecise
Usage Fault	6	programmable ^c	0x0000.0018	Synchronous
-	7-10	-	-	Reserved
SVCall	11	programmable ^c	0x0000.002C	Synchronous
Debug Monitor	12	programmable ^c	0x0000.0030	Synchronous
-	13	-	-	Reserved
PendSV	14	programmable ^c	0x0000.0038	Asynchronous

Table 2-8. Exception Types

www.BDTTC.com/T

Table 2-8. Exception Types (continued)

Exception Type	Vector Number	Priority ^a	Vector Address or Offset ^b	Activation
SysTick	15	programmable ^c	0x0000.003C	Asynchronous
Interrupts	16 and above	programmable ^d	0x0000.0040 and above	Asynchronous

a. 0 is the default priority for all the programmable priorities.

b. See "Vector Table" on page 70.

c. See SYSPRI1 on page 114.

d. See **PRIn** registers on page 100.

Table 2-9. Interrupts

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Vector Address or Offset	Description
0-15	-	0x0000.0000 - 0x0000.003C	Processor exceptions
16	0	0x0000.0040	GPIO Port A
17	1	0x0000.0044	GPIO Port B
18	2	0x0000.0048	GPIO Port C
19	3	0x0000.004C	GPIO Port D
20	4	0x0000.0050	GPIO Port E
21	5	0x0000.0054	UART0
22	6	0x0000.0058	UART1
23	7	0x0000.005C	SSI0
24	8	0x0000.0060	1 ² C0
25-29	9-13	-	Reserved
30	14	0x0000.0078	ADC0 Sequence 0
31	15	0x0000.007C	ADC0 Sequence 1
32	16	0x0000.0080	ADC0 Sequence 2
33	17	0x0000.0084	ADC0 Sequence 3
34	18	0x0000.0088	Watchdog Timer 0
35	19	0x0000.008C	Timer 0A
36	20	0x0000.0090	Timer 0B
37	21	0x0000.0094	Timer 1A
38	22	0x0000.0098	Timer 1B
39	23	0x0000.009C	Timer 2A
40	24	0x0000.00A0	Timer 2B
41	25	0x0000.00A4	Analog Comparator 0
42-43	26-27	-	Reserved
44	28	0x0000.00B0	System Control
45	29	0x0000.00B4	Flash Memory Control

2.5.3 Exception Handlers

The processor handles exceptions using:

■ Interrupt Service Routines (ISRs). Interrupts (IRQx) are the exceptions handled by ISRs.

WWW.BDUILS Production Data

n/TI

- **Fault Handlers.** Hard fault, memory management fault, usage fault, and bus fault are fault exceptions handled by the fault handlers.
- System Handlers. NMI, PendSV, SVCall, SysTick, and the fault exceptions are all system exceptions that are handled by system handlers.

2.5.4 Vector Table

The vector table contains the reset value of the stack pointer and the start addresses, also called exception vectors, for all exception handlers. The vector table is constructed using the vector address or offset shown in Table 2-8 on page 68. Figure 2-6 on page 70 shows the order of the exception vectors in the vector table. The least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code

Figure 2-6. Vector table

Exception number	IRQ number	Offset	Vector
45	29	0x00B4	IRQ29
		. :	÷ . +
		0x004C	
18	2	0x0048	IRQ2
17	1	0x0044	IRQ1
16	0	0x0040	IRQ0
15	-1	0x003C	Systick
14	-2	0x0038	PendSV
13			Reserved
12			Reserved for Debug
11	-5	0x002C	SVCall
10		0x0020	
9			Reserved
8			Reserved
7			
6	-10	0x0018	Usage fault
5	-11	0x0018	Bus fault
4	-12	0x0014	Memory management fault
3	-13	0x0000C	Hard fault
2	-14	0x0008	NMI
1		0x0000	Reset
		0x00004	Initial SP value
		570000	

On system reset, the vector table is fixed at address 0x0000.0000. Privileged software can write to the **Vector Table Offset (VTABLE)** register to relocate the vector table start address to a different memory location, in the range 0x0000.0100 to 0x3FFF.FF00 (see "Vector Table" on page 70). Note that when configuring the **VTABLE** register, the offset must be aligned on a 256-byte boundary.

2.5.5 Exception Priorities

As Table 2-8 on page 68 shows, all exceptions have an associated priority, with a lower priority value indicating a higher priority and configurable priorities for all exceptions except Reset, Hard fault, and NMI. If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For information about configuring exception priorities, see page 114 and page 100.

Note: Configurable priority values for the Stellaris implementation are in the range 0-7. This means that the Reset, Hard fault, and NMI exceptions, with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

2.5.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This grouping divides each interrupt priority register entry into two fields:

- An upper field that defines the group priority
- A lower field that defines a subpriority within the group

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see page 108.

2.5.7 Exception Entry and Return

Descriptions of exception handling use the following terms:

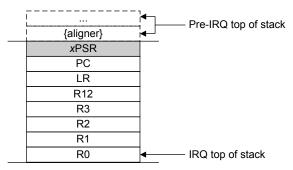
WWW BD Is um ints Production Data

- Preemption. When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is higher than the priority of the exception being handled. See "Interrupt Priority Grouping" on page 71 for more information about preemption by an interrupt. When one exception preempts another, the exceptions are called nested exceptions. See "Exception Entry" on page 72 more information.
- Return. Return occurs when the exception handler is completed, and there is no pending exception with sufficient priority to be serviced and the completed exception handler was not

handling a late-arriving exception. The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See "Exception Return" on page 73 for more information.

- Tail-Chaining. This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception handler.
- Late-Arriving. This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore, the state saving continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception handler of the original exception enters the execute stage of the processor. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

2.5.7.1 Exception Entry


Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread mode or the new exception is of higher priority than the exception being handled, in which case the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask registers (see **PRIMASK** on page 54, **FAULTMASK** on page 55, and **BASEPRI** on page 56). An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor pushes information onto the current stack. This operation is referred to as *stacking* and the structure of eight data words is referred to as *stack frame*.

Figure 2-7. Exception Stack Frame

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. Unless stack alignment is disabled, the stack frame is aligned to a double-word address. If the STKALIGN bit of the **Configuration Control (CCR)** register is set, stack align adjustment is performed during stacking.

The stack frame includes the return address, which is the address of the next instruction in the interrupted program. This value is restored to the **PC** at exception return so that the interrupted program resumes.

www.bbullitsPreduction Data

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes an EXC_RETURN value to the LR, indicating which stack pointer corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher-priority exception occurs during exception entry, the processor starts executing the exception handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher-priority exception occurs during exception entry, known as late arrival, the processor starts executing the exception handler for this exception and does not change the pending status of the earlier exception.

2.5.7.2 Exception Return

Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load the EXC_RETURN value into the **PC**:

- An LDM or POP instruction that loads the PC
- A BX instruction using any register
- An LDR instruction with the PC as the destination

EXC_RETURN is the value loaded into the **LR** on exception entry. The exception mechanism relies on this value to detect when the processor has completed an exception handler. The lowest four bits of this value provide information on the return stack and processor mode. Table 2-10 on page 73 shows the EXC_RETURN values with a description of the exception return behavior.

EXC_RETURN bits 31:4 are all set. When this value is loaded into the **PC**, it indicates to the processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

EXC_RETURN[31:0]	Description	
0xFFFF.FFF0	Reserved	
0xFFFF.FFF1	Return to Handler mode. Exception return uses state from MSP . Execution uses MSP after return.	
0xFFFF.FFF2 - 0xFFFF.FFF8	Reserved	
0xFFFF.FFF9	Return to Thread mode. Exception return uses state from MSP . Execution uses MSP after return.	
0xFFFF.FFFA - 0xFFFF.FFFC	Reserved	
0xFFFF.FFFD	Return to Thread mode. Exception return uses state from PSP . Execution uses PSP after return.	
0xFFFF.FFFE - 0xFFFF.FFFF	Reserved	

Table 2-10. Exception Return Behavior

2.6 Fault Handling

Faults are a subset of the exceptions (see "Exception Model" on page 66). The following conditions generate a fault:

WWW BD Is um inits Production Data

- A bus error on an instruction fetch or vector table load or a data access.
- An internally detected error such as an undefined instruction or an attempt to change state with a BX instruction.
- Attempting to execute an instruction from a memory region marked as Non-Executable (XN).
- An MPU fault because of a privilege violation or an attempt to access an unmanaged region.

2.6.1 Fault Types

Table 2-11 on page 74 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the register bit that indicates the fault has occurred. See page 121 for more information about the fault status registers.

Fault	Handler	Fault Status Register	Bit Name
Bus error on a vector read	Hard fault	Hard Fault Status (HFAULTSTAT)	VECT
Fault escalated to a hard fault	Hard fault	Hard Fault Status (HFAULTSTAT)	FORCED
MPU or default memory mismatch on instruction access	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	IERR ^a
MPU or default memory mismatch on data access	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	DERR
MPU or default memory mismatch on exception stacking	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	MSTKE
MPU or default memory mismatch on exception unstacking	Memory management fault	Memory Management Fault Status (MFAULTSTAT)	MUSTKE
Bus error during exception stacking	Bus fault	Bus Fault Status (BFAULTSTAT)	BSTKE
Bus error during exception unstacking	Bus fault	Bus Fault Status (BFAULTSTAT)	BUSTKE
Bus error during instruction prefetch	Bus fault	Bus Fault Status (BFAULTSTAT)	IBUS
Precise data bus error	Bus fault	Bus Fault Status (BFAULTSTAT)	PRECISE
Imprecise data bus error	Bus fault	Bus Fault Status (BFAULTSTAT)	IMPRE
Attempt to access a coprocessor	Usage fault	Usage Fault Status (UFAULTSTAT)	NOCP
Undefined instruction	Usage fault	Usage Fault Status (UFAULTSTAT)	UNDEF
Attempt to enter an invalid instruction set state ^b	Usage fault	Usage Fault Status (UFAULTSTAT)	INVSTAT
Invalid EXC_RETURN value	Usage fault	Usage Fault Status (UFAULTSTAT)	INVPC
Illegal unaligned load or store	Usage fault	Usage Fault Status (UFAULTSTAT)	UNALIGN
Divide by 0	Usage fault	Usage Fault Status (UFAULTSTAT)	DIV0

Table 2-11. Faults

a. Occurs on an access to an XN region even if the MPU is disabled.

b. Attempting to use an instruction set other than the Thumb instruction set, or returning to a non load-store-multiple instruction with ICI continuation.

2.6.2 Fault Escalation and Hard Faults

All fault exceptions except for hard fault have configurable exception priority (see **SYSPRI1** on page 114). Software can disable execution of the handlers for these faults (see **SYSHNDCTRL** on page 117).

Usually, the exception priority, together with the values of the exception mask registers, determines whether the processor enters the fault handler, and whether a fault handler can preempt another fault handler as described in "Exception Model" on page 66.

In some situations, a fault with configurable priority is treated as a hard fault. This process is called priority escalation, and the fault is described as *escalated to hard fault*. Escalation to hard fault occurs when:

- A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because a fault handler cannot preempt itself because it must have the same priority as the current priority level.
- A fault handler causes a fault with the same or lower priority as the fault it is servicing. This situation happens because the handler for the new fault cannot preempt the currently executing fault handler.
- An exception handler causes a fault for which the priority is the same as or lower than the currently executing exception.
- A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault. Thus if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than Reset, NMI, or another hard fault.

2.6.3 Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address register indicates the address accessed by the operation that caused the fault, as shown in Table 2-12 on page 75.

Handler	Status Register Name	Address Register Name	Register Description
Hard fault	Hard Fault Status (HFAULTSTAT)	-	page 127
Memory management fault	Memory Management Fault Status (MFAULTSTAT)	Memory Management Fault Address (MMADDR)	page 121 page 128
Bus fault	Bus Fault Status (BFAULTSTAT)	Bus Fault Address (FAULTADDR)	page 121 page 129
Usage fault	Usage Fault Status (UFAULTSTAT)	-	page 121

Table 2-12. Fault Status and Fault Address Registers

2.6.4 Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the processor is in the lockup state, it does not execute any instructions. The processor remains in lockup state until it is reset or an NMI occurs.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup state.

WWW.BDUILS Production Data

2.7 **Power Management**

The Cortex-M3 processor sleep modes reduce power consumption:

- Sleep mode stops the processor clock.
- Deep-sleep mode stops the system clock and switches off the PLL and Flash memory.

The SLEEPDEEP bit of the **System Control (SYSCTRL)** register selects which sleep mode is used (see page 110). For more information about the behavior of the sleep modes, see "System Control" on page 157.

This section describes the mechanisms for entering sleep mode and the conditions for waking up from sleep mode, both of which apply to Sleep mode and Deep-sleep mode.

2.7.1 Entering Sleep Modes

This section describes the mechanisms software can use to put the processor into one of the sleep modes.

The system can generate spurious wake-up events, for example a debug operation wakes up the processor. Therefore, software must be able to put the processor back into sleep mode after such an event. A program might have an idle loop to put the processor back to sleep mode.

2.7.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wake-up condition is true (see "Wake Up from WFI or Sleep-on-Exit" on page 77). When the processor executes a WFI instruction, it stops executing instructions and enters sleep mode. See the *Cortex*[™]-*M*3 *Instruction Set Technical User's Manual* for more information.

2.7.1.2 Wait for Event

The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of a one-bit event register. When the processor executes a WFE instruction, it checks the event register. If the register is 0, the processor stops executing instructions and enters sleep mode. If the register is 1, the processor clears the register and continues executing instructions without entering sleep mode.

If the event register is 1, the processor must not enter sleep mode on execution of a WFE instruction. Typically, this situation occurs if an SEV instruction has been executed. Software cannot access this register directly.

See the Cortex[™]-M3 Instruction Set Technical User's Manual for more information.

2.7.1.3 Sleep-on-Exit

If the SLEEPEXIT bit of the **SYSCTRL** register is set, when the processor completes the execution of an exception handler, it returns to Thread mode and immediately enters sleep mode. This mechanism can be used in applications that only require the processor to run when an exception occurs.

2.7.2 Wake Up from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

2.7.2.1 Wake Up from WFI or Sleep-on-Exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry. Some embedded systems might have to execute system restore tasks after the processor wakes up and before executing an interrupt handler. Entry to the interrupt handler can be delayed by setting the PRIMASK bit and clearing the FAULTMASK bit. If an interrupt arrives that is enabled and has a higher priority than current exception priority, the processor wakes up but does not execute the interrupt handler until the processor clears PRIMASK. For more information about **PRIMASK** and **FAULTMASK**, see page 54 and page 55.

2.7.2.2 Wake Up from WFE

The processor wakes up if it detects an exception with sufficient priority to cause exception entry.

In addition, if the SEVONPEND bit in the **SYSCTRL** register is set, any new pending interrupt triggers an event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more information about **SYSCTRL**, see page 110.

2.8 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 2-13 on page 77 lists the supported instructions.

Note: In Table 2-13 on page 77:

- Angle brackets, <>, enclose alternative forms of the operand
- Braces, {}, enclose optional operands
- The Operands column is not exhaustive
- Op2 is a flexible second operand that can be either a register or a constant
- Most instructions can use an optional condition code suffix

For more information on the instructions and operands, see the instruction descriptions in the *Cortex*[™]-*M*3 *Instruction Set Technical User's Manual*.

Operands	Brief Description	Flags	
{Rd,} Rn, Op2	Add with carry	N,Z,C,V	
{Rd,} Rn, Op2	Add	N,Z,C,V	
{Rd,} Rn, #imm12	Add	N,Z,C,V	
Rd , label	Load PC-relative address	-	
{Rd , } Rn , Op2	Logical AND	N,Z,C	
Rd , Rm , <rs #n="" =""></rs>	Arithmetic shift right	N,Z,C	
label	Branch	-	
Rd, #lsb, #width	Bit field clear	-	
Rd , Rn , #lsb , #width	Bit field insert	-	
{Rd , } Rn , Op2	Bit clear	N,Z,C	
#imm	Breakpoint	-	
label	Branch with link	-	
Rm	Branch indirect with link	-	
Rm	Branch indirect	-	
Rn,label	Compare and branch if non-zero	-	
	<pre>{Rd,} Rn, Op2 {Rd,} Rn, Op2 {Rd,} Rn, #imm12 Rd, label {Rd,} Rn, Op2 Rd, Rm, <rs #n> label Rd, #lsb, #width Rd, Rn, #lsb, #width {Rd,} Rn, Op2 #imm label Rm Rm</rs #n></pre>	{Rd, } Rn , Op2Add with carry{Rd, } Rn , Op2Add{Rd, } Rn , minm12AddRd , labelLoad PC-relative address{Rd , } Rn , Op2Logical ANDRd , Rm , <rs #n="" ="">Arithmetic shift rightlabelBranchRd , #lsb , #widthBit field clearRd , Rn , Mp2Bit field insert{Rd , Rn , #lsb , #widthBit field insert{Rd , Rn , #lsb , #widthBit field insert{Rd , Rn , 0p2Bit clear#immBreakpointlabelBranch with linkRmBranch indirect with linkRmBranch indirect</rs>	

Table 2-13. Cortex-M3 Instruction Summary

Mnemonic	Operands	Brief Description	Flags	
CBZ	Rn,label	Compare and branch if zero	-	
CLREX	-	Clear exclusive	-	
CLZ	Rd , Rm	Count leading zeros	-	
CMN	Rn , Op2	Compare negative	N,Z,C,V	
СМР	Rn , Op2	Compare	N,Z,C,V	
CPSID	iflags	Change processor state, disable interrupts	-	
CPSIE	iflags	Change processor state, enable interrupts	-	
DMB	-	Data memory barrier	-	
DSB	-	Data synchronization barrier	-	
EOR, EORS	{Rd ,} Rn , Op2	Exclusive OR	N,Z,C	
ISB	-	Instruction synchronization barrier	-	
IT	-	If-Then condition block	-	
LDM	Rn{!} , reglist	Load multiple registers, increment after	-	
LDMDB, LDMEA	Rn{!} , reglist	Load multiple registers, decrement before	-	
LDMFD, LDMIA	Rn{!}, reglist	Load multiple registers, increment after	-	
LDR	Rt , [Rn { , #offset }]	Load register with word	-	
LDRB, LDRBT	Rt , [Rn { , #offset }]	Load register with byte	-	
LDRD	Rt,Rt2, [Rn{, #offset}]	Load register with two words	-	
LDREX	Rt, [Rn, #offset]	Load register exclusive	-	
LDREXB	Rt, [Rn]	Load register exclusive with byte	-	
LDREXH	Rt , [Rn]	Load register exclusive with halfword	-	
LDRH, LDRHT	Rt , [Rn{ , #offset}]	Load register with halfword	-	
LDRSB, LDRSBT	Rt , [Rn{ , #offset}]	Load register with signed byte	-	
LDRSH, LDRSHT	Rt , [Rn { , #offset }]	Load register with signed halfword	-	
LDRT	Rt , [Rn { , #offset }]	Load register with word	-	
LSL, LSLS	Rd , Rm , <rs #n></rs #n>	Logical shift left	N,Z,C	
LSR, LSRS	Rd , Rm , <rs #n></rs #n>	Logical shift right	N,Z,C	
MLA	Rd , Rn , Rm, Ra	Multiply with accumulate, 32-bit result	-	
MLS	Rd , Rn , Rm, Ra	Multiply and subtract, 32-bit result	-	
MOV, MOVS	Rd , Op2	Move	N,Z,C	
MOV, MOVW	Rd , #imm16	Move 16-bit constant	N,Z,C	
MOVT	Rd , #imm16	Move top	-	
MRS	Rd , spec_reg	Move from special register to general register	-	
MSR	spec_reg , Rn	Move from general register to special register	N,Z,C,V	
MUL, MULS	{Rd,}Rn,Rm	Multiply, 32-bit result	N,Z	
MVN, MVNS	Rd , Op2	Move NOT	N,Z,C	
NOP	-	No operation	-	
ORN, ORNS	{Rd,} Rn, Op2	Logical OR NOT	N,Z,C	

Table 2-13. Cortex-M3 Instruction Summary (continued)

Mnemonic	Operands	Brief Description	Flags
ORR, ORRS	{Rd,} Rn, Op2	Logical OR	N,Z,C
POP	reglist Pop registers from stack		-
PUSH	reglist	Push registers onto stack	-
RBIT	Rd , Rn	Reverse bits	-
REV	Rd , Rn	Reverse byte order in a word	-
REV16	Rd , Rn	Reverse byte order in each halfword	-
REVSH	Rd , Rn	Reverse byte order in bottom halfword and sign extend	-
ROR, RORS	Rd , Rm , <rs #n></rs #n>	Rotate right	N,Z,C
RRX, RRXS	Rd , Rm	Rotate right with extend	N,Z,C
RSB, RSBS	{Rd,} Rn, Op2	Reverse subtract	N,Z,C,V
SBC, SBCS	{Rd,} Rn, Op2	Subtract with carry	N,Z,C,V
SBFX	Rd , Rn , #lsb , #width	Signed bit field extract	-
SDIV	{Rd ,} Rn , Rm	Signed divide	-
SEV	-	Send event	-
SMLAL	RdLo, RdHi, Rn, Rm	Signed multiply with accumulate (32x32+64), 64-bit result	-
SMULL	RdLo, RdHi, Rn, Rm	Signed multiply (32x32), 64-bit result	-
SSAT	Rd, #n, Rm {,shift #s} Signed saturate		Q
STM	Rn{!}, reglist	Store multiple registers, increment after	-
STMDB, STMEA	Rn{!}, reglist	Store multiple registers, decrement before	-
STMFD, STMIA	Rn{!}, reglist	Store multiple registers, increment after	-
STR	Rt , [Rn { , #offset }]	Store register word	-
STRB, STRBT	Rt , [Rn { , #offset }]	Store register byte	
STRD	Rt, Rt2, [Rn {, #offset}]	Store register two words	-
STREX	Rd, Rt, [Rn, #offset]	Store register exclusive	-
STREXB	Rd , Rt , [Rn]	Store register exclusive byte	-
STREXH	Rd , Rt , [Rn]	Store register exclusive halfword	-
STRH, STRHT	Rt , [Rn { , #offset }]	Store register halfword	-
STRSB, STRSBT	Rt , [Rn { , #offset }]	Store register signed byte	-
STRSH, STRSHT	Rt , [Rn { , #offset }]	Store register signed halfword	-
STRT	Rt , [Rn { , #offset }]	Store register word	-
SUB, SUBS	{Rd,} Rn, Op2	Subtract	N,Z,C,V
SUB, SUBW	{Rd,} Rn, #imm12	Subtract 12-bit constant	N,Z,C,V
SVC	#imm	Supervisor call	-
SXTB	{Rd,} Rm {,ROR #n}	Sign extend a byte	
SXTH	{Rd,} Rm {,ROR #n}	Sign extend a halfword	-
ГВВ	[Rn, Rm]	Table branch byte	-
ТВН	[Rn, Rm, LSL #1]	Table branch halfword	-
TEQ	Rn, Op2	Test equivalence	N,Z,C
TST	Rn, Op2	Test	N,Z,C

Table 2-13. Cortex-M3 Instruction Summary (continued)

Mnemonic	Operands	Brief Description	Flags
UBFX	Rd , Rn , #lsb , #width	dth Unsigned bit field extract	
UDIV	{Rd,} Rn, Rm	Unsigned divide	-
UMLAL	RdLo, RdHi, Rn, Rm	Unsigned multiply with accumulate (32x32+32+32), 64-bit result	-
UMULL	RdLo, RdHi, Rn, Rm	Unsigned multiply (32x 2), 64-bit result	-
USAT	Rd, #n, Rm {,shift #s}	Unsigned saturate	Q
UXTB	{Rd,} Rm {,ROR #n}	Zero extend a byte	-
UXTH	{Rd,} Rm {,ROR #n}	Zero extend a halfword	-
WFE	-	Wait for event	-
WFI	-	Wait for interrupt	-

Table 2-13. Cortex-M3 Instruction Summary (continued)

www.BSD TIC.com/TI

3 Cortex-M3 Peripherals

This chapter provides information on the Stellaris[®] implementation of the Cortex-M3 processor peripherals, including:

■ SysTick (see page 81)

Provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism.

- Nested Vectored Interrupt Controller (NVIC) (see page 82)
 - Facilitates low-latency exception and interrupt handling
 - Controls power management
 - Implements system control registers
- System Control Block (SCB) (see page 84)

Provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

Memory Protection Unit (MPU) (see page 84)

Supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

Table 3-1 on page 81 shows the address map of the Private Peripheral Bus (PPB). Some peripheral register regions are split into two address regions, as indicated by two addresses listed.

Address	Core Peripheral	Description (see page)
0xE000.E010-0xE000.E01F	System Timer	81
0xE000.E100-0xE000.E4EF 0xE000.EF00-0xE000.EF03	Nested Vectored Interrupt Controller	82
0xE000.ED00-0xE000.ED3F	System Control Block	84
0xE000.ED90-0xE000.EDB8	Memory Protection Unit	84

Table 3-1. Core Peripheral Register Regions

3.1 Functional Description

This chapter provides information on the Stellaris implementation of the Cortex-M3 processor peripherals: SysTick, NVIC, SCB and MPU.

3.1.1 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example as:

- An RTOS tick timer that fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.

Tix's issuments Production Data

- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter used to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNT bit in the STCTRL control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

The timer consists of three registers:

- SysTick Control and Status (STCTRL): A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- SysTick Reload Value (STRELOAD): The reload value for the counter, used to provide the counter's wrap value.
- SysTick Current Value (STCURRENT): The current value of the counter.

When enabled, the timer counts down on each clock from the reload value to zero, reloads (wraps) to the value in the **STRELOAD** register on the next clock edge, then decrements on subsequent clocks. Clearing the **STRELOAD** register disables the counter on the next wrap. When the counter reaches zero, the COUNT status bit is set. The COUNT bit clears on reads.

Writing to the **STCURRENT** register clears the register and the COUNT status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick counter stops. Ensure software uses aligned word accesses to access the SysTick registers.

Note: When the processor is halted for debugging, the counter does not decrement.

3.1.2 Nested Vectored Interrupt Controller (NVIC)

This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC supports:

- 23 interrupts.
- A programmable priority level of 0-7 for each interrupt. A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.
- Low-latency exception and interrupt handling.
- Level and pulse detection of interrupt signals.
- Dynamic reprioritization of interrupts.
- Grouping of priority values into group priority and subpriority fields.

WWW.DDD is rum ints Production Data

- Interrupt tail-chaining.
- An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead, providing low latency exception handling.

3.1.2.1 Level-Sensitive and Pulse Interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see "Hardware and Software Control of Interrupts" on page 83 for more information). For a level-sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. As a result, the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

3.1.2.2 Hardware and Software Control of Interrupts

The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

- The NVIC detects that the interrupt signal is High and the interrupt is not active.
- The NVIC detects a rising edge on the interrupt signal.
- Software writes to the corresponding interrupt set-pending register bit, or to the Software Trigger Interrupt (SWTRIG) register to make a Software-Generated Interrupt pending. See the INT bit in the PEND0 register on page 97 or SWTRIG on page 102.

A pending interrupt remains pending until one of the following:

- The processor enters the ISR for the interrupt, changing the state of the interrupt from pending to active. Then:
 - For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.
 - For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state of the interrupt changes to pending and active. In this case, when the processor returns from the ISR the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from the ISR the state of the interrupt changes to inactive.

Software writes to the corresponding interrupt clear-pending register bit

WWW.DDD is rum ints Production Data

- For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change. Otherwise, the state of the interrupt changes to inactive.

- For a pulse interrupt, the state of the interrupt changes to inactive, if the state was pending or to active, if the state was active and pending.

3.1.3 System Control Block (SCB)

The System Control Block (SCB) provides system implementation information and system control, including configuration, control, and reporting of the system exceptions.

3.1.4 Memory Protection Unit (MPU)

This section describes the Memory protection unit (MPU). The MPU divides the memory map into a number of regions and defines the location, size, access permissions, and memory attributes of each region. The MPU supports independent attribute settings for each region, overlapping regions, and export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3 MPU defines eight separate memory regions, 0-7, and a background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from privileged software only.

The Cortex-M3 MPU memory map is unified, meaning that instruction accesses and data accesses have the same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory management fault, causing a fault exception and possibly causing termination of the process in an OS environment. In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types (see "Memory Regions, Types and Attributes" on page 59 for more information).

Table 3-2 on page 84 shows the possible MPU region attributes. See the section called "MPU Configuration for a Stellaris Microcontroller" on page 88 for guidelines for programming a microcontroller implementation.

Memory Type	Description
Strongly Ordered	All accesses to Strongly Ordered memory occur in program order.
Device	Memory-mapped peripherals
Normal	Normal memory

Table 3-2. Memory Attributes Summary

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

WWW BD Is summits Production Data

- Except for the MPU Region Attribute and Size (MPUATTR) register, all MPU registers must be accessed with aligned word accesses.
- The **MPUATTR** register can be accessed with byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any previous region settings from affecting the new MPU setup.

3.1.4.1 Updating an MPU Region

To update the attributes for an MPU region, the **MPU Region Number (MPUNUMBER)**, **MPU Region Base Address (MPUBASE)** and **MPUATTR** registers must be updated. Each register can be programmed separately or with a multiple-word write to program all of these registers. You can use the **MPUBASEx** and **MPUATTRx** aliases to program up to four regions simultaneously using an STM instruction.

Updating an MPU Region Using Separate Words

This example simple code configures one region:

```
; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPUNUMBER ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R4, [R0, #0x4] ; Region Base Address
STRH R2, [R0, #0x8] ; Region Size and Enable
STRH R3, [R0, #0xA] ; Region Attribute
```

Disable a region before writing new region settings to the MPU if you have previously enabled the region being changed. For example:

```
; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
                         ; 0xE000ED98, MPU region number register
; Region Number
LDR R0,=MPUNUMBER
STR R1, [R0, #0x0]
BIC R2, R2, #1
                           ; Disable
STRH R2, [R0, #0x8]
STR R4, [R0, #0x4]
STRH R3, [R0, #0xA]
                           ; Region Size and Enable
                           ; Region Base Address
                           ; Region Attribute
ORR R2, #1
                             ; Enable
STRH R2, [R0, #0x8]
                           ; Region Size and Enable
```

Software must use memory barrier instructions:

- Before MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might be affected by the change in MPU settings.
- After MPU setup, if it includes memory transfers that must use the new MPU settings.

www.bbbumnts Production Data WWW.bbbumnts Production Data

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception handler, or is followed by an exception return, because the exception entry and exception return mechanism cause memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses the MPU through the Private Peripheral Bus (PPB), which is a Strongly Ordered memory region.

For example, if all of the memory access behavior is intended to take effect immediately after the programming sequence, then a DSB instruction and an ISB instruction should be used. A DSB is required after changing MPU settings, such as at the end of context switch. An ISB is required if the code that programs the MPU region or regions is entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking an exception, then an ISB is not required.

Updating an MPU Region Using Multi-Word Writes

The MPU can be programmed directly using multi-word writes, depending how the information is divided. Consider the following reprogramming:

```
; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPUNUMBER ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R2, [R0, #0x4] ; Region Base Address
STR R3, [R0, #0x8] ; Region Attribute, Size and Enable
```

An STM instruction can be used to optimize this:

```
; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPUNUMBER ; 0xE000ED98, MPU region number register
STM R0, {R1-R3} ; Region number, address, attribute, size and enable
```

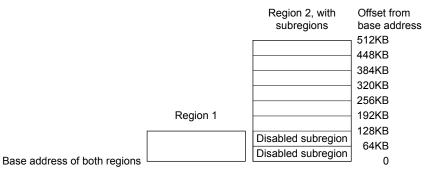
This operation can be done in two words for pre-packed information, meaning that the **MPU Region Base Address (MPUBASE)** register (see page 134) contains the required region number and has the VALID bit set. This method can be used when the data is statically packed, for example in a boot loader:

An STM instruction can be used to optimize this:

Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field of the **MPU Region Attribute and Size (MPUATTR)** register (see page 136) to disable a subregion. The least-significant bit of the SRD field controls the first subregion, and the most-significant bit controls the last subregion. Disabling a subregion means another region

WWW BD Is um ints Production Data


overlapping the disabled range matches instead. If no other enabled region overlaps the disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be configured to 0×00 , otherwise the MPU behavior is unpredictable.

Example of SRD Use

Two regions with the same base address overlap. Region one is 128 KB, and region two is 512 KB. To ensure the attributes from region one apply to the first 128 KB region, configure the SRD field for region two to 0x03 to disable the first two subregions, as Figure 3-1 on page 87 shows.

Figure 3-1. SRD Use Example

3.1.4.2 MPU Access Permission Attributes

The access permission bits, TEX, S, C, B, AP, and XN of the **MPUATTR** register, control access to the corresponding memory region. If an access is made to an area of memory without the required permissions, then the MPU generates a permission fault.

Table 3-3 on page 87 shows the encodings for the TEX, C, B, and S access permission bits. All encodings are shown for completeness, however the current implementation of the Cortex-M3 does not support the concept of cacheability or shareability. Refer to the section called "MPU Configuration for a Stellaris Microcontroller" on page 88 for information on programming the MPU for Stellaris implementations.

TEX	S	С	В	Memory Type	Shareability	Other Attributes
000b	x ^a	0	0	Strongly Ordered	Shareable	-
000	x ^a	0	1	Device	Shareable	-
000	0	1	0	Normal	Not shareable	
000	1	1	0	Normal	Shareable	Outer and inner write-through. No write
000	0	1	1	Normal	Not shareable	allocate.
000	1	1	1	Normal	Shareable	
001	0	0	0	Normal	Not shareable	Outer and inner
001	1	0	0	Normal	Shareable	noncacheable.
001	x ^a	0	1	Reserved encoding	-	-
001	x ^a	1	0	Reserved encoding	-	-
001	0	1	1	Normal	Not shareable	Outer and inner
001	1	1	1	Normal	Shareable	write-back. Write and read allocate.

Table 3-3. TEX, S, C, and B Bit Field Encoding

TEX	S	С	В	Memory Type	Shareability	Other Attributes
010	x ^a	0	0	Device	Not shareable	Nonshared Device.
010	x ^a	0	1	Reserved encoding	-	-
010	x ^a	1	x ^a	Reserved encoding	-	-
1BB	0	A	A	Normal	Not shareable	Cached memory (BB =
1BB	1	A	A	Normal	Shareable	outer policy, AA = inner policy). See Table 3-4 for the encoding of the AA and BB bits.

Table 3-3. TEX, S, C, and B Bit Field Encoding (continued)

a. The MPU ignores the value of this bit.

Table 3-4 on page 88 shows the cache policy for memory attribute encodings with a TEX value in the range of 0x4-0x7.

Encoding, AA or BB	Corresponding Cache Policy
00	Non-cacheable
01	Write back, write and read allocate
10	Write through, no write allocate
11	Write back, no write allocate

Table 3-5 on page 88 shows the AP encodings in the **MPUATTR** register that define the access permissions for privileged and unprivileged software.

AP Bit Field	Privileged Permissions	Unprivileged Permissions	Description
000	No access	No access	All accesses generate a permission fault.
001	R/W	No access	Access from privileged software only.
010	R/W	RO	Writes by unprivileged software generate a permission fault.
011	R/W	R/W	Full access.
100	Unpredictable	Unpredictable	Reserved.
101	RO	No access	Reads by privileged software only.
110	RO	RO	Read-only, by privileged or unprivileged software.
111	RO	RO	Read-only, by privileged or unprivileged software.

Table 3-5. AP Bit Field Encoding

MPU Configuration for a Stellaris Microcontroller

Stellaris microcontrollers have only a single processor and no caches. As a result, the MPU should be programmed as shown in Table 3-6 on page 88.

Table 3-6. Memory Region Attributes for Stellaris Microcontrollers

WWW.BD TRANSform Its Production Data

Memory Region	TEX	S	С	В	Memory Type and Attributes
Flash memory	000b	0	1	0	Normal memory, non-shareable, write-through
Internal SRAM	000b	1	1	0	Normal memory, shareable, write-through

Memory Region	ТЕХ	S	С	В	Memory Type and Attributes
External SRAM	000b	1	1		Normal memory, shareable, write-back, write-allocate
Peripherals	000b	1	0	1	Device memory, shareable

Table 3-6. Memory Region Attributes for Stellaris Microcontrollers (continued)

In current Stellaris microcontroller implementations, the shareability and cache policy attributes do not affect the system behavior. However, using these settings for the MPU regions can make the application code more portable. The values given are for typical situations.

3.1.4.3 MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault (see "Exceptions and Interrupts" on page 58 for more information). The **MFAULTSTAT** register indicates the cause of the fault. See page 121 for more information.

3.2 Register Map

Table 3-7 on page 89 lists the Cortex-M3 Peripheral SysTick, NVIC, SCB, and MPU registers. The offset listed is a hexadecimal increment to the register's address, relative to the Core Peripherals base address of 0xE000.E000.

Note: Register spaces that are not used are reserved for future or internal use. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
System T	imer (SysTick) Registers				
0x010	STCTRL	R/W	0x0000.0000	SysTick Control and Status Register	91
0x014	STRELOAD	R/W	0x0000.0000	SysTick Reload Value Register	93
0x018	STCURRENT	R/WC	0x0000.0000	SysTick Current Value Register	94
Nested V	ectored Interrupt Control	ler (NVIC)	Registers		
0x100	EN0	R/W	0x0000.0000	Interrupt 0-29 Set Enable	95
0x180	DIS0	R/W	0x0000.0000	Interrupt 0-29 Clear Enable	96
0x200	PEND0	R/W	0x0000.0000	Interrupt 0-29 Set Pending	97
0x280	UNPEND0	R/W	0x0000.0000	Interrupt 0-29 Clear Pending	98
0x300	ACTIVE0	RO	0x0000.0000	Interrupt 0-29 Active Bit	99
0x400	PRI0	R/W	0x0000.0000	Interrupt 0-3 Priority	100
0x404	PRI1	R/W	0x0000.0000	Interrupt 4-7 Priority	100
0x408	PRI2	R/W	0x0000.0000	Interrupt 8-11 Priority	100
0x40C	PRI3	R/W	0x0000.0000	Interrupt 12-15 Priority	100
0x410	PRI4	R/W	0x0000.0000	Interrupt 16-19 Priority	100
0x414	PRI5	R/W	0x0000.0000	Interrupt 20-23 Priority	100

Table 3-7. Peripherals Register Map

Table 3-7. Peripherals Register Map (continued)

Offset	Name	Туре	Reset	Description	See page
0x418	PRI6	R/W	0x0000.0000	Interrupt 24-27 Priority	100
0x41C	PRI7	R/W	0x0000.0000	Interrupt 28-29 Priority	100
0xF00	SWTRIG	WO	0x0000.0000	Software Trigger Interrupt	102
System C	control Block (SCB) R	egisters			I
0xD00	CPUID	RO	0x410F.C231	CPU ID Base	103
0xD04	INTCTRL	R/W	0x0000.0000	Interrupt Control and State	104
0xD08	VTABLE	R/W	0x0000.0000	Vector Table Offset	107
0xD0C	APINT	R/W	0xFA05.0000	Application Interrupt and Reset Control	108
0xD10	SYSCTRL	R/W	0x0000.0000	System Control	110
0xD14	CFGCTRL	R/W	0x0000.0000	Configuration and Control	112
0xD18	SYSPRI1	R/W	0x0000.0000	System Handler Priority 1	114
0xD1C	SYSPRI2	R/W	0x0000.0000	System Handler Priority 2	115
0xD20	SYSPRI3	R/W	0x0000.0000	System Handler Priority 3	116
0xD24	SYSHNDCTRL	R/W	0x0000.0000	System Handler Control and State	117
0xD28	FAULTSTAT	R/W1C	0x0000.0000	Configurable Fault Status	121
0xD2C	HFAULTSTAT	R/W1C	0x0000.0000	Hard Fault Status	127
0xD34	MMADDR	R/W	-	Memory Management Fault Address	128
0xD38	FAULTADDR	R/W	-	Bus Fault Address	129
Memory I	Protection Unit (MPU)	Registers			
0xD90	MPUTYPE	RO	0x0000.0800	МРИ Туре	130
0xD94	MPUCTRL	R/W	0x0000.0000	MPU Control	131
0xD98	MPUNUMBER	R/W	0x0000.0000	MPU Region Number	133
0xD9C	MPUBASE	R/W	0x0000.0000	MPU Region Base Address	134
0xDA0	MPUATTR	R/W	0x0000.0000	MPU Region Attribute and Size	136
0xDA4	MPUBASE1	R/W	0x0000.0000	MPU Region Base Address Alias 1	134
0xDA8	MPUATTR1	R/W	0x0000.0000	MPU Region Attribute and Size Alias 1	136
0xDAC	MPUBASE2	R/W	0x0000.0000	MPU Region Base Address Alias 2	134
0xDB0	MPUATTR2	R/W	0x0000.0000	MPU Region Attribute and Size Alias 2	136
0xDB4	MPUBASE3	R/W	0x0000.0000	MPU Region Base Address Alias 3	134
0xDB8	MPUATTR3	R/W	0x0000.0000	MPU Region Attribute and Size Alias 3	136

3.3 System Timer (SysTick) Register Descriptions

This section lists and describes the System Timer registers, in numerical order by address offset.

www.BDTIC.com/T]

Register 1: SysTick Control and Status Register (STCTRL), offset 0x010

Note: This register can only be accessed from privileged mode.

The SysTick STCTRL register enables the SysTick features.

SysTick Control and Status Register (STCTRL)

Base 0xE000.E000 Offset 0x010 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		•				1 1	reserved				1	1 1	1 1		COUNT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r		1		r r		reserved		r	l.	ſ	1	1	CLK_SRC	INTEN	ENABLE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ie	Тур	be	Reset	Des	cription							
:	31:17		reserv	ved	R	C	0x000	com	patibility	with futu	ure produ		value o	served bit. f a reserv on.		
	16		COU	NT	R	С	0	Cou	nt Flag							
								Valu	ue	Descrip	otion					
								0			sTick tim was rea		ot count	ed to 0 sir	nce the l	ast time
								1		,	sTick tin was rea		counted	to 0 since	e the las	t time
								is wi If rea Mas the o Deb	ritten wit ad by the terTyp COUNT b	h any va e debugg e bit in th it is not o face V5 /	lue. ger using ne AHB- changed	the DA AP Con by the c	P, this b trol Reg lebugge	the STCU it is cleare g ister is c er read. Se n for more	ed only i lear. Ot ee the A	f the herwise, <i>RM</i> ®
	15:3		reserv	/ed	R	C	0x000	com	patibility	with futu	ure produ		value o	served bit. f a reserv on.		
	2		CLK_S	SRC	R/	N	0	Cloc	ck Sourc	е						
								Valu	ue Desc	ription						
								0		nal refei		ock. (Not	implem	ented for	Stellari	6
								1	Syste	em clock						
												ce clock operate		nplemente	ed, this l	oit must

Bit/Field	Name	Туре	Reset	Description							
1	INTEN	R/W	0	Interrupt	Enable						
				Value	Description						
				0	Interrupt generation is disabled. Software can use the COUNT bit to determine if the counter has ever reached 0.						
				1	An interrupt is generated to the NVIC when SysTick counts to 0.						
0	ENABLE	R/W	0	Enable							
				Value	Description						
				0	The counter is disabled.						
				1	Enables SysTick to operate in a multi-shot way. That is, the counter loads the RELOAD value and begins counting down. On reaching 0, the COUNT bit is set and an interrupt is generated if enabled by INTEN. The counter then loads the RELOAD value again and begins counting.						

www.Bbunts Production Data /TI

Register 2: SysTick Reload Value Register (STRELOAD), offset 0x014

Note: This register can only be accessed from privileged mode.

Note: This register can only be accessed from privileged mode.

SysTick Reload Value Register (STRELOAD)

The **STRELOAD** register specifies the start value to load into the **SysTick Current Value** (**STCURRENT**) register when the counter reaches 0. The start value can be between 0x1 and 0x00FF.FFFF. A start value of 0 is possible but has no effect because the SysTick interrupt and the COUNT bit are activated when counting from 1 to 0.

SysTick can be configured as a multi-shot timer, repeated over and over, firing every N+1 clock pulses, where N is any value from 1 to 0x00FF.FFFF. For example, if a tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD field.

Base 0xE000.E000 Offset 0x014 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 17 RELOAD reserved RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 12 10 9 6 2 15 14 11 8 7 5 4 3 1 0 RELOAD Type R/W 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Туре Reset 31:24 RO 0x00 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. RELOAD R/W 0x00.0000 23:0 **Reload Value** Value to load into the SysTick Current Value (STCURRENT) register when the counter reaches 0.

Register 3: SysTick Current Value Register (STCURRENT), offset 0x018

Note: This register can only be accessed from privileged mode.

The **STCURRENT** register contains the current value of the SysTick counter.

SysTick Current Value Register (STCURRENT)

Base 0xE000.E000 Offset 0x018

Type R/WC, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	rese	rved	r	r r			I		CURI	I RENT	1	ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	1	1		CUR	RENT	1		1	1	1	I	
Туре	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/FieldNameTypeReset31:24reservedRO0x00				Soft corr	Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.										
	23:0 CURRENT R/WC 0x00.0000						This No I This	read-moo register	ntains the dify-write is write-o	e protecti clear. Wr	value at on is pro iting to it ars the c	ovided, s with any	o change value cl	e with ca ears the	re. register.	

3.4 NVIC Register Descriptions

This section lists and describes the NVIC registers, in numerical order by address offset.

The NVIC registers can only be fully accessed from privileged mode, but interrupts can be pended while in unprivileged mode by enabling the **Configuration and Control (CFGCTRL)** register. Any other unprivileged mode access causes a bus fault.

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to NVIC registers.

An interrupt can enter the pending state even if it is disabled.

Before programming the **VTABLE** register to relocate the vector table, ensure the vector table entries of the new vector table are set up for fault handlers, NMI, and all enabled exceptions such as interrupts. For more information, see page 107.

WWW.BDIIC.com/1

Register 4: Interrupt 0-29 Set Enable (EN0), offset 0x100

Note: This register can only be accessed from privileged mode.

The **EN0** register enables interrupts and shows which interrupts are enabled. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 69 for interrupt assignments.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority.

Base Offse	0xE000.I t 0x100		0.0000	(110)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	rese	rved		1			1 1		1	I NT	I	1		1	1	
Type Reset	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		I	1		i i	1 1	IN	IT	1	1	Î	1	I	1	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
B	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:30		reser	ved	R	0	0x0	com	patibility	with fut	ure prod	ucts, the	of a res value of operation	a reserv		
	29:0		IN	Г	R/	W	0x000.0000) Inte	rrupt En	able						
								Valu	ue	Descri	ption					
								0			ead, indi /rite, no (e interrup	ot is disa	bled.	
								1					e interrup interrup		bled.	
									t can on DISn reç	5	ared by s	setting th	ne corres	ponding	INT[n]	bit in

Interrupt 0-29 Set Enable (EN0)

Register 5: Interrupt 0-29 Clear Enable (DIS0), offset 0x180

Note: This register can only be accessed from privileged mode.

The **DIS0** register disables interrupts. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 69 for interrupt assignments.

Interrupt 0-29 Clear Enable (DIS0)

Base 0xE000.E000 Offset 0x180

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	rese	rved			, , , , , , , , , , , , , , , , , , ,		1 1		1 11	I IT	r	1	r – – – –	1	1	
Туре	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		, ,		1 1	IN	I NT I	I	I	I	1 I	I	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/Field 31:30	51					Soft com	patibility	with fut	ure prod	ucts, the	of a resevent of	a reserv	•	vide nould be	
	29:0		INT	-	R/	N	0x000.0000) Inte	rrupt Dis	able						
								Val	ue Desc	ription						
								0		read, in write, n		he interr	upt is dis	sabled.		
								1	On a	read, in	dicates t	he interr	upt is en	abled.		

On a write, clears the corresponding INT[n] bit in the **EN0**

register, disabling interrupt [n].

www.BDTIC.com/TI

Register 6: Interrupt 0-29 Set Pending (PEND0), offset 0x200

Note: This register can only be accessed from privileged mode.

The **PEND0** register forces interrupts into the pending state and shows which interrupts are pending. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 69 for interrupt assignments.

Inter	rrupt 0-2	29 Set	Pending	g (PEND	00)											
Offse	0xE000.8 t 0x200 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[rese			1	1		1 1			I NT	1	1	1 1	1	1	
Type Reset	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	1	I	1	1 1	11	I NT	1	ı	1	1	1	1	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	8it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:30		reser	ved	R	0	0x0	com	npatibilit	ould not y with futu across a r	ure prod	ucts, the	value of	a reserv	•	
	29:0		IN	Г	R/	W	0x000.0000	Inte	rrupt Se	t Pending	9					
								Val	ue	Descript	ion					
								0		On a rea On a wri			the inter	rupt is n	ot pendii	ng.
								1		On a rea On a wri even if it	te, the c	orrespor		• •	0	nding
								effe	ct.	ponding	·			0	•	
										ly be clea D0 regist	,	setting th	ne corres	ponding	INT[n]	bit in

Register 7: Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280

Note: This register can only be accessed from privileged mode.

The **UNPEND0** register shows which interrupts are pending and removes the pending state from interrupts. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 69 for interrupt assignments.

Interrupt 0-29 Clear Pending (UNPEND0)

Base 0xE000.E000

Offset 0x280

Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	rese	rved					1 1		11	I NT		1	1	1	1	·		
Туре	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	I		1	1		1	1 1	IN	IT.	1	I	1		1	I	'		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
B	lit/Field							Description										
	31:30 reserved RO 0;					0x0	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv	•	vide nould be			
	29:0		INT	Г	R/	W	0x000.0000) Inte	rrupt Cle	ar Pendi	ng							
								Value Description										
							 On a read, indicates that the interrupt is not pending. On a write, no effect. 											
							1	On a read, indicates that the interrupt is pending. On a write, clears the corresponding INT[n] bit in the PEND0 register, so that interrupt [n] is no longer pending. Setting a bit does not affect the active state of the corresponding										

interrupt.

www.BDTIC.com/TI

Register 8: Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300

Note: This register can only be accessed from privileged mode.

The ACTIVE0 register indicates which interrupts are active. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.

See Table 2-9 on page 69 for interrupt assignments.

Caution - Do not manually set or clear the bits in this register.

Interrupt 0-29 Active Bit (ACTIVE0)

Base 0xE000.E000 Offset 0x300 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	rese	rved		1	1			1	1 	I NT	ı	1		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	I	1		I	1	I NT I	I	1	1		1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:30	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
29:0	INT	RO	0x000.0000	Interrupt Active

Value Description

0 The corresponding interrupt is not active.

1 The corresponding interrupt is active, or active and pending. Register 9: Interrupt 0-3 Priority (PRI0), offset 0x400

Register 10: Interrupt 4-7 Priority (PRI1), offset 0x404

Register 11: Interrupt 8-11 Priority (PRI2), offset 0x408

Register 12: Interrupt 12-15 Priority (PRI3), offset 0x40C

Register 13: Interrupt 16-19 Priority (PRI4), offset 0x410

Register 14: Interrupt 20-23 Priority (PRI5), offset 0x414

Register 15: Interrupt 24-27 Priority (PRI6), offset 0x418

Register 16: Interrupt 28-29 Priority (PRI7), offset 0x41C

Note: This register can only be accessed from privileged mode.

The **PRIn** registers provide 3-bit priority fields for each interrupt. These registers are byte accessible. Each register holds four priority fields that are assigned to interrupts as follows:

PRIn Register Bit Field	Interrupt
Bits 31:29	Interrupt [4n+3]
Bits 23:21	Interrupt [4n+2]
Bits 15:13	Interrupt [4n+1]
Bits 7:5	Interrupt [4n]

See Table 2-9 on page 69 for interrupt assignments.

Each priority level can be split into separate group priority and subpriority fields. The PRIGROUP field in the **Application Interrupt and Reset Control (APINT)** register (see page 108) indicates the position of the binary point that splits the priority and subpriority fields .

These registers can only be accessed from privileged mode.

Base Offse	0xE000.I t 0x400		ty (PRIC))												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		INTD	I		1	reserved	r r			INTC				reserved		
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	INTB	1			reserved				INTA			l I	reserved		1
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:29 INTD R/W 0x0						This [4n+ PRI	Interrupt Priority for Interrupt [4n+3] This field holds a priority value, 0-7, for the interrupt with the number [4n+3], where n is the number of the Interrupt Priority register (n=0 for PRI0 , and so on). The lower the value, the greater the priority of the corresponding interrupt.								

T x s nsrum ints Production Data

100

Bit/Field	Name	Туре	Reset	Description
28:24	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:21	INTC	R/W	0x0	Interrupt Priority for Interrupt [4n+2] This field holds a priority value, 0-7, for the interrupt with the number [4n+2], where n is the number of the Interrupt Priority register (n=0 for PRI0 , and so on). The lower the value, the greater the priority of the corresponding interrupt.
20:16	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15:13	INTB	R/W	0x0	Interrupt Priority for Interrupt [4n+1] This field holds a priority value, 0-7, for the interrupt with the number [4n+1], where n is the number of the Interrupt Priority register (n=0 for PRI0 , and so on). The lower the value, the greater the priority of the corresponding interrupt.
12:8	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:5	INTA	R/W	0x0	Interrupt Priority for Interrupt [4n] This field holds a priority value, 0-7, for the interrupt with the number [4n], where n is the number of the Interrupt Priority register (n=0 for PRI0 , and so on). The lower the value, the greater the priority of the corresponding interrupt.
4:0	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 17: Software Trigger Interrupt (SWTRIG), offset 0xF00

Note: Only privileged software can enable unprivileged access to the SWTRIG register.

Writing an interrupt number to the **SWTRIG** register generates a Software Generated Interrupt (SGI). See Table 2-9 on page 69 for interrupt assignments.

When the MAINPEND bit in the **Configuration and Control (CFGCTRL)** register (see page 112) is set, unprivileged software can access the **SWTRIG** register.

Software Trigger Interrupt (SWTRIG)

Base 0xE000.E000 Offset 0xF00

Туре	Type WO, reset 0x0000.0000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[ľ		I	r	ı ı		1 1	rese	rved		r	1		r 1		·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	I	, ,	reserve	d		, , ,		1			INTID		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nan	ne	Тур	be	Reset	Des	cription							
	31:5 reserved			RO 0x0000.00				O Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	4:0		INTI	D	W	0	0x00	Interrupt ID This field holds the interrupt ID of the req of 0x3 generates an interrupt on IRQ3.					•	GI. For e	example,	, a value

3.5 System Control Block (SCB) Register Descriptions

This section lists and describes the System Control Block (SCB) registers, in numerical order by address offset. The SCB registers can only be accessed from privileged mode.

All registers must be accessed with aligned word accesses except for the **FAULTSTAT** and **SYSPRI1-SYSPRI3** registers, which can be accessed with byte or aligned halfword or word accesses. The processor does not support unaligned accesses to system control block registers.

www.BDTTC.com/T

Register 18: CPU ID Base (CPUID), offset 0xD00

CPU ID Base (CPUID)

January 09, 2011

Note: This register can only be accessed from privileged mode.

The **CPUID** register contains the ARM® Cortex[™]-M3 processor part number, version, and implementation information.

	31	t 0x410F.		20	07	26	25	24	00	22	01	20	10	10	17	10
	31	30	29 I	28	27 1 //P	26	25	24	23	22	21 AR	20	19	18	17 DN	16 I
		D 0	D 0		1	D 0	D 0									
Type Reset	R0 0	R0 1	R0 0	R0 0	R0 0	R0 0	R0 0	R0 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1			PAI	RTNO			1	1	1		RI	EV	1
Type Reset	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Desc	ription							
	31:24		IMF	C	R	0	0x41	Imple	ementer	Code						
								Valu	e Desc	rintion						
									l ARM							
								UX I								
	23:20		VAF	२	R	0	0x0	Varia	int Num	ber						
								Valu	e Desc	ription						
								0x0		rn value i in r0p1.		on produ	ct revisio	on identif	ier, for e	xample
	19:16		CO	N	R	0	0xF	Cons	stant							
								Valu	e Desc	ription						
								0xF	Alwa	ys reads	as 0xF.					
	15:4		PART	NO	R	0	0xC23	Part	Numbe	r						
								Valu	e Des	cription						
								0xC2	23 Cort	ex-M3 p	rocesso	r.				
	3:0		RE	V	R	0	0x1	Revis	sion Nu	mber						
								Valu	e Desc	ription						
										-						

Register 19: Interrupt Control and State (INTCTRL), offset 0xD04

Note: This register can only be accessed from privileged mode.

The **INCTRL** register provides a set-pending bit for the NMI exception, and set-pending and clear-pending bits for the PendSV and SysTick exceptions. In addition, bits in this register indicate the exception number of the exception being processed, whether there are preempted active exceptions, the exception number of the highest priority pending exception, and whether any interrupts are pending.

When writing to **INCTRL**, the effect is unpredictable when writing a 1 to both the PENDSV and UNPENDSV bits, or writing a 1 to both the PENDSTSET and PENDSTCLR bits.

Base Offse	rrupt Co e 0xE000.E et 0xD04 R/W, rese	000		e (INTC	TRL)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NMISET	rese	rved	PENDSV	UNPENDSV	PENDSTSET	PENDSTCLR	reserved	ISRPRE	ISRPEND		rese	rved	•	VECF	PEND
Type Reset	R/W 0	RO 0	RO 0	R/W 0	wo 0	R/W 0	wo 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																
	15	14	13	12 I	11	10	9	8	7	6	5	4	3	2	1	0
Turne	RO	VECF RO		RO	RETBASE RO	RO	RO	RO	RO	RO	RO	RO		RO	RO	RO
Type Reset	0 0	0	RO 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
E	3it/Field 31		Nan NMIS		Ty R/		Reset 0		cription Set Per	nding						
								Valu	ue Desc	ription						
										read, ind write, no		an NMI e	xception	n is not p	ending.	
								1		read, ind write, ch			•	•	•] .
On a write, cl Because NMI is the enters the NMI exce this bit, and clears th this bit by the NMI ex reasserted while the								MI excep clears this e NMI exc	tion har s bit on ception	ndler as s entering handler	soon as the inter returns 1	it registe rrupt har I only if t	rs the se idler. A ro he NMI s	tting of ead of		
30:29 reserved RO 0x0 Software should not rely on the value of a res compatibility with future products, the value of preserved across a read-modify-write operat								value of	a reserv	•						
	28		PEND	DSV	R/	W	0	Pen	dSV Set	Pending						
								Valu	ue Desc	ription						
								0		read, ind write, no		a PendS'	V except	tion is no	t pendin	g.
								1		read, ind write, ch			•	•	•	nding.
									-	oit is the c is bit is cle					•	te to

Bit/Field	Name	Туре	Reset	Description
27	UNPENDSV	WO	0	PendSV Clear Pending
				 Value Description On a write, no effect. On a write, removes the pending state from the PendSV exception.
				This bit is write only; on a register read, its value is unknown.
26	PENDSTSET	R/W	0	SysTick Set Pending
				Value Description
				 On a read, indicates a SysTick exception is not pending. On a write, no effect.
				 On a read, indicates a SysTick exception is pending. On a write, changes the SysTick exception state to pending.
				This bit is cleared by writing a 1 to the PENDSTCLR bit.
25	PENDSTCLR	WO	0	SysTick Clear Pending
				Value Description
				0 On a write, no effect.
				1 On a write, removes the pending state from the SysTick exception.
				This bit is write only; on a register read, its value is unknown.
24	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23	ISRPRE	RO	0	Debug Interrupt Handling
				Value Description
				0 The release from halt does not take an interrupt.
				1 The release from halt takes an interrupt.
				This bit is only meaningful in Debug mode and reads as zero when the processor is not in Debug mode.
22	ISRPEND	RO	0	Interrupt Pending
				Value Description
				0 No interrupt is pending.
				1 An interrupt is pending.
				This bit provides status for all interrupts excluding NMI and Faults.
21:18	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
17:12	VECPEND	RO	0x00	Interrupt Pending Vector Number This field contains the exception number of the highest priority pending enabled exception. The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRIMASK register.
				Value Description
				0x00 No exceptions are pending
				0x01 Reserved
				0x02 NMI
				0x03 Hard fault
				0x04 Memory management fault
				0x05 Bus fault
				0x06 Usage fault
				0x07-0x0A Reserved
				0x0B SVCall
				0x0C Reserved for Debug
				0x0D Reserved
				0x0E PendSV
				0x0F SysTick
				0x10 Interrupt Vector 0
				0x11 Interrupt Vector 1
				0x2D Interrupt Vector 29
				0x2E-0x3F Reserved
11	RETBASE	RO	0	Return to Base
				Value Description
				0 There are preempted active exceptions to execute.
				1 There are no active exceptions, or the currently executing exception is the only active exception.
				This bit provides status for all interrupts excluding NMI and Faults. This bit only has meaning if the processor is currently executing an ISR (the Interrupt Program Status (IPSR) register is non-zero).
10:6	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5:0	VECACT	RO	0x00	Interrupt Pending Vector Number This field contains the active exception number. The exception numbers can be found in the description for the VECPEND field. If this field is clear, the processor is in Thread mode. This field contains the same value as the ISRNUM field in the IPSR register. Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Set Enable (ENn) , Interrupt Clear Enable (DISn) , Interrupt Set Pending (PENDn) , Interrupt Clear Pending (UNPENDn) , and Interrupt Priority (PRIn) registers (see page 50).
				and merrupt ritority (rithin) registers (see page 30).

www.BSD Tic.com/TI

Register 20: Vector Table Offset (VTABLE), offset 0xD08

Note: This register can only be accessed from privileged mode.

The **VTABLE** register indicates the offset of the vector table base address from memory address 0x0000.0000.

Base Offse	0xE000.l t 0xD08 R/W, res	E000	0.0000	,												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	rese	rved	BASE		r 1	1	r r		1	OFFSET		1	1	ſ	I	
Type Reset	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	OFF	SET	1				1		rese	rved			
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/Field Name Type Reset Description																
	31:30		reserv	ved	RO 0x0			com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		
	29		BAS	E	R/	W	0	Vec	tor Table	Base						
								Vali	ue Desc	cription						
								0	The	vector ta	ble is in	the code	memor	y region.		
0The vector table is in the co1The vector table is in the SF								the SRA	M memo	ory regio	n.					
28:8 OFFSET R/W 0x000.00 Vector Table Offset When configuring the or number of exception en interrupts, the minimum					entries	in the ve	ctor table	e. Becau	•							
	7:0		reserv	ved	R	0	0x00	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		

Vector Table Offset (VTABLE)

Register 21: Application Interrupt and Reset Control (APINT), offset 0xD0C

Note: This register can only be accessed from privileged mode.

The **APINT** register provides priority grouping control for the exception model, endian status for data accesses, and reset control of the system. To write to this register, 0x05FA must be written to the VECTKEY field, otherwise the write is ignored.

The PRIGROUP field indicates the position of the binary point that splits the INTx fields in the **Interrupt Priority (PRIx)** registers into separate group priority and subpriority fields. Table 3-8 on page 108 shows how the PRIGROUP value controls this split. The bit numbers in the Group Priority Field and Subpriority Field columns in the table refer to the bits in the INTA field. For the INTB field, the corresponding bits are 15:13; for INTC, 23:21; and for INTD, 31:29.

Note: Determining preemption of an exception uses only the group priority field.

PRIGROUP Bit Field	Binary Point ^a	Group Priority Field		Group Priorities	Subpriorities
0x0 - 0x4	bxxx.	[7:5]	None	8	1
0x5	bxx.y	[7:6]	[5]	4	2
0x6	bx.yy	[7]	[6:5]	2	4
0x7	b.ууу	None	[7:5]	1	8

Table 3-8. Interrupt Priority Levels

a. INTx field showing the binary point. An x denotes a group priority field bit, and a y denotes a subpriority field bit.

Application Interrupt and Reset Control (APINT)

Base 0xE000.E000 Offset 0xD0C

Type R/W, reset 0xFA05.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	VECTKEY															
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 1	R/W 0	R/W 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ENDIANESS		rese	rved		I	PRIGROUF)		ſ	reserved	ſ		SYSRESREQ	VECTCLRACT	VECTRESET
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	WO 0	WO 0	WO 0

Bit/Field	Name	Туре	Reset	Description
31:16	VECTKEY	R/W	0xFA05	Register Key This field is used to guard against accidental writes to this register. 0x05FA must be written to this field in order to change the bits in this register. On a read, 0xFA05 is returned.
15	ENDIANESS	RO	0	Data Endianess The Stellaris implementation uses only little-endian mode so this is cleared to 0.
14:11	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.BDTTC.com/T

Bit/Field	Name	Туре	Reset	Description
10:8	PRIGROUP	R/W	0x0	Interrupt Priority Grouping This field determines the split of group priority from subpriority (see Table 3-8 on page 108 for more information).
7:3	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	SYSRESREQ	WO	0	System Reset Request
				Value Description
				0 No effect.
				 Resets the core and all on-chip peripherals except the Debug interface.
				This bit is automatically cleared during the reset of the core and reads as 0.
1	VECTCLRACT	WO	0	Clear Active NMI / Fault This bit is reserved for Debug use and reads as 0. This bit must be written as a 0, otherwise behavior is unpredictable.
0	VECTRESET	WO	0	System Reset This bit is reserved for Debug use and reads as 0. This bit must be written as a 0, otherwise behavior is unpredictable.

Register 22: System Control (SYSCTRL), offset 0xD10

Note: This register can only be accessed from privileged mode.

The **SYSCTRL** register controls features of entry to and exit from low-power state.

•	em Cor _{0xE000.E}	•	SYSCTR	L)												
Offset	: 0xD10 R/W, rese		0.0000													
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•					rese	rved		•	•			•	
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ			1		г <u>г</u>	reserve	ed I		· ·		1	SEVONPEND	reserved	SLEEPDEEP	SLEEPEXIT	reserved
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	R/W 0	R/W 0	RO 0
	Ū	0	0	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	0
В	it/Field		Nan	ne	Тур	be	Reset	Des	cription							
	31:5		reser	ved	R	C	0x0000.00	com		with fut	ure prod	ucts, the	value o	served bit f a reserv on.		
	4		SEVON	PEND	R۸	N	0	Wal	ke Up on	Pending	g					
								Val	ue Desc	ription						
								0	-			ots or eve e exclud		wake up	the proc	essor;
								1			nts and a the proc		pts, inclu	uding disa	abled inte	errupts
								wak eve The	es up the nt, the ev	e proces ent is re or also v	sor from	NWFE. If t	he procects the	g state, tl essor is n next wFE f a SEV ir	ot waitin	g for a
	3		reser	ved	R	C	0	com		with fut	ure prod	ucts, the	value o	served bit f a reserv on.		
	2		SLEEP	DEEP	R۸	N	0	Dee	p Sleep	Enable						
								Val	ue Desc	ription						
								0	Use \$	Sleep m	ode as t	he low p	ower mo	ode.		
								1	Use I	Deep-sle	eep mod	le as the	low pow	ver mode		

www.BDTIC.com/TI

Bit/Field	Name	Туре	Reset	Description
1	SLEEPEXIT	R/W	0	Sleep on ISR Exit
				Value Description
				0 When returning from Handler mode to Thread mode, do not sleep when returning to Thread mode.
				1 When returning from Handler mode to Thread mode, enter sleep or deep sleep on return from an ISR.
				Setting this bit enables an interrupt-driven application to avoid returning to an empty main application.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 23: Configuration and Control (CFGCTRL), offset 0xD14

Note: This register can only be accessed from privileged mode.

The **CFGCTRL** register controls entry to Thread mode and enables: the handlers for NMI, hard fault and faults escalated by the **FAULTMASK** register to ignore bus faults; trapping of divide by zero and unaligned accesses; and access to the **SWTRIG** register by unprivileged software (see page 102).

Base Offse	figuratio 0xE000.E t 0xD14 R/W, rese	E000		(CFGC	TRL)											
туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	1		1	1		20			rved	1 1	21	1	1	10	1	
Г уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	15	14	13 T	12 I erved	11	10	9 STKALIGN	8 BFHFNMIGN	7	6 reserved	5	4 DIV0	3 UNALIGNED	2 reserved		0 BASETHR
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	R/W	R/W	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:10		reser	ved	R	0	0x0000.0	com	patibility	ould not r with futu cross a re	re prod	ucts, the	value of	a reserv		
	9		STKAL	IGN	R/	W	0	Stac	k Align	ment on E	xceptio	n Entry				
								Valu	ue Des	cription						
								0	The	stack is 4	-byte al	igned.				
								1	The	stack is 8	-byte al	igned.				
								indic	cate the	on entry, tl stack alig to restore	nment.	On retu	rn from tl	ne excep		
	8		BFHFN	MIGN	R/	W	0	•		Fault in N bles hanc			(1 or 2	to ignor	o data hi	is faults
								caus	sed by lo	bles hand s bad and s ilt, NMI, a	tore ins	tructions	. The se	tting of t	his bit ap	
								Valu	ue Des	cription						
								0	Data lock-	a bus fauli -up.	s cause	ed by loa	d and st	ore instr	uctions o	ause a
								1		dlers runr sed by loa		-		gnore da	ata bus f	aults
								men	nory. Th	only when e normal etect con	use of t	his bit is	to probe	system		
	7:5	7:5 reserved RO		0x0	com	patibility	ould not r with futu cross a re	re prod	ucts, the	value of	a reserv					

www.bbuilduction Data WWW.bbuilduction Data

Bit/Field	Name	Туре	Reset	Description
4	DIV0	R/W	0	Trap on Divide by 0 This bit enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0.
				Value Description
				0 Do not trap on divide by 0. A divide by zero returns a quotient of 0.
				1 Trap on divide by 0.
3	UNALIGNED	R/W	0	Trap on Unaligned Access
				Value Description
				0 Do not trap on unaligned halfword and word accesses.
				1 Trap on unaligned halfword and word accesses. An unaligned access generates a usage fault.
				Unaligned LDM, STM, LDRD, and STRD instructions always fault regardless of whether UNALIGNED is set.
2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	MAINPEND	R/W	0	Allow Main Interrupt Trigger
				Value Description
				0 Disables unprivileged software access to the SWTRIG register.
				1 Enables unprivileged software access to the SWTRIG register (see page 102).
0	BASETHR	R/W	0	Thread State Control
				Value Description
				0 The processor can enter Thread mode only when no exception is active.
				1 The processor can enter Thread mode from any level under the control of an EXC_RETURN value (see "Exception Return" on page 73 for more information).

Register 24: System Handler Priority 1 (SYSPRI1), offset 0xD18

Note: This register can only be accessed from privileged mode.

The SYSPRI1 register configures the priority level, 0 to 7 of the usage fault, bus fault, and memory management fault exception handlers. This register is byte-accessible.

System Handler Priority 1 (SYSPRI1)

Base 0xE000.E000 Offset 0xD18 Type R/W, reset 0x0000.0000

,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	rese	rved	Í	1 1			USAGE	I			reserved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	BUS	I			reserved	1 1			MEM	1			reserved		
Type Reset	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	/pe	Reset	Des	scription							
	31:24		reserv	ved	R	80	0x00	con	npatibility	with fut	ure prod		value of	erved bit a reserv on.		
	23:21		USA	GE	R	/W	0x0	This	rity value	nfigures				sage fauli values h		
	20:16		reserv	ved	R	80	0x0	con	npatibility	with fut	ure prod		value of	erved bit. f a reserv on.		
	15:13		BU	S	R	/W	0x0	This		nfigures t				fault. Con having h		
	12:8		reserv	ved	R	80	0x0	con	npatibility	with fut	ure prod		value of	erved bit a reserv on.		
	7:5		MEI	М	R	/W	0x0	This Cor		nfigures e priority	the prior values a	ity level o		emory ma)-7, with l		
	4:0		reserv	ved	R	80	0x0	con	npatibility	with fut	ure prod		value of	erved bit f a reserv on.		

WWW.BDJ IC.COn

Register 25: System Handler Priority 2 (SYSPRI2), offset 0xD1C

Note: This register can only be accessed from privileged mode.

The **SYSPRI2** register configures the priority level, 0 to 7 of the SVCall handler. This register is byte-accessible.

System Handler Priority 2 (SYSPRI2)

Base 0xE000.E000

	t 0xD1C R/W, res	et 0x0000	.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		SVC					1 1		1 1	reserved		1		1		1
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		1	, , , , , , , , , , , , , , , , , , ,		т т	rese	erved	1	r	1		1 1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nan	ne	Ту	be	Reset	Des	scription							
	31:29		SV	С	R/	W	0x0	This		nfigures		rity level o with lowe		-		-
	28:0		reser	ved	R	C C)x000.0000	con	npatibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	

Register 26: System Handler Priority 3 (SYSPRI3), offset 0xD20

Note: This register can only be accessed from privileged mode.

The SYSPRI3 register configures the priority level, 0 to 7 of the SysTick exception and PendSV handlers. This register is byte-accessible.

System Handler Priority 3 (SYSPRI3)

Base 0xE000.E000 Offset 0xD20 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		TICK	I			reserve	d			PENDSV				reserved		
Туре	R/W	R/W	R/W	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	rese	rved	1	1 1			DEBUG				reserved		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	pe	Reset	Des	scription							
	31:29		TIC	к	R	/W	0x0	Svs	Tick Exc	eption P	riority					
										, nfigures		ity level	of the Sy	sTick ex	ception.	
										e priority		are in the	range 0	-7, with I	ower va	lues
								hav	ing highe	er priority						
	28:24		reserv	ved	R	0	0x0	Sof	tware sh	ould not	rely on t	he value	of a rese	erved bit	. To prov	/ide
								con	npatibility	with futu	ure prod	ucts, the	value of	a reserv		
								pres	served a	cross a r	ead-mod	dify-write	operatio	on.		
	23:21		PEND	sv	R	/W	0x0	Per	ndSV Prio	oritv						
				-						nfigures	the prior	ity level	of Pends	SV. Confi	igurable	priority
								valu	ies are ir	n the rang	ge 0-7, v	vith lowe	r values	having h	nigher pr	iority.
	20:8		reserv	und	D	0	0x000	Sof	hwaro ch	ould not	roly on t	ho voluo	of a rose	anvod bit	To prov	<i>ii</i> do
	20.0		Teser	veu	п	.0	0,000			with futu						
										cross a r	•					
	7:5		DEBL		п	Ŵ	0x0	Dek	oug Prior	i+.,						
	7.5		DEDU	JG	R/	vv	0.00		•	nfigures	the nrior	itv level	of Debug	n Config	urable n	riority
										n the rang						
					_										-	
	4:0		reserv	ved	R	80	0x0.0000			ould not with futu						
										cross a r	•					
												,				

WWW.BDITC.CON

Register 27: System Handler Control and State (SYSHNDCTRL), offset 0xD24

Note: This register can only be accessed from privileged mode.

The **SYSHNDCTRL** register enables the system handlers, and indicates the pending status of the usage fault, bus fault, memory management fault, and SVC exceptions as well as the active status of the system handlers.

If a system handler is disabled and the corresponding fault occurs, the processor treats the fault as a hard fault.

This register can be modified to change the pending or active status of system exceptions. An OS kernel can write to the active bits to perform a context switch that changes the current exception type.

Caution – Software that changes the value of an active bit in this register without correct adjustment to the stacked content can cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently restores the current active status.

If the value of a bit in this register must be modified after enabling the system handlers, a read-modify-write procedure must be used to ensure that only the required bit is modified.

System Handler Control and State (SYSHNDCTRL)

Base 0xE000.E000 Offset 0xD24

Type R/W, reset 0x0000.0000

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ſ	1	1			reserved		1		г т		1	USAGE	BUS	MEM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SVC	BUSP	MEMP	USAGEP	TICK	PNDSV	reserved	MON	SVCA		reserved		USGA	reserved	BUSA	MEMA
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	R/W 0	RO 0	R/W 0	R/W 0
	Bit/Field 31:19		Nan reser		Ty R		Reset 0x000	Soft			rely on th ure produ				•	
	18		USA	GE	R/	W	0	pres Usa	• •	cross a i Enable	read-mod					
								0		•	usage fai	ult avea	ntion			
											0		•			
	17		BU	S	R/	W	0		Fault Er ue Desc	nable ription	usage fau bus fault					
								1	Enat	les the	bus fault e	exceptio	on.			
												-				

Bit/Field	Name	Туре	Reset	Description
16	MEM	R/W	0	Memory Management Fault Enable
				 Value Description Disables the memory management fault exception. Enables the memory management fault exception.
15	SVC	R/W	0	 SVC Call Pending Value Description 0 An SVC call exception is not pending. 1 An SVC call exception is pending.
				This bit can be modified to change the pending status of the SVC call exception.
14	BUSP	R/W	0	Bus Fault Pending
				Value DescriptionA bus fault exception is not pending.A bus fault exception is pending.
				This bit can be modified to change the pending status of the bus fault exception.
13	MEMP	R/W	0	Memory Management Fault Pending
				 Value Description A memory management fault exception is not pending. A memory management fault exception is pending. This bit can be modified to change the pending status of the memory management fault exception.
12	USAGEP	R/W	0	Usage Fault Pending
				 Value Description A usage fault exception is not pending. A usage fault exception is pending. A usage fault exception is pending.
11	TICK	R/W	0	SysTick Exception Active Value Description 0 A SysTick exception is not active. 1 A SysTick exception is active. This bit can be modified to change the active status of the SysTick exception, however, see the Caution above before setting this bit.

Bit/Field	Name	Туре	Reset	Description
10	PNDSV	R/W	0	PendSV Exception Active
				Value Description
				0 A PendSV exception is not active.
				1 A PendSV exception is active.
				This bit can be modified to change the active status of the PendSV exception, however, see the Caution above before setting this bit.
9	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	MON	R/W	0	Debug Monitor Active
				Value Description
				0 The Debug monitor is not active.
				1 The Debug monitor is active.
7	SVCA	R/W	0	SVC Call Active
				Value Description
				0 SVC call is not active.
				1 SVC call is active.
				This bit can be modified to change the active status of the SVC call exception, however, see the Caution above before setting this bit.
6:4	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	USGA	R/W	0	Usage Fault Active
				Value Description
				0 Usage fault is not active.
				1 Usage fault is active.
				This bit can be modified to change the active status of the usage fault exception, however, see the Caution above before setting this bit.
2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	BUSA	R/W	0	Bus Fault Active
				Value Description
				0 Bus fault is not active.
				1 Bus fault is active.
				This bit can be modified to change the active status of the bus fault exception, however, see the Caution above before setting this bit.

Bit/Field	Name	Туре	Reset	Description
0	MEMA	R/W	0	Memory Management Fault Active
				Value Description 0 Memory management fault is not active.
				1 Memory management fault is active.
				This bit can be modified to change the active status of the memory management fault exception, however, see the Caution above before setting this bit.

www.BSDI TIC.com/TI

Register 28: Configurable Fault Status (FAULTSTAT), offset 0xD28

Note: This register can only be accessed from privileged mode.

The **FAULTSTAT** register indicates the cause of a memory management fault, bus fault, or usage fault. Each of these functions is assigned to a subregister as follows:

- Usage Fault Status (UFAULTSTAT), bits 31:16
- Bus Fault Status (BFAULTSTAT), bits 15:8
- Memory Management Fault Status (MFAULTSTAT), bits 7:0

FAULTSTAT is byte accessible. FAULTSTAT or its subregisters can be accessed as follows:

- The complete FAULTSTAT register, with a word access to offset 0xD28
- The **MFAULTSTAT**, with a byte access to offset 0xD28
- The MFAULTSTAT and BFAULTSTAT, with a halfword access to offset 0xD28
- The BFAULTSTAT, with a byte access to offset 0xD29
- The **UFAULTSTAT**, with a halfword access to offset 0xD2A

Bits are cleared by writing a 1 to them.

Configurable Foult Status (FALIL TSTAT)

In a fault handler, the true faulting address can be determined by:

- Read and save the Memory Management Fault Address (MMADDR) or Bus Fault Address (FAULTADDR) value.
- 2. Read the MMARV bit in MFAULTSTAT, or the BFARV bit in BFAULTSTAT to determine if the MMADDR or FAULTADDR contents are valid.

Software must follow this sequence because another higher priority exception might change the **MMADDR** or **FAULTADDR** value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the **MMADDR** or **FAULTADDR** value.

Con	figurabl	le Fault	Status	(FAULI	SIAI)											
Offse	0xE000.l t 0xD28 R/W1C, r	E000 reset 0x00	000.000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			rese	rved			DIV0	UNALIGN		resei	ved		NOCP	INVPC	INVSTAT	UNDEF
Туре	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C	RO	RO	RO	RO	R/W1C	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BFARV	rese	rved	BSTKE	BUSTKE	IMPRE	PRECISE	IBUS	MMARV	reser	rved	MSTKE	MUSTKE	reserved	DERR	IERR
Туре	R/W1C	RO	RO	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	RO	RO	R/W1C	R/W1C	RO	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/Field		Nam		Ту		Reset		cription							
	31:26		reserv	ved	R	0	0x00	com	patibility	with futu	ire produ	ucts, the	of a reservalue of operation	a reserv	•	

WWW BD Is um ints Production Data

Bit/Field	Name	Туре	Reset	Description
25	DIV0	R/W1C	0	Divide-by-Zero Usage Fault
				Value Description
				0 No divide-by-zero fault has occurred, or divide-by-zero trapping is not enabled.
				1 The processor has executed an SDIV or UDIV instruction with a divisor of 0.
				When this bit is set, the PC value stacked for the exception return points to the instruction that performed the divide by zero. Trapping on divide-by-zero is enabled by setting the DIVO bit in the Configuration and Control (CFGCTRL) register (see page 112). This bit is cleared by writing a 1 to it.
24	UNALIGN	R/W1C	0	Unaligned Access Usage Fault
				Value Description
				0 No unaligned access fault has occurred, or unaligned access trapping is not enabled.
				1 The processor has made an unaligned memory access.
				Unaligned LDM, STM, LDRD, and STRD instructions always fault regardless of the configuration of this bit. Trapping on unaligned access is enabled by setting the UNALIGNED bit in the CFGCTRL register (see page 112). This bit is cleared by writing a 1 to it.
23:20	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
19	NOCP	R/W1C	0	No Coprocessor Usage Fault
				Value Description
				0 A usage fault has not been caused by attempting to access a coprocessor.
				1 The processor has attempted to access a coprocessor.
				This bit is cleared by writing a 1 to it.
18	INVPC	R/W1C	0	Invalid PC Load Usage Fault
				Value Description
				0 A usage fault has not been caused by attempting to load an invalid PC value.
				1 The processor has attempted an illegal load of EXC_RETURN to the PC as a result of an invalid context or an invalid EXC_RETURN value.
				When this bit is set, the PC value stacked for the exception return points to the instruction that tried to perform the illegal load of the PC . This bit is cleared by writing a 1 to it.

www.Bbunts Production Data /TI

Bit/Field	Name	Туре	Reset	Description
17	INVSTAT	R/W1C	0	Invalid State Usage Fault
				Value Description
				0 A usage fault has not been caused by an invalid state.
				1 The processor has attempted to execute an instruction that makes illegal use of the EPSR register.
				When this bit is set, the PC value stacked for the exception return points to the instruction that attempted the illegal use of the Execution Program Status Register (EPSR) register. This bit is not set if an undefined instruction uses the EPSR register. This bit is cleared by writing a 1 to it.
16	UNDEF	R/W1C	0	Undefined Instruction Usage Fault
				Value Description
				0 A usage fault has not been caused by an undefined instruction.
				1 The processor has attempted to execute an undefined instruction.
				When this bit is set, the PC value stacked for the exception return points to the undefined instruction. An undefined instruction is an instruction that the processor cannot decode. This bit is cleared by writing a 1 to it.
15	BFARV	R/W1C	0	Bus Fault Address Register Valid
				Value Description
				0 The value in the Bus Fault Address (FAULTADDR) register is not a valid fault address.
				1 The FAULTADDR register is holding a valid fault address.
				This bit is set after a bus fault, where the address is known. Other faults can clear this bit, such as a memory management fault occurring later. If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must clear this bit. This action prevents problems if returning to a stacked active bus fault handler whose FAULTADDR register value has been overwritten. This bit is cleared by writing a 1 to it.
14:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	BSTKE	R/W1C	0	Stack Bus Fault
				Value Description
				0 No bus fault has occurred on stacking for exception entry.
				1 Stacking for an exception entry has caused one or more bus faults.
				When this bit is set, the SP is still adjusted but the values in the context area on the stack might be incorrect. A fault address is not written to the FAULTADDR register. This bit is cleared by writing a 1 to it.

Bit/Field	Name	Туре	Reset	Description
11	BUSTKE	R/W1C	0	Unstack Bus Fault
				Value Description
				0 No bus fault has occurred on unstacking for a return from exception.
				 Unstacking for a return from exception has caused one or more bus faults.
				This fault is chained to the handler. Thus, when this bit is set, the original return stack is still present. The SP is not adjusted from the failing return, a new save is not performed, and a fault address is not written to the FAULTADDR register. This bit is cleared by writing a 1 to it.
10	IMPRE	R/W1C	0	Imprecise Data Bus Error
				Value Description
				0 An imprecise data bus error has not occurred.
				A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the error.
				When this bit is set, a fault address is not written to the FAULTADDR register. This fault is asynchronous. Therefore, if the fault is detected when the
				priority of the current process is higher than the bus fault priority, the bus fault becomes pending and becomes active only when the processor returns from all higher-priority processes. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that both the IMPRE bit is set and one of the precise fault status bits is set.
				This bit is cleared by writing a 1 to it.
9	PRECISE	R/W1C	0	Precise Data Bus Error
				Value Description
				0 A precise data bus error has not occurred.
				1 A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the fault.
				When this bit is set, the fault address is written to the FAULTADDR register. This bit is cleared by writing a 1 to it.
8	IBUS	R/W1C	0	Instruction Bus Error
				Value Description
				0 An instruction bus error has not occurred.
				1 An instruction bus error has occurred.
				The processor detects the instruction bus error on prefetching an instruction, but sets this bit only if it attempts to issue the faulting instruction. When this bit is set, a fault address is not written to the FAULTADDR register. This bit is cleared by writing a 1 to it.

www.Bbunts Production Data /TI

Bit/Field	Name	Туре	Reset	Description
7	MMARV	R/W1C	0	Memory Management Fault Address Register Valid
				Value Description
				0 The value in the Memory Management Fault Address (MMADDR) register is not a valid fault address.
				1 The MMADDR register is holding a valid fault address.
				If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must clear this bit. This action prevents problems if returning to a stacked active memory management fault handler whose MMADDR register value has been overwritten. This bit is cleared by writing a 1 to it.
6:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	MSTKE	R/W1C	0	Stack Access Violation
				Value Description
				0 No memory management fault has occurred on stacking for exception entry.
				1 Stacking for an exception entry has caused one or more access violations.
				When this bit is set, the SP is still adjusted but the values in the context area on the stack might be incorrect. A fault address is not written to the MMADDR register.
				This bit is cleared by writing a 1 to it.
3	MUSTKE	R/W1C	0	Unstack Access Violation
				Value Description
				0 No memory management fault has occurred on unstacking for a return from exception.
				1 Unstacking for a return from exception has caused one or more access violations.
				This fault is chained to the handler. Thus, when this bit is set, the original return stack is still present. The SP is not adjusted from the failing return, a new save is not performed, and a fault address is not written to the MMADDR register. This bit is cleared by writing a 1 to it.
2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
1	DERR	R/W1C	0	Data Access Violation
				Value Description
				0 A data access violation has not occurred.
				1 The processor attempted a load or store at a location that does not permit the operation.
				When this bit is set, the PC value stacked for the exception return points to the faulting instruction and the address of the attempted access is written to the MMADDR register.
				This bit is cleared by writing a 1 to it.
0	IERR	R/W1C	0	Instruction Access Violation
				Value Description
				0 An instruction access violation has not occurred.
				1 The processor attempted an instruction fetch from a location that does not permit execution.
				This fault occurs on any access to an XN region, even when the MPU is disabled or not present. When this bit is set, the PC value stacked for the exception return points to the faulting instruction and the address of the attempted access is not written to the MMADDR register. This bit is cleared by writing a 1 to it.

www.Bbunts Production Data m/TI

Register 29: Hard Fault Status (HFAULTSTAT), offset 0xD2C

Note: This register can only be accessed from privileged mode.

The **HFAULTSTAT** register gives information about events that activate the hard fault handler.

Bits are cleared by writing a 1 to them.

Hard Fault Status (HFAULTSTAT)

Base 0xE000.E000

Offset 0xD2C Type R/W1C, reset 0x0000.0000

Type												• -			<i>i</i> –	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DBG	FORCED							rese							
Type Reset	R/W1C 0	R/W1C 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r r		1 1			reser	ved		[1	1		r	VECT	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	RO 0
Reset	U	U	U	U	U	U	U	U	0	0	U	0	0	U	U	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31		DBO	G	R/W	/1C	0	This	ug Even bit is res erwise be	served for		-	is bit mu	ist be wi	ritten as a	a 0,
	30		FORC	ED	R/W	/1C	0	For	ed Hard	Fault						
								Val	ue Desc	ription						
								0	No fo	orced ha	rd fault h	as occui	red.			
								1	with o	configura	able prior		annot be		alation o I, either b	
								stat	en this bi us registe bit is cle	ers to fin	id the ca	use of th		st read t	he other	fault
	29:2		reser	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	1		VEC	т	R/W	/1C	0	Vec	tor Table	Read F	ault					
								Val	ue Desc	ription						
								0	No b	us fault l	has occu	rred on a	a vector	table rea	ad.	
								1	A bus	s fault o	ccurred o	on a vect	or table	read.		
								Whe to th	error is en this bit ne instruc bit is cle	t is set, th tion that	ne PC va t was pre	lue stack	ed for th	е ехсер	tion retur	n points
	0		reserv	ved	R	0	0	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv		

Memory Management Fault Address (MMADDR)

Register 30: Memory Management Fault Address (MMADDR), offset 0xD34

Note: This register can only be accessed from privileged mode.

The **MMADDR** register contains the address of the location that generated a memory management fault. When an unaligned access faults, the address in the **MMADDR** register is the actual address that faulted. Because a single read or write instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size. Bits in the **Memory Management Fault Status (MFAULTSTAT)** register indicate the cause of the fault and whether the value in the **MMADDR** register is valid (see page 121).

Base 0xE000.E000 Offset 0xD34 Type R/W, reset -31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADDR Туре R/W Reset 15 13 12 10 9 14 11 8 7 6 5 4 3 2 1 0 ADDR R/W R/W Туре R/W Reset **Bit/Field** Name Type Reset Description 31:0 ADDR R/W Fault Address When the MMARV bit of MFAULTSTAT is set, this field holds the address of the location that generated the memory management fault.

January 09, 2011

www.BDTIC.com/TI

Register 31: Bus Fault Address (FAULTADDR), offset 0xD38

Note: This register can only be accessed from privileged mode.

The **FAULTADDR** register contains the address of the location that generated a bus fault. When an unaligned access faults, the address in the **FAULTADDR** register is the one requested by the instruction, even if it is not the address of the fault. Bits in the **Bus Fault Status (BFAULTSTAT)** register indicate the cause of the fault and whether the value in the **FAULTADDR** register is valid (see page 121).

Base Offse	Fault A 0xE000.I t 0xD38 R/W, rese	Ξ000	(FAUL	raddr))											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1		1	1	1 1	AD) DR	I	1			1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		1		1 1	AD	DR	I	1			I	I	1
Type Reset	R/W	R/W -	R/W	R/W -	R/W -	R/W	R/W	R/W	R/W	R/W -	R/W	R/W -	R/W -	R/W	R/W	R/W
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:0		ADD	R	R/	W	-	Whe		AULTADI	DRV bit of on that g				s field h	olds the

3.6 Memory Protection Unit (MPU) Register Descriptions

This section lists and describes the Memory Protection Unit (MPU) registers, in numerical order by address offset.

The MPU registers can only be accessed from privileged mode.

130

Register 32: MPU Type (MPUTYPE), offset 0xD90

Note: This register can only be accessed from privileged mode.

The **MPUTYPE** register indicates whether the MPU is present, and if so, how many regions it supports.

Type	RO, reset	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	rese	rved	[1 1			I	1	IREG	SION	r	I	1
уре	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0
eset					0				0			0				
ſ	15 I	14	13 I	12	11 GION	10	9	8	7	6	5	4	3	2	1	0 SEPARAT
	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	reserved RO	RO	RO	RO	RO
ype eset	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
B	it/Field		Nam	ne	Ту	ре	Reset	Desc	cription							
	31:24		reserv	/ed	R	0	0x00	Soft	ware sh	ould not	relv on f	he value	of a res	erved bit	To pro	ovide
						•	0,100		patibility						•	should be
								pres	erved a	cross a r	ead-mo	dify-write				
	23:16		IREGI	ON	R	0	0x00	Num This This	iber of I field inc field alv	Regions licates th	s ne numb ntains 0x	dify-write er of sup 00. The I	operatio	on. IPU inst		regions.
	23:16 15:8		IREGI		R		0x00 0x08	Num This This is de	ber of I field inc field alv scribed	Regions licates th vays cor	ne numb ntains 0x DREGION	dify-write er of sup 00. The I	operatio	on. IPU inst		regions.
								Num This This is de Num	ber of I field inc field alv scribed	Regions licates th vays cor by the I O Region	ne numb ntains 0x DREGION	dify-write er of sup 00. The I	operatio	on. IPU inst		regions.
								Num This This is de Num Valu	iber of I field inc field alv escribed iber of E	Regions licates th vays cor by the I D Region cription	ne numb ntains 0x DREGION	dify-write er of sup 00. The I	operation ported M MPU me	on. IPU inst mory ma	ap is un	regions. ified and
				ION		0		Num This This is de Num Valu 0x00 Softv	ber of I field inc field alv escribed ber of E ie Desc 8 Indic ware sho patibility	Regions licates th vays cor by the I) Region cription ates the puld not	ne numb ntains 0x REGION s re are ei rely on t ure prod	dify-write er of sup 00. The f I field.	operatic ported M MPU me orted MF of a reso value of	n. IPU insti mory ma PU data erved bit a reserv	ap is un regions To pro	regions. ified and
	15:8		DREG	ION /ed	R	0	0x08	Num This This is de Num Valu 0x00 Softv compres	ber of I field inc field alv scribed ber of E ie Desc 8 Indic ware sho patibility erved a	Regions licates th vays cor by the I) Region cription ates the puld not	ne numb ntains 0x REGION s re are ei rely on t ure prod read-mo	dify-write er of sup 00. The N T field. ght suppo he value ucts, the	operatic ported M MPU me orted MF of a reso value of	n. IPU insti mory ma PU data erved bit a reserv	ap is un regions To pro	regions. ified and
	15:8 7:1		DREG	ION /ed	R	0	0x08 0x00	Num This This is de Num Valu 0x00 Softv com pres Sepa	ber of I field inc field alv scribed ber of E ie Desc 8 Indic ware sho patibility erved a	Regions licates the vays cor by the I) Region aription ates the ould not with fut cross a r Unified	ne numb ntains 0x REGION s re are ei rely on t ure prod read-mo	dify-write er of sup 00. The N T field. ght suppo he value ucts, the	operatic ported M MPU me orted MF of a reso value of	n. IPU insti mory ma PU data erved bit a reserv	ap is un regions To pro	regions. ified and

www.BDTIC.com/TI

Register 33: MPU Control (MPUCTRL), offset 0xD94

Note: This register can only be accessed from privileged mode.

The **MPUCTRL** register enables the MPU, enables the default memory map background region, and enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and Fault Mask Register (FAULTMASK) escalated handlers.

When the ENABLE and PRIVDEFEN bits are both set:

- For privileged accesses, the default memory map is as described in "Memory Model" on page 58. Any access by privileged software that does not address an enabled memory region behaves as defined by the default memory map.
- Any access by unprivileged software that does not address an enabled memory region causes a memory management fault.

Execute Never (XN) and Strongly Ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set, at least one region of the memory map must be enabled for the system to function unless the PRIVDEFEN bit is set. If the PRIVDEFEN bit is set and no regions are enabled, then only privileged software can operate.

When the ENABLE bit is clear, the system uses the default memory map, which has the same memory attributes as if the MPU is not implemented (see Table 2-5 on page 60 for more information). The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are accessible based on regions and whether PRIVDEFEN is set.

Unless HFNMIENA is set, the MPU is not enabled when the processor is executing the handler for an exception with priority -1 or -2. These priorities are only possible when handling a hard fault or NMI exception or when FAULTMASK is enabled. Setting the HFNMIENA bit enables the MPU when operating with these two priorities.

MPU Control (MPUCTRL)

Offse	0xE000. t 0xD94 R/W, res		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Î	1	Ì	1	1	1 1	reser	ved		î.	1	1	1	Î	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		1	1	1		1			1		1			
		•	•	•		•	reserved	. i					1	PRIVDEFEN	HFNMIENA	ENABLE
Туре	RO	RO	RO	RO	RO	RO	reserved	RO	RO	RO	RO	RO	RO	PRIVDEFEN	HFNMIENA R/W	ENABLE R/W
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Reset				0	0		RO	0						R/W	R/W	R/W

preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
2	PRIVDEFEN	R/W	0	MPU Default Region This bit enables privileged software access to the default memory map.
				Value Description
				0 If the MPU is enabled, this bit disables use of the default memory map. Any memory access to a location not covered by any enabled region causes a fault.
				1 If the MPU is enabled, this bit enables use of the default memory map as a background region for privileged software accesses.
				When this bit is set, the background region acts as if it is region number -1. Any region that is defined and enabled has priority over this default map.
				If the MPU is disabled, the processor ignores this bit.
1	HFNMIENA	R/W	0	MPU Enabled During Faults
				This bit controls the operation of the MPU during hard fault, NMI, and FAULTMASK handlers.
				Value Description
				0 The MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
				1 The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.
				When the MPU is disabled and this bit is set, the resulting behavior is unpredictable.
0	ENABLE	R/W	0	MPU Enable
				Value Description
				0 The MPU is disabled.
				1 The MPU is enabled.
				When the MPU is disabled and the HFNMIENA bit is set, the resulting behavior is unpredictable.

www.Bbunts Production Data m/TI

Register 34: MPU Region Number (MPUNUMBER), offset 0xD98

Note: This register can only be accessed from privileged mode.

The **MPUNUMBER** register selects which memory region is referenced by the **MPU Region Base Address (MPUBASE)** and **MPU Region Attribute and Size (MPUATTR)** registers. Normally, the required region number should be written to this register before accessing the **MPUBASE** or the **MPUATTR** register. However, the region number can be changed by writing to the **MPUBASE** register with the VALID bit set (see page 134). This write updates the value of the REGION field.

MPU Region Number (MPUNUMBER)

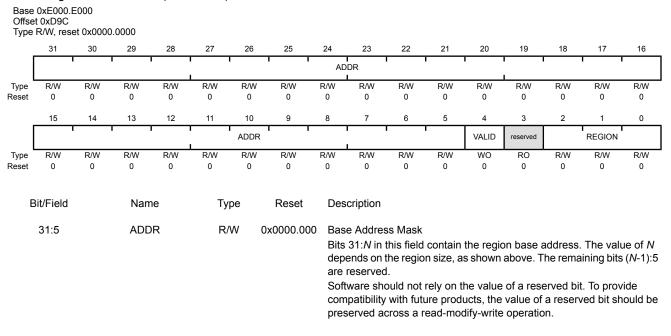
Base 0xE000.E000

Offset 0xD98 Type R/W, reset 0x0000 0000

туре	R/W, res	et uxuuu	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I	r	1 1		,		1 1	rese	erved		1	I		r	1	,
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[I	r	1 1		,		reserved		, , , , , , , , , , , , , , , , , , ,		1				NUMBER	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	e	Ty	ре	Reset	Des	scription							
	31:3		reserv	ved	R	0 (0x0000.000	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	2:0		NUME	ER	R/	W	0x0	This	U Region s field ind UATTR re	icates th	ne MPU	-		-		

Register 35: MPU Region Base Address (MPUBASE), offset 0xD9C Register 36: MPU Region Base Address Alias 1 (MPUBASE1), offset 0xDA4 Register 37: MPU Region Base Address Alias 2 (MPUBASE2), offset 0xDAC Register 38: MPU Region Base Address Alias 3 (MPUBASE3), offset 0xDB4

Note: This register can only be accessed from privileged mode.


The **MPUBASE** register defines the base address of the MPU region selected by the **MPU Region Number (MPUNUMBER)** register and can update the value of the **MPUNUMBER** register. To change the current region number and update the **MPUNUMBER** register, write the **MPUBASE** register with the VALID bit set.

The ADDR field is bits 31:*N* of the **MPUBASE** register. Bits (*N*-1):5 are reserved. The region size, as specified by the SIZE field in the **MPU Region Attribute and Size (MPUATTR)** register, defines the value of *N* where:

 $N = Log_2(Region size in bytes)$

If the region size is configured to 4 GB in the **MPUATTR** register, there is no valid ADDR field. In this case, the region occupies the complete memory map, and the base address is 0x0000.0000.

The base address is aligned to the size of the region. For example, a 64-KB region must be aligned on a multiple of 64 KB, for example, at 0x0001.0000 or 0x0002.0000.

T x s is um ints Production Data

MPU Region Base Address (MPUBASE)

134

Bit/Field	Name	Туре	Reset	Description
4	VALID	WO	0	Region Number Valid
				Value Description
				0 The MPUNUMBER register is not changed and the processor updates the base address for the region specified in the MPUNUMBER register and ignores the value of the REGION field.
				1 The MPUNUMBER register is updated with the value of the REGION field and the base address is updated for the region specified in the REGION field.
				This bit is always read as 0.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2:0	REGION	R/W	0x0	Region Number On a write, contains the value to be written to the MPUNUMBER register. On a read, returns the current region number in the MPUNUMBER register.

Register 39: MPU Region Attribute and Size (MPUATTR), offset 0xDA0 Register 40: MPU Region Attribute and Size Alias 1 (MPUATTR1), offset 0xDA8 Register 41: MPU Region Attribute and Size Alias 2 (MPUATTR2), offset 0xDB0 Register 42: MPU Region Attribute and Size Alias 3 (MPUATTR3), offset 0xDB8

Note: This register can only be accessed from privileged mode.

The **MPUATTR** register defines the region size and memory attributes of the MPU region specified by the **MPU Region Number (MPUNUMBER)** register and enables that region and any subregions.

The **MPUATTR** register is accessible using word or halfword accesses with the most-significant halfword holding the region attributes and the least-significant halfword holds the region size and the region and subregion enable bits.

The MPU access permission attribute bits, XN, AP, TEX, S, C, and B, control access to the corresponding memory region. If an access is made to an area of memory without the required permissions, then the MPU generates a permission fault.

The SIZE field defines the size of the MPU memory region specified by the **MPUNUMBER** register as follows:

(Region size in bytes) = 2^(SIZE+1)

The smallest permitted region size is 32 bytes, corresponding to a SIZE value of 4. Table 3-9 on page 136 gives example SIZE values with the corresponding region size and value of N in the **MPU Region Base Address (MPUBASE)** register.

SIZE Encoding	Region Size	Value of N ^a	Note
00100b (0x4)	32 B	5	Minimum permitted size
01001b (0x9)	1 KB	10	-
10011b (0x13)	1 MB	20	-
11101b (0x1D)	1 GB	30	-
11111b (0x1F)	4 GB	No valid ADDR field in MPUBASE ; the region occupies the complete memory map.	Maximum possible size

Table 3-9. Example SIZE Field Values

a. Refers to the N parameter in the MPUBASE register (see page 134).

MPU Region Attribute and Size (MPUATTR)

Base 0xE000.E000 Offset 0xDA0 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		reserved		XN	reserved		AP	Ι	rese	rved		TEX		S	С	В
Туре	RO	RO	RO	R/W	RO	R/W	R/W	R/W	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1 1		SF	RD			I	rese	rved		I	SIZE			ENABLE
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:29	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
28	XN	R/W	0	Instruction Access Disable
				Value Description
				0 Instruction fetches are enabled.
				1 Instruction fetches are disabled.
27	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
26:24	AP	R/W	0	Access Privilege For information on using this bit field, see Table 3-5 on page 88.
23:22	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
21:19	TEX	R/W	0x0	Type Extension Mask For information on using this bit field, see Table 3-3 on page 87.
18	S	R/W	0	Shareable For information on using this bit, see Table 3-3 on page 87.
17	С	R/W	0	Cacheable For information on using this bit, see Table 3-3 on page 87.
16	В	R/W	0	Bufferable For information on using this bit, see Table 3-3 on page 87.
15:8	SRD	R/W	0x00	Subregion Disable Bits
				Value Description
				0 The corresponding subregion is enabled.
				1 The corresponding subregion is disabled.
				Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, configure the SRD field as 0x00. See the section called "Subregions" on page 86 for more information.
7:6	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5:1	SIZE	R/W	0x0	Region Size Mask The SIZE field defines the size of the MPU memory region specified by the MPUNUMBER register. Refer to Table 3-9 on page 136 for more information.

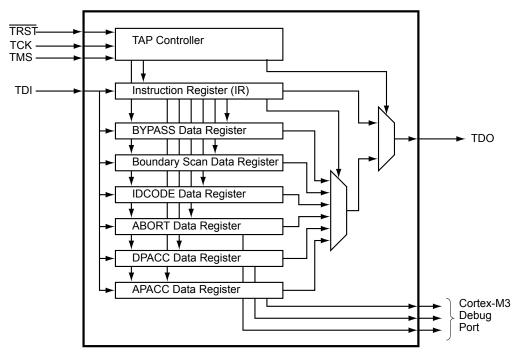
Bit/Field	Name	Туре	Reset	Description
0	ENABLE	R/W	0	Region Enable
				Value Description
				0 The region is disabled.
				1 The region is enabled.

www.BDJ Internets Production Data

4 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.


The Stellaris[®] JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Stellaris JTAG instructions select the Stellaris TDO outputs. The multiplexer is controlled by the Stellaris JTAG controller, which has comprehensive programming for the ARM, Stellaris, and unimplemented JTAG instructions.

The Stellaris JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST
- ARM additional instructions: APACC, DPACC and ABORT
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Debug Interface V5 Architecture Specification* for more information on the ARM JTAG controller.

4.1 Block Diagram

Figure 4-1. JTAG Module Block Diagram

4.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 4-1 on page 140. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 4-2 on page 145 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 490 for JTAG timing diagrams.

Tix s is um ints Production Data

4.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 4-1 on page 141. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
TCK	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 4-1. JTAG Port Pins Reset State

4.2.1.1 Test Reset Input (TRST)

The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the TRST pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

4.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

4.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 4-2 on page 143.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

WWW DD Is um ints Production Data

4.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.

4.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

4.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 4-2 on page 143. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

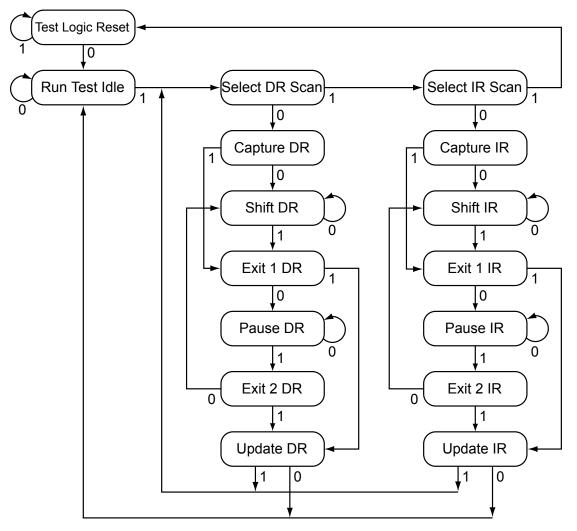


Figure 4-2. Test Access Port State Machine

4.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 145.

4.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

WWW BD Is um ints Production Data

4.2.4.1 GPIO Functionality

When the microcontroller is reset with either a POR or \overline{RST} , the JTAG port pins default to their JTAG configurations. The default configuration includes enabling the pull-up resistors (setting **GPIOPUR** to 1 for PB7 and PC[3:0]) and enabling the alternate hardware function (setting **GPIOAFSEL** to 1 for PB7 and PC[3:0]) on the JTAG pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply $\overline{\text{RST}}$ or power-cycle the part.

It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

4.2.4.2 Communication with JTAG/SWD

Because the debug clock and the system clock can be running at different frequencies, care must be taken to maintain reliable communication with the JTAG/SWD interface. In the Capture-DR state, the result of the previous transaction, if any, is returned, together with a 3-bit ACK response. Software should check the ACK response to see if the previous operation has completed before initiating a new transaction. Alternatively, if the system clock is at least 8 times faster than the debug clock (TCK or SWCLK), the previous operation has enough time to complete and the ACK bits do not have to be checked.

4.2.4.3 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The switching preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test Idle, Select DR, Select IR, Capture IR, Run Test Idle, Select DR, Select IR, and Test-Logic-Reset states.

Stepping through the JTAG TAP Instruction Register (IR) load sequences of the TAP state machine twice without shifting in a new instruction enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the *ARM® Debug Interface V5 Architecture Specification*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

WWW BD Is um ints Production Data

4.3 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) for their alternate function using the **GPIOAFSEL** register. In addition to enabling the alternate functions, any other changes to the GPIO pad configurations on the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) should be reverted to their default settings.

4.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

4.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain connected between the JTAG TDI and TDO pins with a parallel load register. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 4-2 on page 145. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard</i> 1149.1 into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.

Table 4-2. JTAG Instruction Register Commands

4.4.1.1 EXTEST Instruction

The EXTEST instruction is not associated with its own Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows tests to be developed that drive known values out of the controller, which can be used to verify connectivity. While the EXTEST instruction is present in the Instruction Register, the Boundary Scan

WWW DD T is rum ints Production Data

Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register.

4.4.1.2 INTEST Instruction

The INTEST instruction is not associated with its own Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable. While the INTEXT instruction is present in the Instruction Register, the Boundary Scan Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register.

4.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 148 for more information.

4.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 148 for more information.

4.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 148 for more information.

4.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this

WWW.BDUINts Production Data m/TI

register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 148 for more information.

4.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a Power-On-Reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 147 for more information.

4.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 147 for more information.

4.4.2 Data Registers

The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

4.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 4-3 on page 147. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x1BA0.0477. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.

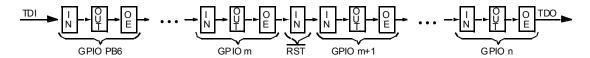
Figure 4-3. IDCODE Register Format

4.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 4-4 on page 148. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS

T x s ns. um ints Production Data

Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.


Figure 4-4. BYPASS Register Format

4.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 4-5 on page 148. Each GPIO pin, starting with a GPIO pin next to the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 4-5. Boundary Scan Register Format

4.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM® Debug Interface V5 Architecture Specification*.

4.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Debug Interface V5 Architecture Specification*.

4.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM® Debug Interface V5 Architecture Specification*.

WWW.BDJIC.COm/T

5 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

5.1 Functional Description

The System Control module provides the following capabilities:

- Device identification (see "Device Identification" on page 149)
- Local control, such as reset (see "Reset Control" on page 149), power (see "Power Control" on page 154) and clock control (see "Clock Control" on page 154)
- System control (Run, Sleep, and Deep-Sleep modes); see "System Control" on page 157

5.1.1 Device Identification

Several read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

5.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

5.1.2.1 Reset Sources

The controller has six sources of reset:

- **1.** External reset input pin (\overline{RST}) assertion; see "External \overline{RST} Pin" on page 150.
- 2. Power-on reset (POR); see "Power-On Reset (POR)" on page 150.
- 3. Internal brown-out (BOR) detector; see "Brown-Out Reset (BOR)" on page 152.
- 4. Software-initiated reset (with the software reset registers); see "Software Reset" on page 153.
- 5. A watchdog timer reset condition violation; see "Watchdog Timer Reset" on page 153.
- 6. Internal low drop-out (LDO) regulator output.

Table 5-1 provides a summary of results of the various reset operations.

WWW DD Is reduction Data

Table	5-1.	Reset	Sources	

Reset Source	Core Reset?	JTAG Reset?	On-Chip Peripherals Reset?
Power-On Reset	Yes	Yes	Yes
RST	Yes	Pin Config Only	Yes
Brown-Out Reset	Yes	No	Yes
Software System Request Reset ^a	Yes	No	Yes
Software Peripheral Reset	No	No	Yes ^b

Table 5-1. Reset Sources (continued)

Reset Source	Core Reset?	JTAG Reset?	On-Chip Peripherals Reset?		
Watchdog Reset	Yes	No	Yes		
LDO Reset	Yes	No	Yes		

a. By using the SYSRESREQ bit in the ARM Cortex-M3 **Application Interrupt and Reset Control (APINT)** register b. Programmable on a module-by-module basis using the Software Reset Control Registers.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

Note: The main oscillator is used for external resets and power-on resets; the internal oscillator is used during the internal process by internal reset and clock verification circuitry.

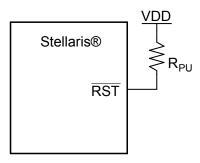
5.1.2.2 Power-On Reset (POR)

Note: The power-on reset also resets the JTAG controller. An external reset does not.

The internal Power-On Reset (POR) circuit monitors the power supply voltage (V_{DD}) and generates a reset signal to all of the internal logic including JTAG when the power supply ramp reaches a threshold value (V_{TH}). The microcontroller must be operating within the specified operating parameters when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the microcontroller must reach 3.0 V within 10 msec of V_{DD} crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset signal to hold the microcontroller in reset longer than the internal POR, the \overline{RST} input may be used as discussed in "External \overline{RST} Pin" on page 150.

The Power-On Reset sequence is as follows:

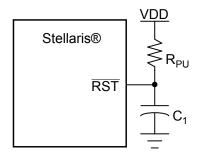
- 1. The microcontroller waits for internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.


The internal POR is only active on the initial power-up of the microcontroller. The Power-On Reset timing is shown in Figure 18-6 on page 493.

5.1.2.3 External RST Pin

Note: It is recommended that the trace for the RST signal must be kept as short as possible. Be sure to place any components connected to the RST signal as close to the microcontroller as possible.

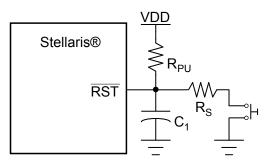
If the application only uses the internal POR circuit, the \overline{RST} input must be connected to the power supply (V_{DD}) through an optional pull-up resistor (0 to 100K Ω) as shown in Figure 5-1 on page 151.


 $R_{PU} = 0$ to 100 k Ω

The external reset pin ($\overline{\text{RST}}$) resets the microcontroller including the core and all the on-chip peripherals except the JTAG TAP controller (see "JTAG Interface" on page 139). The external reset sequence is as follows:

- 1. The external reset pin (RST) is asserted for the duration specified by T_{MIN} and then de-asserted (see "Reset" on page 492).
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

To improve noise immunity and/or to delay reset at power up, the \overline{RST} input may be connected to an RC network as shown in Figure 5-2 on page 151.



 R_{PU} = 1 k Ω to 100 k Ω

 $C_1 = 1 \text{ nF to } 10 \mu \text{F}$

If the application requires the use of an external reset switch, Figure 5-3 on page 152 shows the proper circuitry to use.

Figure 5-3. Reset Circuit Controlled by Switch

Typical R_{PU} = 10 kΩ

Typical R_S = 470 Ω

C₁ = 10 nF

The R_{PU} and C_1 components define the power-on delay.

The external reset timing is shown in Figure 18-5 on page 493.

5.1.2.4 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (V_{DD}) drops below a brown-out threshold voltage (V_{BTH}) . The circuit is provided to guard against improper operation of logic and peripherals that operate off the power supply voltage (V_{DD}) and not the LDO voltage. If a brown-out condition is detected, the system may generate a controller interrupt or a system reset. The BOR circuit has a digital filter that protects against noise-related detection for the interrupt condition. This feature may be optionally enabled.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset sequence is as follows:

- 1. When V_{DD} drops below V_{BTH} , an internal BOR condition is set.
- 2. If the BORWT bit in the **PBORCTL** register is set and BORIOR is not set, the BOR condition is resampled, after a delay specified by BORTIM, to determine if the original condition was caused by noise. If the BOR condition is not met the second time, then no further action is taken.
- 3. If the BOR condition exists, an internal reset is asserted.
- 4. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.
- 5. The internal BOR condition is reset after 500 μ s to prevent another BOR condition from being set before software has a chance to investigate the original cause.

The internal Brown-Out Reset timing is shown in Figure 18-7 on page 493.

Tix s issuments Production Data

5.1.2.5 Software Reset

Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 157). Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- **3.** The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 18-8 on page 494.

5.1.2.6 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- **3.** The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 18-9 on page 494.

5.1.2.7 Low Drop-Out (LDO)

A reset can be initiated when the internal low drop-out (LDO) regulator output goes unregulated. This is initially disabled and may be enabled by software. LDO is controlled with the **LDO Power Control (LDOPCTL)** register. The LDO reset sequence is as follows:

1. LDO goes unregulated and the LDOARST bit in the LDOARST register is set.

WWW BD Is um ints Production Data

2. An internal reset is asserted.

3. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The LDO reset timing is shown in Figure 18-10 on page 494.

5.1.3 Power Control

The Stellaris[®] microcontroller provides an integrated LDO regulator that is used to provide power to the majority of the controller's internal logic. For power reduction, the LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V \pm 10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register.

5.1.4 Clock Control

System control determines the control of clocks in this part.

5.1.4.1 Fundamental Clock Sources

There are multiple clock sources for use in the device:

- Internal Oscillator (IOSC). The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%.
- Main Oscillator (MOSC). The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. The crystal value allowed depends on whether the main oscillator is used as the clock reference source to the PLL. If so, the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in the XTAL bit field in the RCC register (see page 169).

The internal system clock (SysClk), is derived from any of the above sources plus two others: the output of the main internal PLL, and the internal oscillator divided by four (3 MHz \pm 30%). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive). Table 5-2 on page 154 shows how the various clock sources can be used in a system.

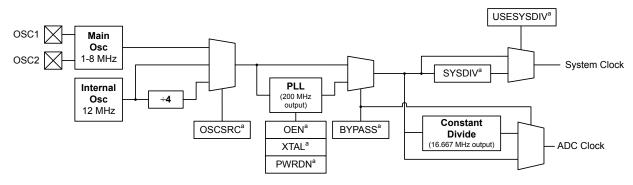
Clock Source	Drive PLL?		Used as SysC	Sik?
Internal Oscillator (12 MHz)	Yes	BYPASS = 0, OSCSRC = 0x1	Yes	BYPASS = 1, OSCSRC = 0x1
Internal Oscillator divide by 4 (3 MHz)	Yes	BYPASS = 0 , OSCSRC = $0x2$	Yes	BYPASS = 1, OSCSRC = 0x2
Main Oscillator	Yes	BYPASS = 0 , OSCSRC = 0×0	Yes	BYPASS = 1, OSCSRC = 0x0

Table 5-2. Clock Source Options

5.1.4.2 Clock Configuration

Nearly all of the control for the clocks is provided by the **Run-Mode Clock Configuration (RCC)** register. This register controls the following clock functionality:

• Source of clocks in sleep and deep-sleep modes


WWW BD Is um ints Production Data

- System clock derived from PLL or other clock source
- Enabling/disabling of oscillators and PLL
- Clock divisors
- Crystal input selection

Figure 5-4 on page 155 shows the logic for the main clock tree. The peripheral blocks are driven by the system clock signal and can be individually enabled/disabled. The ADC clock signal is automatically divided down to 16.67 MHz for proper ADC operation.

Note: When the ADC module is in operation, the system clock must be at least 16.667 MHz.

a. These are bit fields within the Run-Mode Clock Configuration (RCC) register.

In the **RCC** register, the SYSDIV field specifies which divisor is used to generate the system clock from either the PLL output or the oscillator source (depending on how the BYPASS bit in this register is configured). Table 5-3 shows how the SYSDIV encoding affects the system clock frequency, depending on whether the PLL is used (BYPASS=0) or another clock source is used (BYPASS=1). The divisor is equivalent to the SYSDIV encoding plus 1. For a list of possible clock sources, see Table 5-2 on page 154.

SYSDIV	Divisor	Frequency (BYPASS=0)	Frequency (BYPASS=1)	StellarisWare Parameter ^a
0x0	/1	reserved	Clock source frequency/2	SYSCTL_SYSDIV_1 ^b
0x1	/2	reserved	Clock source frequency/2	SYSCTL_SYSDIV_2
0x2	/3	reserved	Clock source frequency/3	SYSCTL_SYSDIV_3
0x3	/4	50 MHz	Clock source frequency/4	SYSCTL_SYSDIV_4
0x4	/5	40 MHz	Clock source frequency/5	SYSCTL_SYSDIV_5
0x5	/6	33.33 MHz	Clock source frequency/6	SYSCTL_SYSDIV_6
0x6	/7	28.57 MHz	Clock source frequency/7	SYSCTL_SYSDIV_7
0x7	/8	25 MHz	Clock source frequency/8	SYSCTL_SYSDIV_8
0x8	/9	22.22 MHz	Clock source frequency/9	SYSCTL_SYSDIV_9
0x9	/10	20 MHz	Clock source frequency/10	SYSCTL_SYSDIV_10
0xA	/11	18.18 MHz	Clock source frequency/11	SYSCTL_SYSDIV_11

Table 5-3. Possible Sy	vetom Clock Fraguan	cios Using the	
Table 3-3. Pussible 3	Stelli Clock Frequell	cies using the a	

SYSDIV	Divisor	Frequency (BYPASS=0)	Frequency (BYPASS=1)	StellarisWare Parameter ^a
0xB	/12	16.67 MHz	Clock source frequency/12	SYSCTL_SYSDIV_12
0xC	/13	15.38 MHz	Clock source frequency/13	SYSCTL_SYSDIV_13
0xD	/14	14.29 MHz	Clock source frequency/14	SYSCTL_SYSDIV_14
0xE	/15	13.33 MHz	Clock source frequency/15	SYSCTL_SYSDIV_15
0xF	/16	12.5 MHz (default)	Clock source frequency/16	SYSCTL_SYSDIV_16

Table 5-3. Possible System Clock Frequencies Using the SYSDIV Field (continued)

a. This parameter is used in functions such as SysCtlClockSet() in the Stellaris Peripheral Driver Library.

b. SYSCTL_SYSDIV_1 does not set the USESYSDIV bit. As a result, using this parameter without enabling the PLL results in the system clock having the same frequency as the clock source.

5.1.4.3 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise, the range of supported crystals is 1 to 8.192 MHz.

The XTAL bit in the **RCC** register (see page 169) describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

5.1.4.4 Main PLL Frequency Configuration

The main PLL is disabled by default during power-on reset and is enabled later by software if required. Software configures the main PLL input reference clock source, specifies the output divisor to set the system clock frequency, and enables the main PLL to drive the output.

If the main oscillator provides the clock reference to the main PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation** (**PLLCFG**) register (see page 172). The internal translation provides a translation within \pm 1% of the targeted PLL VCO frequency.

The Crystal Value field (XTAL) in the **Run-Mode Clock Configuration (RCC)** register (see page 169) describes the available crystal choices and default programming of the **PLLCFG** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

5.1.4.5 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC register fields (see page 169).

WWW BD Is um ints Production Data

5.1.4.6 PLL Operation

If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is T_{READY} (see Table 18-7 on page 490). During the relock time, the affected PLL is not usable as a clock reference.

PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC** register is switched to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system control hardware continues to clock the controller from the oscillator selected by the **RCC** register until the main PLL is stable (T_{READY} time met), after which it changes to the PLL. Software can use many methods to ensure that the system is clocked from the main PLL, including periodically polling the PLLLRIS bit in the **Raw Interrupt Status (RIS)** register, and enabling the PLL Lock interrupt.

5.1.4.7 Clock Verification Timers

There are three identical clock verification circuits that can be enabled though software. The circuit checks the faster clock by a slower clock using timers:

- The main oscillator checks the PLL.
- The main oscillator checks the internal oscillator.
- The internal oscillator divided by 64 checks the main oscillator.

If the verification timer function is enabled and a failure is detected, the main clock tree is immediately switched to a working clock and an interrupt is generated to the controller. Software can then determine the course of action to take. The actual failure indication and clock switching does not clear without a write to the **CLKVCLR** register, an external reset, or a POR reset. The clock verification timers are controlled by the PLLVER, IOSCVER, and MOSCVER bits in the **RCC** register.

5.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively. The **DC1**, **DC2** and **DC4** registers act as a write mask for the **RCGCn**, **SCGCn**, and **DCGCn** registers.

There are three levels of operation for the device defined as:

- Run Mode. In Run mode, the controller actively executes code. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor and the memory subsystem are not clocked and therefore no longer execute code. Sleep mode is entered by the Cortex-M3 core executing a WFI(Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See "Power Management" on page 76 for more details.

Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

WWW.BDD ints Production Data

Deep-Sleep Mode. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes. Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See "Power Management" on page 76 for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC** register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

Caution – If the Cortex-M3 Debug Access Port (DAP) has been enabled, and the device wakes from a low power sleep or deep-sleep mode, the core may start executing code before all clocks to peripherals have been restored to their run mode configuration. The DAP is usually enabled by software tools accessing the JTAG or SWD interface when debugging or flash programming. If this condition occurs, a Hard Fault is triggered when software accesses a peripheral with an invalid clock.

A software delay loop can be used at the beginning of the interrupt routine that is used to wake up a system from a WFI (Wait For Interrupt) instruction. This stalls the execution of any code that accesses a peripheral register that might cause a fault. This loop can be removed for production software as the DAP is most likely not enabled during normal execution.

Because the DAP is disabled by default (power on reset), the user can also power-cycle the device. The DAP is not enabled unless it is enabled through the JTAG or SWD interface.

5.2 Initialization and Configuration

The PLL is configured using direct register writes to the **RCC** register. The steps required to successfully change the PLL-based system clock are:

- 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the **RCC** register. This configures the system to run off a "raw" clock source and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN and OEN bits in RCC. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN and OEN bits powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC.

WWW DD Is um ints Production Data

Note: If the BYPASS bit is cleared before the PLL locks, it is possible to render the device unusable.

5.3 Register Map

Table 5-4 on page 159 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or internal use. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
0x000	DID0	RO	-	Device Identification 0	161
0x004	DID1	RO	-	Device Identification 1	176
0x008	DC0	RO	0x001F.001F	Device Capabilities 0	178
0x010	DC1	RO	0x0001.32BF	Device Capabilities 1	179
0x014	DC2	RO	0x0107.1013	Device Capabilities 2	181
0x018	DC3	RO	0xBFFF.00C0	Device Capabilities 3	183
0x01C	DC4	RO	0x0000.001F	Device Capabilities 4	185
0x030	PBORCTL	R/W	0x0000.7FFD	Power-On and Brown-Out Reset Control	163
0x034	LDOPCTL	R/W	0x0000.0000	LDO Power Control	164
0x040	SRCR0	R/W	0x00000000	Software Reset Control 0	200
0x044	SRCR1	R/W	0x00000000	Software Reset Control 1	201
0x048	SRCR2	R/W	0x00000000	Software Reset Control 2	203
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	165
0x054	IMC	R/W	0x0000.0000	Interrupt Mask Control	166
0x058	MISC	R/W1C	0x0000.0000	Masked Interrupt Status and Clear	167
0x05C	RESC	R/W	-	Reset Cause	168
0x060	RCC	R/W	0x0780.3AC0	Run-Mode Clock Configuration	169
0x064	PLLCFG	RO	-	XTAL to PLL Translation	172
0x100	RCGC0	R/W	0x00000040	Run Mode Clock Gating Control Register 0	186
0x104	RCGC1	R/W	0x00000000	Run Mode Clock Gating Control Register 1	191
0x108	RCGC2	R/W	0x00000000	Run Mode Clock Gating Control Register 2	197
0x110	SCGC0	R/W	0x00000040	Sleep Mode Clock Gating Control Register 0	188
0x114	SCGC1	R/W	0x00000000	Sleep Mode Clock Gating Control Register 1	193
0x118	SCGC2	R/W	0x00000000	Sleep Mode Clock Gating Control Register 2	198
0x120	DCGC0	R/W	0x00000040	Deep Sleep Mode Clock Gating Control Register 0	190

Table 5-4. System Control Register Map

January 09, 2011

Offset	Name	Туре	Reset	Description	See page
0x124	DCGC1	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 1	195
0x128	DCGC2	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 2	199
0x144	DSLPCLKCFG	R/W	0x0780.0000	Deep Sleep Clock Configuration	173
0x150	CLKVCLR	R/W	0x0000.0000	Clock Verification Clear	174
0x160	LDOARST	R/W	0x0000.0000	Allow Unregulated LDO to Reset the Part	175

Table 5-4. System Control Register Map (continued)

5.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

www.BSDTIC.com/TI

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

Base Offse	0x400F.E t 0x000	000	on 0 (DI	D0)												
Type	RO, reset	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[reserved		VER	1		1	1 1	27	1	1	1 erved		10	10	1	
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	MA	JOR	•				•	•	MIN	NOR		•	•
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31		reserv	ved	R	0	0	com		with fut	ure prod	ucts, the	value of	erved bit f a reserv on.		
	30:28		VEF	2	R	0	0x0	This is n	umeric. 1 ue Desc) Initia	fines the The value cription	e of the v	VER field	is enco	sion. The ded as fo or Stellar	ollows:	numbe
	27:16		reserv	ved	R	RO		com	Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.							
	15:8 MAJOR		R	0	-	This revi num	sion refle nber is in	ecifies th cts chan dicated i	ges to ba in the pa	ase layer rt numbe	s of the c er as a le	of the de lesign. Tl tter (A fo as follow	he major or first rev	revisio		
								Val	ue Desc	ription						
								0x0) Revi	sion A (ii	nitial dev	rice)				
								0x1	Revi	sion B (f	irst base	layer re	vision)			
								0x2	2 Revi	sion C (s	second b	ase laye	r revisio	n)		
								and	so on.							

Bit/Field	Name	Туре	Reset	Description
7:0	MINOR	RO	-	Minor Revision This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows: Value Description 0x0 Initial device, or a major revision update. 0x1 First metal layer change.
				0x2 Second metal layer change.

and so on.

www.BDJ Internets Production Data

Register 2: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030

This register is responsible for controlling reset conditions after initial power-on reset.

Power-On and Brown-Out Reset Control (PBORCTL)
--	----------

Base 0x400F.E000

Offset 0x030 Type R/W, reset 0x0000.7FFD

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1		rese	erved	1	1	1	1	ı	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	T	1	1	BOR	TIM	1 -	1	1	1	1	1	BORIOR	BORWT
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x0	Sof	ware sh	ould not	relv on t	he value	of a res	erved bi	t. To prov	/ide
											,				ved bit sł	
								pres	served a	cross a r	ead-mo	dify-write	operatio	on.		
	15:2		BOR	ТІМ	R	Ŵ	0x1FFF	BOI	R Time D	elav						
	10.2		Don		10		UX II I I				e numbe	r of interr	nal oscilla	ator cloc	ks delaye	d before
									BOR out						, -	
															500 µs ar	
											,	• •	f 12 MH:	z ± 30%	. At +30%	6, the
								cou	nter valu	e nas to	exceed	7,800.				
	1		BORI	OR	R/	W	0	BOI	R Interru	pt or Res	set					
													•		ontroller.	lf set, a
								rese	et is sign	aled. Otł	nerwise,	an interr	rupt is sig	gnaled.		
	0		BOR	WT	R	w	1	BOI	R Wait a	nd Checl	k for Noi	se				
								This	s bit spec	ifies the	response	e to a bro	wn-out s	ignal as	sertion if	BORIOR
									ot set.							
															ontroller	
										•		•		•	t. If still a	
									uppresse		0		yei asse	neu, ine	e initial as	5001
									•••	`		,	resampl	e the ou	Itput and	any
									dition is				•		•	,

condition is reported immediately if enabled.

Register 3: LDO Power Control (LDOPCTL), offset 0x034

The <code>VADJ</code> field in this register adjusts the on-chip output voltage (V $_{OUT}$).

	0x400F.E	E000														
	t 0x034 R/W, rese	et 0x0000	0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1			1	1 1	reser	rved	1	I	1		I	1	T
rpe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1		rese	erved	1 1			1		1	. ∨^	/DJ	1	1
rpe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
B	8it/Field		Nam	ie	Ту	ре	Reset	Desc	cription							
	31:6		reserv	ved	R	0	0	com	patibility	ould not with fut	ure prod	ucts, the	value of	a reserv		
								pres	erved a	cross a r	ead-moo	dify-write	operatio	on.		
	5:0		VAD	Ŋ	R	W	0x0	LDO This	Output field se	cross a r Voltage ts the on Id are pr	ı-chip ou	tput volta			nming va	alues f
	5:0		VAD	Ŋ	R/	W	0x0	LDO This) Output field se VADJ fie	Voltage ts the on	i-chip ou ovided b	tput volta			nming va	alues
	5:0		VAD	ŋJ	R	W	0x0	LDO This the N) Output field se VADJ fie	Voltage ts the on Id are pr	i-chip ou ovided b	tput volta			nming va	alues f
	5:0		VAD	ŋ	R	w	0x0	LDO This the t	Output field se vadj fie ue 0	Voltage ts the on Id are pr V _{OUT} (V	i-chip ou ovided b	tput volta			nming va	alues
	5:0		VAD	ЭJ	R	w	0x0	LDO This the t Valu	Output field se vadj fie ue 0	Voltage ts the on Id are pr V _{OUT} (V 2.50	i-chip ou ovided b	tput volta			nming va	alues f
	5:0		VAC	IJ	R	W	0x0	LDO This the t Valu 0x00) Output field se JADJ fie Je 0 1 2	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45	i-chip ou ovided b	tput volta			nming va	alues 1
	5:0		VAC	IJ	R	W	0x0	LDO This the t Valu 0x00 0x02	0 Output field se VADJ fie Je 0 1 2 3	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40	i-chip ou ovided b	tput volta			nming va	alues f
	5:0		VAC	IJ	R	w	0x0	LDO This the t Valu 0x00 0x02 0x02	0 Output field se VADJ fie ue 0 1 2 3 4	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35	i-chip ou ovided b	tput volta			nming va	alues
	5:0		VAC	IJ	R/	W	0x0	LDO This the T Valu 0x00 0x00 0x00 0x00 0x00 0x00 0x00	0 Output field se vADJ fie ue 0 1 2 3 4 5	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30	i-chip ou ovided b	tput volta			nming va	alues 1
	5:0		VAC	IJ	R	w	0x0	LDO This the T Valu 0x00 0x00 0x00 0x00 0x00 0x00 0x00	0 Output field se vADJ fie 0 1 2 3 4 5 6-0x3F	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25	i-chip ou ovided b	tput volta			nming va	alues t
	5:0		VAE	IJ	R/	w	0x0	LDO This the T 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x) Output field se vadj fie 0 1 2 3 4 5 6-0x3F B	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25 Reserve	i-chip ou ovided b	tput volta			nming va	alues 1
	5:0		VAC	IJ	R	W	0x0	LDO This the T 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x	0 Output field se VADJ fie 0 1 2 3 4 5 6-0x3F B C	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25 Reserve 2.75	i-chip ou ovided b	tput volta			nming va	alues 1
	5:0		VAC	IJ	R	w	0x0	LDO This the T 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x	0 Output field se VADJ fie 0 1 2 3 4 5 6-0x3F B C D	Voltage ts the on Id are pr V _{OUT} (V 2.50 2.45 2.40 2.35 2.30 2.25 Reserve 2.75 2.70	i-chip ou ovided b	tput volta			nming va	alues 1

Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Base Offse	/ Interru 0x400F.E t 0x050 RO, rese	000	us (RIS))												
туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
]	1		 1		<u>т</u> г		<u>т т</u>		I erved	<u> </u>			1		1	
Г уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•				reserved		• •			PLLLRIS	CLRIS	IOFRIS	MOFRIS	LDORIS	BORRIS	PLLFRIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:7		reserv	ved	R	C	0	com	patibility	ould not i with futu cross a re	ire prodi	ucts, the	value of	a reserv		
		PLLL	R	C	0			aw Interru et when th			Timer ass	erts.				
	5		CLR	IS	R	C	0			it Raw Inf et if the Ll			t asserts			
	4		IOFR	lS	R	С	0			illator Fa et if an int		•		etected.		
	3		MOFF	RIS	R	C	0			itor Fault et if a mai		•		ed.		
	2		LDOF	RIS	R	C	0			Unregula et if a LD0			•	i		
1 BORRIS RO							0	This a br from bit ir	bit is th own-out the bro the IMC	Reset Ra e raw inte conditior wn-out de register	errupt st n is curre etection o	atus for ently acti circuit. A	any brov ive. This n interrup	is an uni ot is repo	registere rted if the	d signal BORIM
0 PLLFRIS RO 0 PLL Fault Raw I This bit is set if a											•		d (stops	oscillatin	g).	

Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

Interrupt Mask Control (IMC) Base 0x400F.E000

Offset 0x054 Type R/W, reset 0x0000.0000

Type	31			28	27	26	25	24	23	22	21	20	10	19	17	16
[31	30	29	28	27	26	25	24	23 I rved		21	20	19	18	17	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			•	reserved	l				PLLLIM	CLIM	IOFIM	MOFIM	LDOIM	BORIM	PLLFIM
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
B	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:7		reserv	ved	R	0	0	com	patibility	with futu	ire produ	ucts, the	of a reso value of operatio	a reserv		
	6		PLLL	IM	R/	W	0	This inte	bit speci rrupt. If s		ther a PL terrupt is	s genera	nterrupt is ted if PLI			
	5		CLII	М	R/	W	0	This cont	bit spec troller int		ether a c set, an i	interrupt	nit detec is gener ed.			
	4		IOFI	М	R/	W	0	This to a	bit speci controlle		ther an ir ot. If set,	nternal os an interr	scillator fa rupt is ge		•	
	3		MOF	IM	R/	W	0	This to a	bit spec controlle		ether a n ot. If set,	nain osci an interi	illator fau rupt is ge ed.			
	2		LDO	IM	R/	W	0	This pror	bit spection bit spections bit spectres bit	a contro	ether an ller inter	LDO uni rupt. If s	isk regulateo et, an int t is not g	errupt is	generat	
	1		BOR	IM	R/	W	0	This cont	bit spec troller int		ether a b set, an i	rown-ou interrupt	t conditio is gener ed.	-		
	0		PLLF	ΊM	R/	W	0	This inter	bit speci rrupt. If s		ther a PL terrupt is		etection i ted if PLI			

January 09, 2011

www.BDTIC.com/TI

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

On a read, this register gives the current masked status value of the corresponding interrupt. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the **RIS** register (see page 165).

Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000

Offset 0x058 Type R/W1C, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	1						і I	rese	rved	1 1		ſ		ſ		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	•			reserved					PLLLMIS	CLMIS	IOFMIS	MOFMIS	LDOMIS	BORMIS	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	RO 0
В	it/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:7		reserv	/ed	R	C	0	com	patibility	ould not r with futu cross a re	ire produ	ucts, the	value of	a reserv	•	
	6		PLLLN	MIS	R/W	'1C	0	This	bit is set	asked Int t when the 1 to this b	e PLL T _R		er assert	s. The in	terrupt is	cleared
	5	CLM	IS	R/W	'1C	0	This	bit is se	t Maskec et if the LI 1 to this b	DO's CL			The inte	errupt is	cleared	
	4		IOFM	IIS	R/W	'1C	0	This	bit is se	illator Fa et if an int vriting a 1	ernal os	cillator fa	•		The inter	rupt is
	3		MOFN	<i>I</i> IS	R/W	'1C	0	This	bit is se	tor Fault t if a main 1 to this t	oscillate	•		d. The in	terrupt is	cleared
	2		LDOM	/IS	R/W	'1C	0	This	bit is se	Unregula et if LDO o this bit.					pt is clea	red by
	1		BORN	ЛIS	R/W	'1C	0	This set, BOR	bit is the a brown	d Interrup e masked -out cond the IMC r eared. Th	d interru dition wa register i	pt status is detect s set and	ed. An ir I the BOR	iterrupt i IOR bit i	s reporte n the PB	d if the ORCTL
	0		reserv	/ed	R	C	0	com	patibility	ould not r with futu cross a re	ire produ	ucts, the	value of	a reserv		

Reset Cause (RESC)

Register 7: Reset Cause (RESC), offset 0x05C

This field specifies the cause of the reset event to software. The reset value is determined by the cause of the reset. When an external reset is the cause (EXT is set), all other reset bits are cleared. However, if the reset is due to any other cause, the remaining bits are sticky, allowing software to see all causes.

Base Offset	0x400F.E t 0x05C R/W, rese		,													
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•		rese	erved		•	•	•	•	•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	-	r		r	1	rved	<u>т т</u>		1	-	LDO	SW	WDT	BOR	POR	EXT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:6		reserv	ved	R	0	0	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	5 LDO		C	R	W	-	Whe) Reset en set, in erated a			circuit h	as lost re	egulatior	and ha	6	
	4		SW	I	R	W	-		ware Re en set, in		a softwa	re reset	is the ca	use of th	ie reset (event.
	3		WD.	Т	R	W	-		chdog Ti en set, in			log rese	t is the c	ause of I	the reset	event.
	2		BOF	R	R	W	-		wn-Out F en set, in		a brown-	out rese	t is the c	ause of	the rese	t event.
	1 POR			R	R	W	-		ver-On R en set, in		a power-	on reset	is the ca	ause of t	he reset	event.
	0		EX	Г	R	W	-	Whe	ernal Res en set, in reset eve	dicates	an exteri	nal reset	(<u>RST</u> as	sertion)	is the ca	use of

www.BDTIC.com/TI

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

Offset	0x400F.E t 0x060 R/W, rese		0.3AC0													
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'	res	erved		ACG		SYS	SDIV		USESYSDIV		•	rese	rved	•	
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reser	ved	PWRDN	OEN	BYPASS	PLLVER		X	TAL		OSC	SRC	IOSCVER	MOSCVER	IOSCDIS	MOSCDIS
Type Reset	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	e	Ту	ре	Reset	Des	scription							
:	31:28		reserv	ved	R	0	0x0	com	npatibility	ould not r with futu cross a re	re produ	ucts, the	value of	a reserv		
	27		ACC	3	R	W	0	This Gat Dee are con Cor moo The moo This	ting Con ing Con ep-Sleep used to troller is ntrol (RC de. RCGCr de. s allows	Gating cifies when throl (SCC mode (re control th in a sleep CGCn) reg n registers peripheration	GCn) reg GCn) reg spective e clocks o mode. gisters a s are alv ls to cor	gisters a gisters if ely). If se s distribu Otherw re used vays use	and Deep f the cont at, the SC uted to the ise, the F when the ed to con ess powe	-Sleep-I croller en GCn or I e periphe Run-Mod controlle trol the c	Mode Cla ters a SI DCGCn r erals who le Clock er enters clocks in	ock eep or egisters en the Gating a sleep Run
:	26:23		SYSE	₽IV	R/	W	0xF	Spe the bit i enc The If th PLL If th	ecifies wi PLL out n this re- odings. PLL VC e SYSDI is being	ck Divisor hich divisor put or the gister is c CO freque tv value i g used, th a not being 7.	or is use oscillato onfigure ncy is 2 s less th en the №	or sourced). See 00 MHz 100 MHz 11NSYSI	e (depen Table 5-3 SYSDIV (DIV value	ding on I 3 on pag (see pag e is used	how the : e 155 fo e 179), a l as the c	BYPASS r bit and the livisor.
	22		USESY	SDIV	R/	W	0	Use syst the If th in th	e the sys tem cloc source. e USERC ne RCC2	tem Clock tem clock k divider i cc2 bit in register i d in this re	the RCC s used a	as the s I to be u C2 regis	ised whe ter is set,	n the PL	L is sele	cted as
:	21:14		reserv	ved	R	0	0	con	npatibility	ould not r y with futu across a re	re produ	ucts, the	value of	a reserv		

Run-Mode Clock Configuration (RCC) Base 0x400F.E000

January 09, 2011

Bit/Field	Name	Туре	Reset	Description								
13	PWRDN	R/W	1		ects to the PLL PWR	DN input. The reset value of 1 powers page 171 for PLL mode control.						
12	OEN	R/W	1	the driver trai	fies whether the PL	L output driver is enabled. If cleared, < to the output. Otherwise, the PLL ne PLL module.						
				Note: Bo	th pwrdn and oen r	nust be cleared to run the PLL.						
11	BYPASS	R/W	1	the OSC sou source. Othe clock divided	s whether the system clock is derived from the PLL output or C source. If set, the clock that drives the system is the OSC Otherwise, the clock that drives the system is the PLL output vided by the system divider. ole 5-3 on page 155 for programming guidelines.							
					The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.							
10	PLLVER	R/W	0	timer is enab								
9:6	XTAL	R/W	0xB	encoding for	cifies the crystal value this field is provided							
					the PLL	Not Crystal Frequency (MHz) Using the PLL						
				0x0	1.000	reserved						
				0x1	1.8432	reserved						
				0x2	2.000	reserved						
				0x3	2.4576	reserved						
				0x4	3.	579545 MHz						
				0x5	:	3.6864 MHz						
				0x6		4 MHz						
				0x7		4.096 MHz						
				0x8		4.9152 MHz						
				0x9		5 MHz						
				0xA	~ • •	5.12 MHz						
				0xB		Hz (reset value)						
				0xC		6.144 MHz						
				0xD		7.3728 MHz						
				0xE		8 MHz						
				0xF		8.192 MHz						

Bit/Field	Name	Туре	Reset	Description
5:4	OSCSRC	R/W	0x0	Oscillator Source Selects the input source for the OSC. The values are:
				Value Input Source
				0x0 MOSC Main oscillator (default)
				0x1 IOSC Internal oscillator
				0x2 IOSC/4 Internal oscillator / 4 (this is necessary if used as input to PLL)
				0x3 reserved
3	IOSCVER	R/W	0	Internal Oscillator Verification Timer This bit controls the internal oscillator verification timer function. If set, the verification timer is enabled and an interrupt is generated if the timer becomes inoperative. Otherwise, the verification timer is not enabled.
2	MOSCVER	R/W	0	Main Oscillator Verification Timer This bit controls the main oscillator verification timer function. If set, the verification timer is enabled and an interrupt is generated if the timer becomes inoperative. Otherwise, the verification timer is not enabled.
1	IOSCDIS	R/W	0	Internal Oscillator Disable 0: Internal oscillator (IOSC) is enabled. 1: Internal oscillator is disabled.
0	MOSCDIS	R/W	0	Main Oscillator Disable 0: Main oscillator is enabled (default). 1: Main oscillator is disabled .

Table 5-5. PLL Mode Control

PWRDN	OEN	Mode
1	Х	Power down
0	0	Normal

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 169).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * (F + 2) / (R + 2)

XTAL to PLL Translation (PLLCFG)

Base 0x400F.E000

Offset 0x064 Type RO, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			1		rese	rved	l	•	•				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	C	D				•	F		1					R		
Type Deset	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					-		D (-								
E	Bit/Field Name 31:16 reserved			ie	Iy	ре	Reset	Des	cription							
	31:16		reserv	ved	R	0	0x0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv		
	15:14		OD)	R	0	-		OD Valu field sp		ne value	supplied	to the P	LL's OD	input.	
								Val	ue Desc	ription						
								0x0	Divid	e by 1						
								0x1		e by 2						
								0x2		e by 4						
								0x3		•						
								0.0	nese	i veu						
	13:5		F		R	0	-		F Value field sp		ne value	supplied	to the P	'LL's F in	put.	
	4:0		R		R	0	-		R Value		ne value	supplied	to the P	'LL's R in	iput.	

Register 10: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register is used to automatically switch from the main oscillator to the internal oscillator when entering Deep-Sleep mode. The system clock source is the main oscillator by default. When this register is set, the internal oscillator is powered up and the main oscillator is powered down. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode.

	t 0x144 R/W, res	et 0x0780	0.0000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		I	1			[1 1	rese	rved		[1		1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	1					reserved				•	1	1	1	IOSC	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
В	it/Field		Nam	ne	Ту	ре	Reset	Des	Description								
	31:1 reserved		RO 0x0		0x0	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit shoup reserved across a read-modify-write operation.											
0			IOSC		R/W 0		Whe	IOSC Clock Source When set, forces IOSC to be clock source during Deep-Sleep (overrides DSOSCSRC field if set)									

Deep Sleep Clock Configuration (DSLPCLKCFG) Base 0x400F.E000 Offset 0x144 Type R/W, reset 0x0780,0000 Clock Verification Clear (CLKVCLR)

Register 11: Clock Verification Clear (CLKVCLR), offset 0x150

This register is provided as a means of clearing the clock verification circuits by software. Since the clock verification circuits force a known good clock to control the process, the controller is allowed the opportunity to solve the problem and clear the verification fault. This register clears all clock verification faults. To clear a clock verification fault, the VERCLR bit must be set and then cleared by software. This bit is not self-clearing.

Offse	0x400F.E t 0x150 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Ĩ		1	r	,		1 1	rese	rved		r	I	,	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	T				1 1	reserved				I	1	ſ	1	VERCLR
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:1		reserved		RO		0	com	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.							
0			VERCLR R/W		W	0		Clock Verification Clear Clears clock verification faults.								

www.BDTTC.com/T

Register 12: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160

This register is provided as a means of allowing the LDO to reset the part if the voltage goes unregulated. Use this register to choose whether to automatically reset the part if the LDO goes unregulated, based on the design tolerance for LDO fluctuation.

Offse	t 0x4001.L R/W, rese		0.0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[1	1	1 1		1 1	rese			1	1	1 1		I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[ľ		1	î	1		1 1	reserved			Î	1	1	Ì	r	LDOARST	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription								
	31:1		reserved		R	0	com		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
0			LDOARST		R/	W	0		LDO Reset When set, allows unregulated LDO output to reset the part.								

Allow Unregulated LDO to Reset the Part (LDOARST)

Base 0x400F.E000

Register 13: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, and package type.

Base	ice Iden 0x400F.E t 0x004		on 1 (DI	D1)														
Туре	RO, reset																	
Г	31	30	29 1	28	27	26	25	24	23	22 1	21	20	19	18	17	16		
l			ER				AM					PAR						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 1		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	I		1	rese	rved	1				TEMP	1	Pł	٢G	ROHS	QL	JAL		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO 1	RO -	RO -		
В	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription									
	31:28		VE	ર	R	0	0x0	 DID1 Version This field defines the DID1 register format version. The version nun is numeric. The value of the VER field is encoded as follows (all oth encodings are reserved): Value Description 0x0 Initial DID1 register format definition, indicating a Stellaris LM3Snnn device. 							ll other			
	27:24	FAM RO 0x0 Family This field provides the fam Luminary Micro product po other encodings are reserv Value Description 0x0 Stellaris family of m external part numb					uct portf reserved	iolio. The 1): rocontoll	value is ers, that	s encodeo : is, all de	t as follo	ows (all						
	23:16		PART	NO	R	0	0x39	This valu Val		ovides th oded as cription				ice within lgs are re		,		
	15:8		reserv	ved	R	0	0	0 Software should not rely on the value of a reserved across a read-modify-write operation.						f a reserv	•			

www.BDTIC.com/TI

Bit/Field	Name	Туре	Reset	Description						
7:5	TEMP	RO	-	Temperature Range This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):						
				Value Description						
				0x0 Commercial temperature range (0°C to 70°C)						
				0x1 Industrial temperature range (-40°C to 85°C)						
				0x2 Extended temperature range (-40°C to 105°C)						
4:3	PKG	RO	-	Package Type This field specifies the package type. The value is encoded as follows (all other encodings are reserved):						
				Value Description						
				0x0 28-pin SOIC package						
				0x1 48-pin LQFP package						
				0x3 48-pin QFN package						
2	ROHS	RO	1	RoHS-Compliance This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.						
1:0	QUAL	RO	-	Qualification Status This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):						
				Value Description						
				0x0 Engineering Sample (unqualified)						
				0x1 Pilot Production (unqualified)						
				0x2 Fully Qualified						

Register 14: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

Base Offse	ice Cap 0x400F.E t 0x008 RO, rese	E000	s 0 (DC .001F	0)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	1		1	т т	SRA	MSZ	I	1			I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1		I	1		1	· · ·	FLAS	I SHSZ	I	1			I	1	·]
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		SRAN	RO 0x001F			-	AM Size cates the	e size of	the on-cl	hip SRAI	M memo	ıry.			
								Valu	ue De	scription						
								0x0	01F 8 K	B of SR	AM					
	15:0		FLASI	HSZ	R	0	0x001F		h Size cates the	e size of	the on-cl	hip flash	memory	<i>ı</i> .		
								Valu	ue De	scription						
								0x0	01F 64	KB of Fl	ash					

www.BDTIC.com/TI

Register 15: Device Capabilities 1 (DC1), offset 0x010

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: PWM, ADC, Watchdog timer, and debug capabilities. This register also indicates the maximum clock frequency and maximum ADC sample rate. The format of this register is consistent with the **RCGC0**, **SCGC0**, and **DCGC0** clock control registers and the **SRCR0** software reset control register.

Offset	0x400F.E t 0x010 RO, rese		1.32BF															
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
					l			reserved	1				1			ADC		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Γ	ĩ	MIN	I SYSDIV	1	rese	ved	MAXAI	I DCSPD	MPU	reserved	TEMPSNS	PLL	WDT	SWO	SWD	JTAG		
Type Reset	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 1	RO 0	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1		
В	Bit/Field		Name		Туре		Reset	Des	Description									
31:17 reserved RO 0 Software should not rely or compatibility with future pro preserved across a read-m					ure produ	icts, the	value of	a reserv										
	16		AD	С	R	C	1	ADC Module Present When set, indicates that the ADC module is present.										
	15:12	MINSYSDIV RO 0x3 System Clock Divider Minimum 4-bit divider value for system clock. The reset hardware-dependent. See the RCC register for how to c system clock divisor using the SYSDIV bit.																
								Value Description 0x3 Specifies a 50-MHz CPU clock with a PLL divider						der of 4.				
	11:10		reser	ved	R	C	0	com	patibility	with fut		icts, the	value of	a reserv	bit. To provide erved bit should be			
	9:8		MAXAD	CSPD	R	C	0x2	Max ADC Speed Indicates the maximum rate at which the ADC samples data.						s data.	а.			
								Valı 0x2	ue Desc 500k		es/second							
	7		MP	U	R	C	1	MPU Present When set, indicates that the Cortex-M3 Memory Protection Uni module is present. See the "Cortex-M3 Peripherals" chapter in Stellaris Data Sheet for details on the MPU.						. ,				
	compatibility with fu				e should not rely on the value of a reserved bit. To provide bility with future products, the value of a reserved bit should be ad across a read-modify-write operation.													

January 09, 2011

Device Capabilities 1 (DC1)

www.BDJunitsPreduction Data MWW.BJUNITSPreduction Data

Bit/Field	Name	Туре	Reset	Description
5	TEMPSNS	RO	1	Temp Sensor Present When set, indicates that the on-chip temperature sensor is present.
4	PLL	RO	1	PLL Present When set, indicates that the on-chip Phase Locked Loop (PLL) is present.
3	WDT	RO	1	Watchdog Timer Present When set, indicates that a watchdog timer is present.
2	SWO	RO	1	SWO Trace Port Present When set, indicates that the Serial Wire Output (SWO) trace port is present.
1	SWD	RO	1	SWD Present When set, indicates that the Serial Wire Debugger (SWD) is present.
0	JTAG	RO	1	JTAG Present When set, indicates that the JTAG debugger interface is present.

www.BDTIC.com/TI

Register 16: Device Capabilities 2 (DC2), offset 0x014

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register is consistent with the **RCGC1**, **SCGC1**, and **DCGC1** clock control registers and the **SRCR1** software reset control register.

Offset	0x400F. t 0x014 RO, rese	et 0x0107.1	013															
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
				reserved				COMP0			reserved			TIMER2	TIMER1	TIMER0		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ſ		reserved		I2C0	1		T	reserved			1	SSI0	res	erved	UART1	UART0		
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 1		
В	it/Field		Nan	ne	Ty	pe	Reset	Des	cription									
comp		patibility	with fut		ucts, the	value o	erved bit f a reserv on.	•										
	24		COM	IP0	R	0	1	1 Analog Comparator 0 Present When set, indicates that analog comparator 0 is present.										
	23:19		reser	ved	R	0	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.										
	18		TIME	R2	R	0	1		er 2 Pres en set, in		that Gen	eral-Purj	oose Tir	mer modu	ule 2 is p	resent.		
	17		TIME	R1	R	0	1		er 1 Pres en set, in		that Gen	eral-Purj	oose Tir	mer modu	lule 1 is present.			
	16		TIME	R0	R	0	1		er 0 Pres en set, in		that Gen	eral-Purj	oose Tir	ner modı	ule 0 is p	resent.		
	15:13		reser	ved	R	0	0	 When set, indicates that General-Purpose Timer module 0 is preset Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. 										
	12		I2C	0	R	0	1	1 I2C Module 0 Present When set, indicates that I2C module 0 is present.										
	11:5		reser	ved	R	0	0	0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.										
	4		SSI	0	R	0	1) Preser en set, in		that SSI	module () is pres	sent.				

Device Capabilities 2 (DC2) Base 0x400F.E000 Offset 0x014

Bit/Field	Name	Туре	Reset	Description
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	RO	1	UART1 Present When set, indicates that UART module 1 is present.
0	UART0	RO	1	UART0 Present When set, indicates that UART module 0 is present.

www.BSDI TIC.com/TI

Register 17: Device Capabilities 3 (DC3), offset 0x018

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.

Offse	0x400F.E t 0x018 RO, rese	E000 t 0xBFFF.	00C0	-)														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	32KHZ	reserved	CCP5	CCP4	CCP3	CCP2	CCP1	CCP0	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0		
Type Reset	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				rese	rved				COPLUS	COMINUS		•	rese	rved				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription									
	31		32KH	ΗZ	R	0	1	Whe	en set, in	t Clock A Idicates t as a 32-	he 32KH			ı CCP pir	n is pres	ent and		
comp prese					Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.													
							P5 Pin Pi en set, in	resent idicates t	hat Cap	ture/Con	npare/P\	VM pin 5	is prese	ent.				
	28		CCP4 RO 1					P4 Pin Pi en set, in	resent idicates t	hat Cap	ture/Con	npare/P\	VM pin 4	is prese	ent.			
	27		CCF	23	R	0	1		P3 Pin Pi en set, in	resent idicates t	hat Cap	ture/Con	npare/P\	VM pin 3	is prese	ent.		
	26		CCF	2	R	0	1		P2 Pin Pi en set, in		hat Cap	nat Capture/Compare/PWM pin 2 is present.						
	25		CCF	91	R	0	1		P1 Pin Pi en set, in	resent idicates t	hat Cap	ture/Con	npare/P\	VM pin 1	is prese	ent.		
	24		CCF	0	R	0	1	1 CCP0 Pin Present When set, indicates that Capture/Co					npare/P\	VM pin 0	is prese	ent.		
	23		ADC	7	R	0	1	1 ADC7 Pin Present When set, indicates that ADC pin 7 is present.										
	22		ADC	6	R	0	1	1 ADC6 Pin Present When set, indicates that ADC pin 6 is prese				present						
	21		ADC	5	R	0	1		C5 Pin Pi en set, in	resent idicates t	hat ADC	C pin 5 is	present					
	20		ADC	24	R	0	1 ADC4 Pin Present When set, indicates t			hat ADC	C pin 4 is	present						

Device Capabilities 3 (DC3)

www.BDTreduction Data MWW.BDTRED

Bit/Field	Name	Туре	Reset	Description
19	ADC3	RO	1	ADC3 Pin Present When set, indicates that ADC pin 3 is present.
18	ADC2	RO	1	ADC2 Pin Present When set, indicates that ADC pin 2 is present.
17	ADC1	RO	1	ADC1 Pin Present When set, indicates that ADC pin 1 is present.
16	ADC0	RO	1	ADC0 Pin Present When set, indicates that ADC pin 0 is present.
15:8	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7	COPLUS	RO	1	C0+ Pin Present When set, indicates that the analog comparator 0 (+) input pin is present.
6	COMINUS	RO	1	C0- Pin Present When set, indicates that the analog comparator 0 (-) input pin is present.
5:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.Bbunts Production Data m/TI

Register 18: Device Capabilities 4 (DC4), offset 0x01C

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of GPIOs in the specific device. The format of this register is consistent with the **RCGC2**, **SCGC2**, and **DCGC2** clock control registers and the **SRCR2** software reset control register.

	t 0x01C RO, reset	t 0x0000	.001F															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			1				1 1	rese	rved		1	1			1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	r		1 1		1	reserved	1 1				1	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1		
В	Bit/Field		Nam	ie	Ту	ре	Reset	Des	Description									
	31:5		reserv	/ed	RO 0			com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•			
	4		GPIC	DE	R	0	1		O Port E en set, in			O Port E	is prese	ent.				
	3		GPIC	D	R	0	1		O Port D en set, in		•	O Port D	is prese	ent.				
	2		GPIC	C	R	0	1		O Port C en set, in		•	O Port C	is prese	ent.				
	1		GPIC	ЭB	R	0	1		O Port B en set, in			O Port B	is prese	ent.				
	0		GPIC	A	R	0	1		O Port A en set, in		-	O Port A	is prese	ent.				

Device Capabilities 4 (DC4) Base 0x400F.E000 Offset 0x01C Type PO reset 0x0000 001E

January 09, 2011

Base 0x400F.E000

Register 19: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	t 0x100 R/W, rese	et 0x00	000040															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			•	•			•	reserved			•	•		•	•	ADC		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ſ	ľ		res	erved	1		MAXAD	CSPD		rese	erved	1	WDT		reserved			
Type eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0		
В	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription									
	31:17 16		reser	rved	R	0	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
This bit con receives a d disabled. If a bus fault.					bit contr vives a cl bled. If t	ols the o	clock gat functior	ns. Other	wise, the	e unit is i	unclocke	d and						
	15:10		reser	rved	R	0	0	com	patibility	with fut	ure prod		value of	f a reserv	t. To prov ved bit sh			
preser 9:8 MAXADCSPD R/W 0 ADC S This fiv the rat						ADC Sample Speed This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADCSPD bit as follows:												
							Value Description											
								0x2	500K	sample	s/secon	d						
								0x1	250K	sample	s/secon	d						
								0x0	125K	sample	s/secon	d						
7:4 reserved RO 0 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.							f a reserv											

Run Mode Clock Gating Control Register 0 (RCGC0)

January 09, 2011

Bit/Field	Name	Туре	Reset	Description
3	WDT	R/W	0	WDT Clock Gating Control This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.BDUITSProduction Data

Register 20: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x110 R/W, rese		00040			(-	,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1		1	1		•		reserved			1	•		•	'	ADC	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	-		rese	rved	1	-	MAXAI	DCSPD		rese	rved	-	WDT		reserved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	
Reber	Ũ	Ŭ	0	Ũ	Ũ	Ŭ	0	Ū	0	Ū	Ũ	Ŭ	Ũ	0	Ŭ	Ū	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
31:17 reserved		R	0	0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	16 ADC R/W		w	0	0 ADC0 Clock Gating Control This bit controls the clock gating for SAR ADC modul receives a clock and functions. Otherwise, the unit is disabled. If the unit is unclocked, a read or write to th a bus fault.						e unit is i	unclocke	d and				
	15:10		reser	reserved RO			0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.								
	9:8		MAXAD	CSPD	R/	w	0	This the		s the rat er than t	he maxi	mum rate	e. You ca			innot set e rate by	
								Valu	ue Desc	ription							
								0x2	500K	sample	s/secon	d					
								0x1		-	s/secon						
								0x0		•	s/secon						

Sleep Mode Clock Gating Control Register 0 (SCGC0)

www.BDTTC.com/T

Bit/Field	Name	Туре	Reset	Description
7:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	WDT	R/W	0	WDT Clock Gating Control This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Base 0x400F.E000

Register 21: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.e t 0x120 R/W, res		00040													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1 1	reserved			1	1			1	ADC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1	T		res	erved				1	1	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	pe	e Reset Description									
	31:17		reser	ved	R	0	0	com	patibility	with fut	ure prod	ucts, the	e of a rese value of e operatio	a reserv	•	
	16 ADC R/W 0 /		This rece disa	eives a c	rols the o lock and	clock gat function	s. Other	SAR ADC wise, the ad or wri	unit is	unclocke	d and					
	15:4 reserved RO 0 Softwa compa		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.													
	3		WD	т	R/	W	0	This rece disa	eives a c	rols the o lock and	clock gat function	s. Other	he WDT wise, the ad or wri	unit is	unclocke	d and
	2:0		reser	ved	R	0	0	com	patibility	with fut	ure prod	ucts, the	e of a rese value of e operatio	a reserv		

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

www.BDTTC.com/T

Register 22: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	R/W, res	set 0x0000	0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
				reserved		1	1	COMP0		1	reserved			TIMER2	TIMER1	TIMER0	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	
Resel																	
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		
l		reserved		I2C0				reserved				SSI0		erved	UART1	UART0	
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	
B	Bit/Field		Nan	ne	Ту	ре	Reset	Desc	cription								
31:25 reserved RC					0	0	com	patibility	with fut	rely on ti ure produ ead-mod	ucts, the	value of	a reserv	•			
	24		COM	IP0	R/	W	0	 preserved across a read-modify-write oper Analog Comparator 0 Clock Gating This bit controls the clock gating for analog receives a clock and functions. Otherwise, disabled. If the unit is unclocked, reads or w a bus fault. 					wise, the	· unit is ι	inclocke	d and	
	23:19		reser	ved	R	0	0	com	patibility	with fut	ure produ	he value of a reserved bit. To provide ucts, the value of a reserved bit should be dify-write operation.					
18 TIMER2 R/W 0 Timer 2 Clock Gating This bit controls the o If set, the unit receive unclocked and disable				Timer 2 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.													
	17		TIME	R1	R/	W	0	This If set uncle	bit cont t, the ur ocked a	rols the only it receive	g Control clock gat es a cloc led. If the bus fault.	ing for G k and fu	nctions.	Otherwis	se, the u	nit is	

Run Mode Clock Gating Control Register 1 (RCGC1)

Base 0x400F.E000 Offset 0x104

Bit/Field	Name	Туре	Reset	Description
16	TIMER0	R/W	0	Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	12C0	R/W	0	I2C0 Clock Gating Control This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

www.BSD TIC.com/TI

Register 23: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F. t 0x114 R/W, res	E000 set 0x0000	0000		- 3	- (-	,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	•	reserved		•	•	COMP0			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	 R/W 0	R/W 0	R/W 0
Reset																
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
l		reserved		I2C0				reserved				SSI0		rved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:25		reser	ved	R	0	0	com	patibility	with fut	rely on tl ure produ ead-mod	ucts, the	value of	a reserv	•	
	24		CON	IP0	R/	W	0	This rece disa	bit contr ives a c	ols the clock and	0 Clock (clock gati function unclock	ng for an s. Other	wise, the	e unit is u	inclocke	d and
	23:19		reser	ved	R	0	0	com	patibility	with fut	rely on tl ure produ ead-mod	ucts, the	value of	a reserv		
	18		TIME	R2	R/	W	0	This If se uncl	bit cont t, the un ocked a	rols the it receiven nd disab	g Control clock gat es a cloc led. If the ous fault.	ing for G k and fu	nctions.	Otherwis	se, the u	nit is
	17		TIME	R1	R/	W	0	This If se uncl	bit cont t, the un ocked a	rols the it receiven nd disab	g Control clock gat es a cloc led. If the ous fault.	ing for G k and fu	nctions.	Otherwis	e, the u	nit is

Sleep Mode Clock Gating Control Register 1 (SCGC1)

www.BbunntsProduction Data

Bit/Field	Name	Туре	Reset	Description
16	TIMER0	R/W	0	Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	12C0	R/W	0	I2C0 Clock Gating Control This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

www.BSD TIC.com/TI

Register 24: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	t 0x124 R/W, res	set 0x0000	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	I	reserved		ſ	1	COMP0		ſ	reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved	I	12C0	I		•	reserved	 		1	SSI0	rese	rved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:25		reser	ved	R	0	0	com	patibility	with fut	rely on t ure produ read-mod	ucts, the	value of	a reserv	•	
	24		CON	1P0	R/	W	0	This rece disa	bit contr ives a cl	ols the ols the ols and	0 Clock (clock gati function unclock	ng for an s. Other	wise, the	e unit is u	inclocke	d and
	23:19		reser	ved	R	0	0	com	patibility	with fut	rely on t ure produ read-mod	ucts, the	value of	a reserv	•	
	18		TIME	R2	R/	W	0	This If se uncl	bit cont t, the un ocked a	rols the it receivend disab	g Control clock gat es a cloc led. If the ous fault.	ing for G k and fu	nctions.	Otherwis	se, the u	nit is
	17		TIME	ER1	R/	W	0	This If se uncl	bit cont t, the un ocked a	rols the it receivend disab	g Control clock gat es a cloc led. If th ous fault.	ing for G k and fu	nctions.	Otherwis	se, the u	nit is

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)

Base 0x400F.E000

Bit/Field	Name	Туре	Reset	Description
16	TIMER0	R/W	0	Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	12C0	R/W	0	I2C0 Clock Gating Control This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

www.BSD TIC.com/TI

Register 25: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	t 0x108 R/W, rese	et 0x0000	00000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1		1 I			rese	erved		1	•			I	J
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ľ		1		1	reserved	ı ı		1		1	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:5		reserv	ved	R	0	0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv		
	4		GPIC	DE	R/	W	0	This cloc	k and fu	rols the onctions.	clock ga Otherwis	ting for P se, the u r writes to	nit is unc	locked a	and disat	oled. If
	3		GPIC	D	R/	W	0	This cloc	k and fu	rols the onctions.	clock ga Otherwis	ting for P se, the u r writes to	nit is unc	locked a	and disat	oled. If
	2		GPIC	DC	R/	W	0	This cloc	k and fu	rols the onctions.	clock ga Otherwis	ting for P se, the u r writes to	nit is unc	locked a	and disat	oled. If
	1		GPIC	ЭB	R/	W	0	This cloc	k and fu	rols the onctions.	clock ga Otherwis	ting for P se, the u r writes to	nit is unc	locked a	and disat	oled. If
	0		GPIC	A	R/	W	0	This cloc	k and fu	rols the onctions.	clock ga Otherwis	ting for P se, the u r writes to	nit is unc	locked a	and disat	oled. If

Run Mode Clock Gating Control Register 2 (RCGC2)

Base 0x400F.E000

www.BDUIts Production Data MWW.BDUIts Production Data

Register 26: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x118 R/W, rese		00000		U	X	,									
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ	1		1				1 1	rese	rved		1	1	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
г	15	14	13 I	12	11	10	9	8	7	6	5	4	3	2	1	0
					l	reserved			1			GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	lit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:5		reserv	/ed	R	0	0	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	4 GPIOE R/W 0 Port E Clock Gating Control This bit controls the clock gating for Port E. If set, the unit receives clock and functions. Otherwise, the unit is unclocked and disabled. the unit is unclocked, reads or writes to the unit will generate a bus fa									oled. If						
	3		GPIC	D	R/	W	0	This cloc	D Clock bit contr k and fur unit is un	rols the onctions.	clock ga Otherwi	se, the u	nit is und	locked a	nd disat	oled. If
	2		GPIC	C	R/	W	0	This cloc	C Clock bit contr k and fur unit is un	rols the onctions.	clock ga Otherwi	se, the u	nit is und	locked a	nd disat	oled. If
	1		GPIC)В	R/	W	0	This cloc	B Clock bit contr k and fur unit is un	rols the onctions.	clock ga Otherwi	se, the u	nit is unc	locked a	nd disat	oled. If
	0		GPIC	A	R/	W	0	This cloc	A Clock bit contr k and fur unit is un	rols the onctions.	clock ga Otherwi	se, the u	nit is unc	locked a	nd disat	oled. If

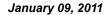
Sleep Mode Clock Gating Control Register 2 (SCGC2)

January 09, 2011

Register 27: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E et 0x128 R/W, rese		0000				- (,								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 I	rese	rved	1	1	1			1	
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I		1	reserved				1	1	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type	RO 0	RO	RO 0	RO 0	RO 0	RO	RO	RO 0	RO	RO	RO	R/W	R/W 0	R/W	R/W	R/W
Reset	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:5		reserv	ved	R	0	0	com	patibility	with fut	rely on t ure prode read-mod	ucts, the	value of	a reserv	•	
	4		GPIC	DE	R/	W	0	This cloc	k and fu	rols the nctions.	Control clock gat Otherwis , reads of	se, the u	nit is und	locked a	and disat	oled. If
	3		GPIC	DC	R/	W	0	This cloc	k and fu	rols the nctions.	Control clock gat Otherwis , reads of	se, the u	nit is und	locked a	and disat	oled. If
	2		GPIC	DC	R/	W	0	This cloc	k and fu	rols the onctions.	Control clock gat Otherwis , reads of	se, the u	nit is und	locked a	and disat	oled. If
	1		GPIC	ЭВ	R/	W	0	This cloc	k and fu	rols the onctions.	Control clock gat Otherwis , reads of	se, the u	nit is und	locked a	and disat	oled. If
	0		GPIC	A	R/	W	0	This cloc	k and fu	rols the onctions.	Control clock gat Otherwis , reads of	se, the u	nit is und	locked a	and disat	oled. If


Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

Register 28: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

Software Reset Control 0 (SRCR0) Base 0x400F.E000 Offset 0x040 Type R/W, reset 0x00000000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1		1 1 1		1 1	reserved		1		1	1	I	1	ADC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1			res	erved		 	1		1	WDT		reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/Field		Nam		Туј		Reset		cription				- f		·	
	31:17		reserv	ved	R	5	0	com	patibility	with futu	ure prod	ucts, the		a reser	it. To prov ved bit sh	
	16		AD	C	R/	N	0		0 Reset et contro		R ADC r	nodule 0				
	15:4		reserv	ved	R	C	0	com	patibility	with futu	ure prod	ucts, the		a reser	it. To prov ved bit sh	
	3		WD	Т	R/	N	0		T Reset et contro	Control ol for Wat	tchdog ι	ınit.				
	2:0		reserv	ved	R	C	0	com	patibility	with futu	ure prod	ucts, the		a reser	it. To prov ved bit sh	

www.BDTIC.com/TI

Register 29: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Software Reset Control 1 (SRCR1) Base 0x400F.E000 Offset 0x044 Type R/W, reset 0x00000000

71 -	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r r		reserved	T		-	COMP0			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		12C0	r		1	reserved	г <u>г</u>		1	SSI0	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	 R/W 0	RO 0	RO 0	R/W 0	 R/W 0
100001	0	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	0	Ū	Ū	Ū	Ū	Ū	ũ
B	it/Field		Nam	ne	Тур	e	Reset	Des	cription							
	31:25		reser	ved	RC)	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv		
	24		COM	P0	R/V	V	0		log Comp et contro				ŀ.			
	23:19		reser	ved	RC)	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv		
	18		TIME	R2	R/V	V	0		er 2 Rese et control			rpose Tin	ner moo	lule 2.		
	17		TIME	R1	R/V	V	0		er 1 Rese et control			rpose Tin	ner moo	lule 1.		
	16		TIME	R0	R/V	V	0		er 0 Rese et control			rpose Tin	ner moo	lule 0.		
	15:13		reser	ved	RC)	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv		
	12		I2C	0	R/V	V	0) Reset C et control		Cunit 0.					
	11:5		reser	ved	RC)	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv		
	4		SSI	0	R/V	V	0		0 Reset 0 et control		l unit 0.					
	3:2		reser	ved	RC)	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv		
	1		UAR	T1	R/V	V	0		RT1 Rese et control							

Bit/Field	Name	Туре	Reset	Description
0	UART0	R/W	0	UART0 Reset Control Reset control for UART unit 0.

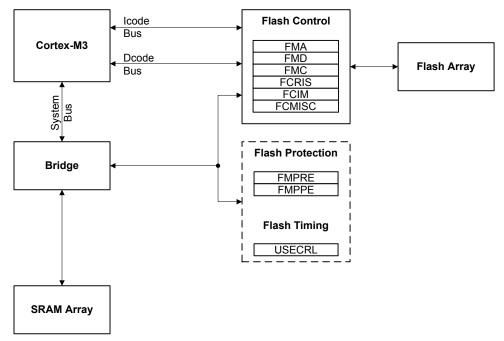
www.BSD Tic.com/TI

Register 30: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2) Base 0x400F.E000 Offset 0x048 Type R/W, reset 0x00000000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				і і	rese	rved		1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Neset																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-				reserved						GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:5		reserv	ved	R	0	0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	4		GPIC	DE	R/	W	0			t Control I for GP		Ξ.				
	3		GPIC	D	R/	W	0			t Control I for GP		D.				
	2		GPIC	C	R/	W	0			t Control I for GP		С.				
	1		GPIC	ЭB	R/	W	0			t Control I for GP		3.				
	0		GPIC	A	R/	W	0			t Control I for GP		۹.				


6 Internal Memory

The LM3S808 microcontroller comes with 8 KB of bit-banded SRAM and 64 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

6.1 Block Diagram

Figure 6-1 on page 204 illustrates the Flash functions. The dashed boxes in the figure indicate registers residing in the System Control module rather than the Flash Control module.

Figure 6-1. Flash Block Diagram

6.2 Functional Description

This section describes the functionality of the SRAM and Flash memories.

6.2.1 SRAM Memory

The internal SRAM of the Stellaris[®] devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

T x s is um ints Production Data

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, see "Bit-Banding" on page 62.

6.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also "Serial Flash Loader" on page 500 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

6.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

6.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If a bit is set, the corresponding block may be executed or read by software or debuggers. If a bit is cleared, the corresponding block may only be executed, and contents of the memory block are prohibited from being read as data.

The policies may be combined as shown in Table 6-1 on page 205.

FMPPEn	FMPREn	Protection
0	0	Execute-only protection. The block may only be executed and may not be written or erased. This mode is used to protect code.
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.

WWW.DDD Issum ints Production Data

Table 6-1. Flash Protection Policy Combinations

FMPPEn	FMPREn	Protection
0	1	Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

Table 6-1. Flash Protection Policy Combinations (continued)

A Flash memory access that attempts to read a read-protected block (**FMPREn** bit is set) is prohibited and generates a bus fault. A Flash memory access that attempts to program or erase a program-protected block (**FMPPEn** bit is set) is prohibited and can optionally generate an interrupt (by setting the AMASK bit in the **Flash Controller Interrupt Mask (FCIM)** register) to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. These settings create a policy of open access and programmability. The register bits may be changed by clearing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The changes are committed using the **Flash Memory Control (FMC)** register.

6.2.2.3 Interrupts

The Flash memory controller can generate interrupts when the following conditions are observed:

- Programming Interrupt signals when a program or erase action is complete.
- Access Interrupt signals when a program or erase action has been attempted on a 2-kB block of memory that is protected by its corresponding FMPPEn bit.

The interrupt events that can trigger a controller-level interrupt are defined in the **Flash Controller Masked Interrupt Status (FCMIS)** register (see page 215) by setting the corresponding MASK bits. If interrupts are not used, the raw interrupt status is always visible via the **Flash Controller Raw Interrupt Status (FCRIS)** register (see page 214).

Interrupts are always cleared (for both the **FCMIS** and **FCRIS** registers) by writing a 1 to the corresponding bit in the **Flash Controller Masked Interrupt Status and Clear (FCMISC)** register (see page 216).

6.2.2.4 Flash Memory Protection by Disabling Debug Access

Flash memory may also be protected by permanently disabling access to the Debug Access Port (DAP) through the JTAG and SWD interfaces. Access is disabled by clearing the DBG field of the **FMPRE** register.

If the DBG field in the **Flash Memory Protection Read Enable (FMPRE)** register is programmed to 0x2, access to the DAP is enabled through the JTAG and SWD interfaces. If clear, access to the DAP is disabled. The DBG field programming becomes permanent and irreversible after a commit sequence is performed.

In the initial state provided from the factory, access is enabled in order to facilitate code development and debug. Access to the DAP may be disabled at the end of the manufacturing flow, once all tests have passed and software has been loaded. This change does not take effect until the next power-up of the device. Note that it is recommended that disabling access to the DAP be combined with a mechanism for providing end-user installable updates (if necessary) such as the Stellaris boot loader.

WWW DD Is um ints Production Data

Important: Once the DBG field is cleared and committed, this field can never be restored to the factory-programmed value—which means the JTAG/SWD interface to the debug module can never be re-enabled. This sequence does NOT disable the JTAG controller, it only disables the access of the DAP through the JTAG or SWD interfaces. The JTAG interface remains functional and access to the Test Access Port remains enabled, allowing the user to execute the IEEE JTAG-defined instructions (for example, to perform boundary scan operations).

When using the **FMPRE** bits to protect Flash memory from being read as data (to mark sets of 2-KB blocks of Flash memory as execute-only), these one-time-programmable bits should be written at the same time that the debug disable bits are programmed. Mechanisms to execute the one-time code sequence to disable all debug access include:

- Selecting the debug disable option in the Stellaris boot loader
- Loading the debug disable sequence into SRAM and running it once from SRAM after programming the final end application code into Flash memory

6.3 Flash Memory Initialization and Configuration

This section shows examples for using the flash controller to perform various operations on the contents of the flash memory.

6.3.1 Changing Flash Protection Bits

As discussed in "Flash Memory Protection" on page 205, changes to the protection bits must be committed before they take effect. The sequence below is used change and commit a block protection bit in the **FMPRE** or **FMPPE** registers. The sequence to change and commit a bit in software is as follows:

- 1. The Flash Memory Protection Read Enable (FMPRE) and Flash Memory Protection Program Enable (FMPPE) registers are written, changing the intended bit(s). The action of these changes can be tested by software while in this state.
- 2. The Flash Memory Address (FMA) register (see page 210) bit 0 is set to 1 if the FMPPE register is to be committed; otherwise, a 0 commits the FMPRE register.
- **3.** The **Flash Memory Control (FMC)** register (see page 212) is written with the COMT bit set. This initiates a write sequence and commits the changes.

There is a special sequence to change and commit the DBG bits in the **Flash Memory Protection Read Enable (FMPRE)** register. This sequence also sets and commits any changes from 1 to 0 in the block protection bits (for execute-only) in the **FMPRE** register.

- 1. The Flash Memory Protection Read Enable (FMPRE) register is written, changing the intended bit(s). The action of these changes can be tested by software while in this state.
- 2. The Flash Memory Address (FMA) register (see page 210) is written with a value of 0x900.
- **3.** The **Flash Memory Control (FMC)** register (see page 212) is written with the COMT bit set. This initiates a write sequence and commits the changes.

Below is an example code sequence to permanently disable the JTAG and SWD interface to the debug module using DriverLib:

WWW BD Is um ints Production Data

```
#include "hw_types.h"
#include "hw flash.h"
void
permanently disable jtag swd(void)
{
     11
     // Clear the DBG field of the FMPRE register. Note that the value
     // used in this instance does not affect the state of the BlockN
     // bits, but were the value different, all bits in the FMPRE are
     // affected by this function!
     11
     HWREG(FLASH_FMPRE) &= 0x3ffffff;
     11
     // The following sequence activates the one-time
     // programming of the FMPRE register.
     11
     HWREG(FLASH FMA) = 0 \times 900;
     HWREG(FLASH_FMC) = (FLASH_FMC_WRKEY | FLASH_FMC_COMT);
     11
     // Wait until the operation is complete.
     11
     while (HWREG(FLASH_FMC) & FLASH_FMC_COMT)
     }
}
```

6.3.2 Flash Programming

The Stellaris devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

During a Flash memory operation (write, page erase, or mass erase) access to the Flash memory is inhibited. As a result, instruction and literal fetches are held off until the Flash memory operation is complete. If instruction execution is required during a Flash memory operation, the code that is executing must be placed in SRAM and executed from there while the flash operation is in progress.

6.3.2.1 To program a 32-bit word

- 1. Write source data to the FMD register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
- 4. Poll the FMC register until the WRITE bit is cleared.

6.3.2.2 To perform an erase of a 1-KB page

- 1. Write the page address to the FMA register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.
- 3. Poll the **FMC** register until the **ERASE** bit is cleared.

WWW.DDD is sum ints Production Data

6.3.2.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the FMC register.
- 2. Poll the FMC register until the MERASE bit is cleared.

6.4 Register Map

Table 6-2 on page 209 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** register offsets are relative to the Flash memory control base address of 0x400F.D000. The Flash memory protection register offsets are relative to the System Control base address of 0x400F.E000.

Offset	Name	Туре	Reset	Description	See page
Flash Me	mory Control Registers (Flash Con	trol Offset)		
0x000	FMA	R/W	0x0000.0000	Flash Memory Address	210
0x004	FMD	R/W	0x0000.0000	Flash Memory Data	211
0x008	FMC	R/W	0x0000.0000	Flash Memory Control	212
0x00C	FCRIS	RO	0x0000.0000	Flash Controller Raw Interrupt Status	214
0x010	FCIM	R/W	0x0000.0000	Flash Controller Interrupt Mask	215
0x014	FCMISC	R/W1C	0x0000.0000	Flash Controller Masked Interrupt Status and Clear	216
Flash Me	mory Protection Register	rs (System	Control Offset)	·	
0x130	FMPRE	R/W	0xBFFF.FFFF	Flash Memory Protection Read Enable	219
0x134	FMPPE	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable	220
0x140	USECRL	R/W	0x31	USec Reload	218

Table 6-2. Flash Register Map

6.5 Flash Register Descriptions (Flash Control Offset)

This section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.

Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

	t 0x000 R/W, res	et 0x0000	0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	1			1 1	rese	rved		1	1	1	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	1			1 1	OFF	SET		1	1	ı ı	1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x0	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	15:0		OFFS	SET	R/	W	0x0		ress Offs ress offs		sh where	operatio	on is per	formed.		

Flash Memory Address (FMA) Base 0x400F.D000

January 09, 2011

Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

Flas	h Mem	lory Da	ta (FMD)												
Offse	0x400F.I t 0x004 R/W, res	D000 et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	T	1	1		г т	DA	I I ATA		1	1	1	1	1	·
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							<u> </u>	ů	· · · · ·	v	<u> </u>		-			·
	10	1	1	1	1 1	10	<u>т</u> т		TA		1	1	- 1	1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	D/ R/W	г г	R/W	R/W	R/W	I R/W	R/W	R/W	R/W
Type Reset		Î	T	Î	r I	ĺ	r r	DA	I I ATA I		î	Ì	n I	Î	R/W 0	
Reset	R/W 0	R/W	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	DA R/W 0	R/W 0	R/W	R/W	R/W	I R/W	R/W		R/W
Reset	R/W	R/W	R/W	R/W 0	R/W 0	R/W	R/W	DA R/W 0	ATA R/W	R/W	R/W	R/W	I R/W	R/W		R/W

Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 210). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 211) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

Base	0x400F.E	•	ntrol (FN	MC)												
	t 0x008 R/W, rese	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	ſ	1	1		1	1 1	WR	KEY	1	1	1	1	1		
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1		res	erved			1	1	1	COMT	MERASE	ERASE	WRITE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		WRK	EY	W	0	0x0	This of a field	ccidenta I for a wi	ntains a I flash wi ite to occ	rites. Th cur. Write	e value (es to the	0xA442 e FMC re	to minimi must be v gister wit the value	written in	to this
	15:4		reser	ved	R	0	0x0	con	patibility		ure prod	ucts, the	value o	erved bit f a reserv on.	•	
	3		CON	ЛΤ	R/	W	0	Cor no e If re prev com	nmit (wri effect on ad, the s vious con nmit acce	the state state of th	gister val e of this l ne previo ess is co t comple	bit. ous com omplete,	mit acce a 0 is re	e storage. ss is prov eturned; c ed.	/ided. If	the
	2		MERA	ASE	R/	w	0	If th write If re prev the	is bit is s e of 0 ha ad, the s /ious ma previous	s no effe state of th ss erase	ash mai ect on the ne previo access rase acc	e state o ous mas is comp	of this bit s erase a lete, a 0	device is access is is return ete, a 1 is	provide ed; othe	d. If the rwise, if

www.BSDITIC.com/TI

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a Page of Flash Memory If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit. If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned. This can take up to 25 ms.
0	WRITE	R/W	0	Write a Word into Flash Memory If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit. If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned. This can take up to 50 µs.

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ			1	1		1	1	rese	erved		1	1			1	
Type Report	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																
ſ	15	14	13 I	12	11	10	9	8	7	6	5	4	3	2		0
Turno	RO	RO	RO	RO	RO	RO	rese RO	RO	RO	RO	RO	RO	RO	RO	PRIS RO	ARIS RO
Type Reset	0	0	0 0	0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:2		reserv	ved	R	0	0x0	Soft	ware sho	ould not	relv on t	he value	of a res	erved hit		vide
	•		10001			•	0/10	com	npatibility	with fut	ure prod	ucts, the	value of	a reserv		
								pres	served a	cross a r	ead-mod	dify-write	operatio	on.		
	1		PRI	S	R	0	0	Pro	grammin	g Raw Ir	nterrupt	Status				
									s bit provi ons gene							
								action	uns gene		rougn in		egister b	115 (See	page 212	<u>~)</u> .
								Val	ue Desc	ription						
								1	The	orogram	ming cyo	cle has c	omplete	d.		
								0	The	orogram	ming cyo	cle has n	ot compl	eted.		
								This	s status i	s sent to	the inte	rrupt con	troller w	hen the	PMASK b	it in the
									M registe					.		
								This	s bit is cle	ared by	writing a	1 to the	PMISC b	it in the F	CMISC	register.
	0		ARI	S	R	0	0	Acc	ess Raw	Interrup	ot Status					
								Val	ue Desc	ription						
								1		•	erase a	ction wa	s attemp	ted on a	block of	Flash
									mem	ory that		cts the p	•			
								0				o improp	erly proc	iram or e	erase the	Flash
								U	mem				suy prot			
									s status i		the inte	rrupt con	troller w	hen the	amask b	it in the
									M registe bit is cle		writing a	1 to the	AMTOOL	it in the E	CMISC	register
								1118		area by	winning a				Simot	icgiater.

WWW.BDITC.CO n/TI

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

Flash Controller Interrupt Mask (FCIM)

This register controls whether the flash controller generates interrupts to the controller.

Offset	0x400F.D t 0x010 R/W, rese		00.0000	(- ,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	ľ		1	1	г г		1 I	rese	rved	· · · · ·					1	
Т уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		•	•			reser	ved		•					PMASK	AMASK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
В	it/Field		Nan	ne	Тур	be	Reset	Des	cription							
	31:2		reser	ved	R	C	0x0	com		with futu	ire produ	ucts, the	value of	a reser	t. To prov ved bit sh	
	1		PMA	SK	R/	N	0	This	grammin bit contr ne interru	rols the r	eporting	of the p	rogramm	ning raw	interrup	t status
								Val	ue Desc	ription						
								1	An in is set		sent to	the inter	rupt cont	roller w	hen the P	PRIS bit
								0	The I contr		errupt is	suppres	sed and	not sen	t to the ir	nterrupt
	0		AMA	SK	R/	N	0	This	ess Inter bit conti rrupt con	rols the r		of the a	ccess ra	w interr	upt statu:	s to the
								Val	ue Desc	ription						
								1	An in is set		sent to	the inter	rupt cont	roller w	hen the A	RIS bit
								0	The z		errupt is	suppres	sed and	not sen	t to the ir	nterrupt

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

	31	 30	29	28	2	27	26	25	24	23	22	21	20	19	18	17	16
	1	1		1	1			1	rese	erved		1	1	1	1	1	1
pe set	RO 0	२० 0	RO 0	RO 0	R	:O 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	1	1	10	9	8	7	6	5	4	3	2	1	0
		1		1		ï		rese	l erved	1	1	1	1	1	1	PMISC	AMIS
et	RO 0	२० 0	RO 0	RO 0		10 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W ² 0
В	it/Field		Na	ime		Тур	be	Reset	Des	cription							
	31:2		rese	erved		R	D	0x0	com	patibility	with fut	ure pro	the value ducts, the odify-write	value of	a reser		
	1		PM	IISC		R/W	1C	0	Pro	grammin	g Maske	ed Interi	upt Statu	s and Cl	ear		
									Val	ue Desc	ription						
									1	signa Writii	iled bec ng a 1 to	ause a b this bit	ates that programn clears ₽№ page 214	ning cycl	e compl	leted.	
									0	interi	upt has	not occ	ates that urred. ffect on tl		U	2	mplet
	0		AM	IISC		R/W	1C	0	Acc	ess Mas	ked Inte	rrupt St	atus and	Clear			
									Val	ue Desc	ription						
									1	signa a blo for th Writii	iled bec ck of Fla at block ng a 1 to	ause a ash mer as set o this bit	cates that program of nory that in the FM clears AM page 214	or erase contradi PPEn re	action w cts the p gisters.	as attem protectior	pted on polic
									0	occu	rred.		ates that				ave

Flash Controller Masked Interrupt Status and Clear (FCMISC)

January 09, 2011

WWW.BDITC.CO

6.6 Flash Register Descriptions (System Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000.

.

Register 7: USec Reload (USECRL), offset 0x140

Note: Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

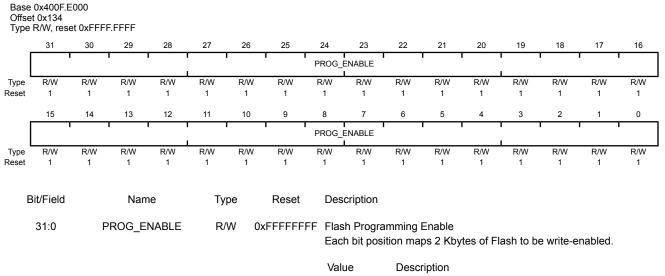
USe	c Relo	ad (USI	ECRL)													
Offse	0x400F.f t 0x140 R/W, res															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[Î	1				1 1	rese	rved	1		I	í -	1	i	
Г уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1	rese	rved	r	1 г			1	r	I US	EC	I	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 1
В	lit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserved		RO		0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								
	7:0 USEC R/W							MHz prog If the	Microsecond Reload Value MHz -1 of the controller clock when the flash is being erased or programmed. If the maximum system frequency is being used, USEC should be set to 0x31 (50 MHz) whenever the flash is being erased or programmed.							be set to

www.BDTIC.com/T

Register 8: Flash Memory Protection Read Enable (FMPRE), offset 0x130

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (see the **FMPPE** registers for the execute-only protection bits). This register is loaded during the power-on reset sequence. The factory settingsare a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.


	t 0x130 R/W, res	et 0xBFF	F.FFFF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DE	3G		1					READ_E	ENABLE	1	1		1	1	r
Type Reset	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	1				READ_I	ENABLE	I	1	I	ı	1	1	r
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:30		DB	G	R/	W	0x2		r Control h bit pos		•		lash to b	e read-e	nabled.	
								Valu	ue Desc	ription						
								0x2	Debu	ig acces	s allowe	d				
	29:0		READ_E	NABLE	R/	W 0:	x3FFFFFF		h Read h bit pos		ps 2 Kby	/tes of Fl	lash to b	e read-e	nabled.	
								Valu	he	Desc	ription					
								0x3	FFFFFF	F Enab	les 64 K	B of flasl	h.			

Flash Memory Protection Read Enable (FMPRE) Base 0x400F.E000 Flash Memory Protection Program Enable (FMPPE)

Register 9: Flash Memory Protection Program Enable (FMPPE), offset 0x134

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (see the **FMPRE** registers for the read-only protection bits). This register is loaded during the power-on reset sequence. The factory settings are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

0xFFFFFFFF Enables 64 KB of flash.

WWW.BDI IC.COm/T

7 General-Purpose Input/Outputs (GPIOs)

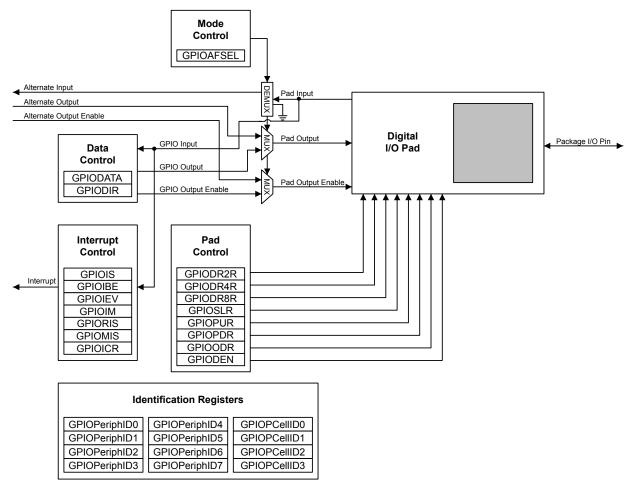
The GPIO module is composed of five physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E). The GPIO module supports 5-28 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

- 5-28 GPIOs, depending on configuration
- 5-V-tolerant in input configuration
- Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- Bit masking in both read and write operations through address lines
- Can initiate an ADC sample sequence
- Pins configured as digital inputs are Schmitt-triggered.
- Programmable control for GPIO pad configuration
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication

WWW DD I to reduction Data

- Slew rate control for the 8-mA drive
- Open drain enables
- Digital input enables


7.1 Functional Description

Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset (RST) puts both groups of pins back to their default state.

While debugging systems where PB7 is being used as a GPIO, care must be taken to ensure that a Low value is not applied to the pin when the part is reset. Because PB7 reverts to the TRST function after reset, a Low value on the pin causes the JTAG controller to be reset, resulting in a loss of JTAG communication.

Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 7-1 on page 222). The LM3S808 microcontroller contains five ports and thus five of these physical GPIO blocks.

Figure 7-1. GPIO Port Block Diagram

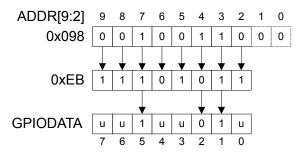
7.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

7.1.1.1 Data Direction Operation

The **GPIO Direction (GPIODIR)** register (see page 229) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.

7.1.1.2 Data Register Operation


To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 228) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

WWW BD Is um ints Production Data

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

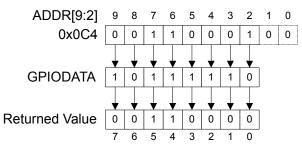

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 7-2 on page 223, where u is data unchanged by the write.

Figure 7-2. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 7-3 on page 223.

Figure 7-3. GPIODATA Read Example

7.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- GPIO Interrupt Sense (GPIOIS) register (see page 230)
- **GPIO Interrupt Both Edges (GPIOIBE)** register (see page 231)

T x s ns. um ints Production Data

• **GPIO Interrupt Event (GPIOIEV)** register (see page 232)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 233).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 234 and page 235). As the name implies, the **GPIOMIS** register only shows interrupt

conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the **Interrupt 0-31 Set Enable (EN0)** register can disable the PortB interrupts, and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on PB4, and wait for the ADC interrupt or the ADC interrupt must be disabled in the **EN0** register and the PortB interrupt handler must poll the ADC registers until the conversion is completed. See page 95 for more information.

Interrupts are cleared by writing a 1 to the appropriate bit of the **GPIO Interrupt Clear (GPIOICR)** register (see page 236).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

7.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 237), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

7.1.4 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the GPIODR2R, GPIODR4R, GPIODR8R, GPIOODR, GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers. These registers control drive strength, open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable.

7.1.5 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

7.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) default to general-purpose input mode (**GPIODIR**=0 and **GPIOAFSEL**=0). Table 7-1 on page 225 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 7-2 on page 225 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

Configuration	GPIO Register Bit Value ^a												
Configuration	AFSEL	DIR	ODR	DEN	PUR	PDR	DR2R	DR4R	DR8R	SLR			
Digital Input (GPIO)	0	0	0	1	?	?	X	Х	X	Х			
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?			
Open Drain Output (GPIO)	0	1	1	1	X	X	?	?	?	?			
Open Drain Input/Output (I ² C)	1	X	1	1	X	X	?	?	?	?			
Digital Input (Timer CCP)	1	X	0	1	?	?	X	X	X	X			
Digital Output (Timer PWM)	1	X	0	1	?	?	?	?	?	?			
Digital Input/Output (SSI)	1	X	0	1	?	?	?	?	?	?			
Digital Input/Output (UART)	1	X	0	1	?	?	?	?	?	?			
Analog Input (Comparator)	0	0	0	0	0	0	X	X	X	X			
Digital Output (Comparator)	1	X	0	1	?	?	?	?	?	?			

Table 7-1. GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 7-2. GPIO Interrupt Configuration Example

	Desired	Pin 2 Bit Va	lue ^a						
Register	Interrupt Event Trigger	7	6	5	4	3	2	1	0
GPIOIS	0=edge 1=level	X	X	X	X	X	0	X	X
GPIOIBE	0=single edge 1=both edges	X	X	×	X	X	0	X	X
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge		x	x	x	x	1	x	X
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0

a. X=Ignored (don't care bit)

7.3 Register Map

Table 7-3 on page 226 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

n/TI

WWW.BDIIC.CON

■ GPIO Port A: 0x4000.4000

- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000

Note that the GPIO module clock must be enabled before the registers can be programmed (see page 197). There must be a delay of 3 system clocks after the GPIO module clock is enabled before any GPIO module registers are accessed.

- **Important:** The GPIO registers in this chapter are duplicated in each GPIO block; however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect, and reading those unconnected bits returns no meaningful data.
- **Note:** The default reset value for the **GPIOAFSEL** register is 0x0000.0000 for all GPIO pins, with the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG functionality. Because of this, the default reset value of **GPIOAFSEL** for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Table	7-3.	GPIO	Register	Мар
-------	------	------	----------	-----

Offset	Name	Туре	Reset	Description	See page
0x000	GPIODATA	R/W	0x0000.0000	GPIO Data	228
0x400	GPIODIR	R/W	0x0000.0000	GPIO Direction	229
0x404	GPIOIS	R/W	0x0000.0000	GPIO Interrupt Sense	230
0x408	GPIOIBE	R/W	0x0000.0000	GPIO Interrupt Both Edges	231
0x40C	GPIOIEV	R/W	0x0000.0000	GPIO Interrupt Event	232
0x410	GPIOIM	R/W	0x0000.0000	GPIO Interrupt Mask	233
0x414	GPIORIS	RO	0x0000.0000	GPIO Raw Interrupt Status	234
0x418	GPIOMIS	RO	0x0000.0000	GPIO Masked Interrupt Status	235
0x41C	GPIOICR	W1C	0x0000.0000	GPIO Interrupt Clear	236
0x420	GPIOAFSEL	R/W	-	GPIO Alternate Function Select	237
0x500	GPIODR2R	R/W	0x0000.00FF	GPIO 2-mA Drive Select	239
0x504	GPIODR4R	R/W	0x0000.0000	GPIO 4-mA Drive Select	240
0x508	GPIODR8R	R/W	0x0000.0000	GPIO 8-mA Drive Select	241
0x50C	GPIOODR	R/W	0x0000.0000	GPIO Open Drain Select	242
0x510	GPIOPUR	R/W	0x0000.00FF	GPIO Pull-Up Select	243
0x514	GPIOPDR	R/W	0x0000.0000	GPIO Pull-Down Select	244
0x518	GPIOSLR	R/W	0x0000.0000	GPIO Slew Rate Control Select	245
0x51C	GPIODEN	R/W	0x0000.00FF	GPIO Digital Enable	246
0xFD0	GPIOPeriphID4	RO	0x0000.0000	GPIO Peripheral Identification 4	247
0xFD4	GPIOPeriphID5	RO	0x0000.0000	GPIO Peripheral Identification 5	248

www.BDTTC.com/T

Offset	Name	Туре	Reset	Description	See page
0xFD8	GPIOPeriphID6	RO	0x0000.0000	GPIO Peripheral Identification 6	249
0xFDC	GPIOPeriphID7	RO	0x0000.0000	GPIO Peripheral Identification 7	250
0xFE0	GPIOPeriphID0	RO	0x0000.0061	GPIO Peripheral Identification 0	251
0xFE4	GPIOPeriphID1	RO	0x0000.0000	GPIO Peripheral Identification 1	252
0xFE8	GPIOPeriphID2	RO	0x0000.0018	GPIO Peripheral Identification 2	253
0xFEC	GPIOPeriphID3	RO	0x0000.0001	GPIO Peripheral Identification 3	254
0xFF0	GPIOPCellID0	RO	0x0000.000D	GPIO PrimeCell Identification 0	255
0xFF4	GPIOPCellID1	RO	0x0000.00F0	GPIO PrimeCell Identification 1	256
0xFF8	GPIOPCellID2	RO	0x0000.0005	GPIO PrimeCell Identification 2	257
0xFFC	GPIOPCellID3	RO	0x0000.00B1	GPIO PrimeCell Identification 3	258

 Table 7-3. GPIO Register Map (continued)

7.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 229).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x000

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	[т т	rese	erved	1	1	1	1	I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved									1	1	D/	ATA	1	1	'
Туре	RO	RO RO<								R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name 31:8 reserved				Ty R		Reset 0x00	Soft corr	patibility	ould not / with futu cross a r	ure prod	ucts, the	value of	a reserv	•	
	7:0 DATA R/W					0x00	preserved across a read-modify-write operation. GPIO Data This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines ipaddr[9:2]. Reads									

This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines ipaddr[9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by ipaddr[9:2] and are configured as outputs. See "Data Register Operation" on page 222 for examples of reads and writes.

www.BDTTC.com/T

Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x400 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1					rese	rved		•	•		1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		1	rese	rved	1	r 1				r	I D	IR	I	ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8	8 reserved RO 0x0						Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		DIF	R	R/	W	0x00		O Data I DIR val			as follow	s:			

Value Description

- 0 Pins are inputs.
- 1 Pins are outputs.

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x404 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		1					rese	erved			•	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	15		13		11				7		5				4	
	15	14	13	12	11	10	9	8	·	6	5	4	3	2	1	0
				rese	rved								S		•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	con							Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		IS		R/	W	0x00		O Interru IS valu	•		s follows:				

Value Description

0 Edge on corresponding pin is detected (edge-sensitive).

1 Level on corresponding pin is detected (level-sensitive).

www.BDTTC.com/T

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 230) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 232). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x408
Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•						rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1 1		rese	rved							IB	E		ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IBE	R/W	0x00	GPIO Interrupt Both Edges The IBE values are defined as follows:

Value Description

- 0 Interrupt generation is controlled by the **GPIO Interrupt Event** (**GPIOIEV**) register (see page 232).
- 1 Both edges on the corresponding pin trigger an interrupt.
 - Note: Single edge is determined by the corresponding bit in GPIOIEV.

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 230). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)

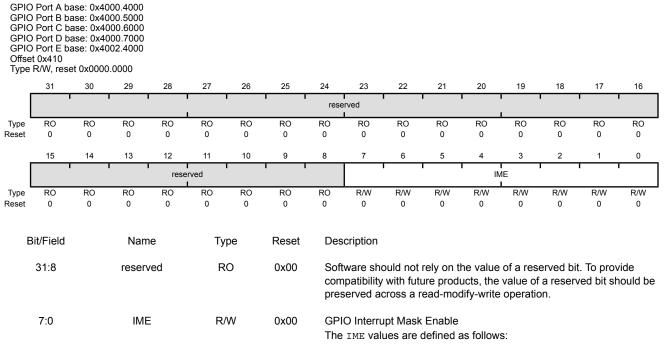
GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x40C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved				l			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							IE	V			
Type Reset	RO 0	R/W 0														

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IEV	R/W	0x00	GPIO Interrupt Event The IEV values are defined as follows:

Value Description

- Falling edge or Low levels on corresponding pins trigger interrupts.
- 1 Rising edge or High levels on corresponding pins trigger interrupts.


January 09, 2011

WWW.BD Is with inits Production Data

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined **GPIOINTR** line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)

Value Description

- 0 Corresponding pin interrupt is masked.
- 1 Corresponding pin interrupt is not masked.

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 233). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x414 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type Reset	RO 0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1 1		rese	rved	[R	S			
Type Reset	RO 0															

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	RIS	RO	0x00	GPIO Interrupt Raw Status Reflects the status of interrupt trigger condition detection on pins (raw, prior to masking).

The RIS values are defined as follows:

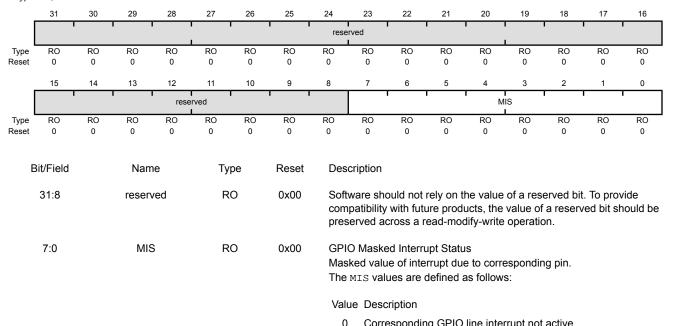
Value Description

- 0 Corresponding pin interrupt requirements not met.
- 1 Corresponding pin interrupt has met requirements.

www.bbbunts Production Data m/TI

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.


In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the ADC Event Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the Interrupt 0-31 Set Enable (EN0) register can disable the PortB interrupts, and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on PB4, and wait for the ADC interrupt or the ADC interrupt must be disabled in the EN0 register and the PortB interrupt handler must poll the ADC registers until the conversion is completed. See page 95 for more information.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000 7000 GPIO Port E base: 0x4002.4000 Offset 0x418 Type RO, reset 0x0000.0000

- Corresponding GPIO line interrupt not active.
- Corresponding GPIO line asserting interrupt. 1

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR)

GPIC GPIC GPIC GPIC Offse) Port B b) Port C b) Port D b	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	4000.4000 4000.5000 4000.6000 4000.7000 4002.4000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[I	Î	1	i I	[1 1	rese	rved	Ì	I	ì	1	Ì	Î	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	erved		1 1			1	1	1	 C 	1	1	
Type Reset	RO	RO	RO	RO	RO	RO	RO	RO	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0
Reset 0 0 0 0 0 0 0 0									cription	Ū	Ū	0	Ū	Ū	U	U
	31:8 reserved RO 0x00								patibility	with fut	ure prod	the value lucts, the dify-write	value of	a reserv	•	
	7:0 IC W1C 0x00								IC valu			s follows:	:			
								val	ue Desc	cription						

- 0 Corresponding interrupt is unaffected.
- 1 Corresponding interrupt is cleared.

WWW.BDD I C.COm/T

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.

Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset (RST) puts both groups of pins back to their default state.

While debugging systems where PB7 is being used as a GPIO, care must be taken to ensure that a Low value is not applied to the pin when the part is reset. Because PB7 reverts to the $\overline{\text{TRST}}$ function after reset, a Low value on the pin causes the JTAG controller to be reset, resulting in a loss of JTAG communication.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part.

It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x420 Type R/W, reset -

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ſ	1	1	1	[1 1	rese	rved					1	[1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											r	AFS	SEL	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W -	R/W	R/W -	R/W	R/W	R/W	R/W	R/W
E	Bit/Field Name Type Reset D				Des	cription										
	31:8		reser	ved	R	0	0x00							erved bit a reserv		

preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description							
7:0	AFSEL	R/W	-	GPIO Alternate Function Select The AFSEL values are defined as follows:							
				Value Description							
				0 Software control of corresponding GPIO line (GPIO mode							
				 Hardware control of corresponding GPIO line (alternate hardware function). 							
				Note: The default reset value for the GPIOAFSEL register is 0x0000.0000 for all GPIO pins, with the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG functionality. Because of this, the default reset value of GPIOAFSEL for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.							

www.BSD TIC.com/TI

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x500 Type R/W, reset 0x0000.00FF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1				1 1	rese	rved			1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	rese	rved		1					DR	V2	I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W 1	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
E	Bit/Field Name Type Reset						Des	cription								
	Bit/Field Name 31:8 reserved			ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
7:0 DRV2				R/	W	0xFF	A wi	rite of 1 f espondir		GPIODF enable l	ole R4[n] or (pit. The c				second	

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x504 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1 1	rese	rved		ſ	1		I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0		0	-	-		0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							DF	V4	•	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name					pe	Reset	Des	cription							
	Bit/Field Name 31:8 reserved			/ed	R	0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
7:0 DRV4			/4	R/	W	0x00	A wi	put Pad 4 rite of 1 t espondir k cycle a	o either ng 4-mA	GPIODF enable l	R2[n] or				second	

January 09, 2011

www.BDTTC.com/T

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x508 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1 1	rese	rved			I		I	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Neset															-	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	. 1	0
				rese	rved							DF	XV8	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name			Ту	ре	Reset	Des	cription								
	31:8 reserved			ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
7:0 DR			DRV	'8	R/	W	0x00	A wi	out Pad 8 rite of 1 t espondir k cycle a	o either ng 8-mA	GPIODF enable b	R2[n] or				second

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 246). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open-drain input if the corresponding bit in the **GPIODIR** register is cleared. If open drain is selected while the GPIO is configured as an input, the GPIO will remain an input and the open-drain selection has no effect until the GPIO is changed to an output.

When using the I²C module, in addition to configuring the pin to open drain, the **GPIO Alternate Function Select (GPIOAFSEL)** register bits for the I²C clock and data pins should be set to 1 (see examples in "Initialization and Configuration" on page 224).

GPIO Open Drain Select (GPIOODR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x50C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1		rese	rved	1	1	•	1	1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1		0	DE	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8 reserved			R	0	0x00	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv	•		
	7:0 ODE R/W 0x00 Ou						Open Dr ues are o			s:						

Value Description

0 Open drain configuration is disabled.

1 Open drain configuration is enabled.

www.bbunntsProduction Data

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 244).

GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x510 Type R/W, reset 0x0000.00FF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1				1 1	rese	rved	1	r			1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	ſ	1 1			1	I	PL	JE	r	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
Reber	Ū	Ũ	Ŭ	Ŭ	0	Ū	0	Ū	·				•			
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv	•	
	7:0			E	R/	W	0xFF	A wi	rite of 1 bles. The	Pull-Up E to GPIOI e change	PDR[n]					

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 243).

GPIO Pull-Down Select (GPIOPDR)

GPIC GPIC GPIC GPIC Offse	Port C ba	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	000.5000 000.6000 000.7000 002.4000		,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r		1 1		,		т г	rese	erved	1			1	1	ſ	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO
Resel	0	U	0	0	0	0	U	0	U	0	0	U	U	U	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'				PI	DE		•	'							
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv		
	7:0		PD	Ξ	R/	W	0x00	Aw	rite of 1 f bles. The	ull-Dowr to GPIOF e change	PUR[n]			-		

www.BDTIC.com/T

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 241).

GPIO Slew Rate Control Select (GPIOSLR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x518 Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		[1	[[ı ı	rese	rved	1				T	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ĺ		1	rese	rved		r r			I		SF	RL	T	ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	f a reserv	•	
	7:0		SRI	L	R/	W	0x00				•	A drive o as follows				

Value Description

- 0 Slew rate control disabled.
- 1 Slew rate control enabled.

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

Note: Pins configured as digital inputs are Schmitt-triggered.

The **GPIODEN** register is the digital input enable register. By default, all GPIO signals are configured as digital inputs at reset. If a pin is being used as a GPIO or its Alternate Hardware Function, it should be configured as a digital input. The only time that a pin should not be configured as a digital input is when the GPIO pin is configured to be one of the analog input signals for the analog comparators.

GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x51C Type R/W, reset 0x0000.00FF

• •																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		[1 1	rese	rved	1	1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1	rese	rved	ſ	1 1	ſ		1	1	D	I EN	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with fut	rely on t ure prod ead-mod	ucts, the	value of	a reserv	•	
	7:0		DEI	N	R/	W	0xFF	•	tal Enab DEN val		defined a	as follow	s:			

Value Description

0 Digital functions disabled.

1 Digital functions enabled.

WWW.BDTIC.com/T

Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1					rese	rved			1		I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			rese	rved		•	l			1	PI	D4	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	C	0x00	com		with futu	ure prod	ucts, the	value of	a reserv	t. To prov ved bit sh	
	7:0		PID	4	R	С	0x00	GPI	O Periph	ieral ID F	Register	[7:0]				

Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1					rese	rved					•	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved							PI	D5	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Reset 0 0 Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		PID	5	R	0	0x00	GPI	O Periph	eral ID F	Register[[15:8]				

www.BDTTC.com/T

Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1					rese	rved		1	•		I	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	-								-						0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		•					PI	D6		•	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Туј	be	Reset	Des	cription							
	31:8		reserv	/ed	R	C	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		
	7:0		PID	6	R	С	0x00	GPI	O Periph	eral ID F	Register	[23:16]				

Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved					•	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved							PI	D7	1	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		
	7:0		PID	7	R	0	0x00	GPI	O Periph	eral ID F	Register	31:24]				

www.BDTTC.com/T

Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE0 Type RO, reset 0x0000.0061

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1	[[1 1	rese	rved					1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset									-						Ū	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							PI	D0			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		PID	0	R	0	0x61		O Periph be used		• •	•	ie prese	nce of th	is periph	ieral.

Register 24: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1	[[1 1	rese	rved					1	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset									-						Ū	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			rese	rved							PI	D1	1		'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com		with futu	ure produ	ucts, the	value of	erved bit a reserv on.	•	
	7:0		PID	1	R	0	0x00		O Periph be used		• •	• •	ie prese	nce of th	is periph	neral.

www.BDTTC.com/T

Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved		I					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RO RO RO RO RO RO RO									1	PI	D2			'	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reser	/ed	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.								
	7:0		PID	2	R	0	0x18		O Periph be used		• •		ne prese	nce of th	is peripł	neral.

Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1	[1 1	rese	rved			ſ		1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset															0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							PI	D3		•	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide hould be
	7:0		PID	3	R	0	0x01		O Periph be used		• •		ne prese	nce of th	is periph	neral.

www.BDTTC.com/T]

Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved		I					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset									-						0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	I					1	CI	D0			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								
	7:0		CID	0	R	0	0x0D		O Prime vides sof			-	eriphera	l identific	ation sy	stem.

Register 28: GPIO PrimeCell Identification 1 (GPIOPCelIID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1	[[1 1	rese	rved					1	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset									-						U	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			rese	rved							CI	D1		I	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								
	7:0		CID	1	R	0	0xF0		O Prime vides sof		• •	-	eriphera	l identific	cation sy	stem.

www.BDIIC.com/T

Register 29: GPIO PrimeCell Identification 2 (GPIOPCelIID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset									-						0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	I						CI	D2			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		CID	2	R	0	0x05		O Prime vides sof		• •	-	eriphera	l identific	ation sy	stem.

Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1	[[1 1	rese	rved					1	[
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset									-						Ū	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			rese	rved							CI	D3			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		CID	3	R	0	0xB1		O Prime vides sof		• •	-	eriphera	l identific	ation sy	stem.

www.BDTTC.com/T

8 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins. The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

In addition, timers can be used to trigger analog-to-digital conversions (ADC). The ADC trigger signals from all of the general-purpose timers are ORed together before reaching the ADC module, so only one timer should be used to trigger ADC events.

The GPT Module is one timing resource available on the Stellaris microcontrollers. Other timer resources include the System Timer (SysTick) (see 81).

The General-Purpose Timers provide the following features:

- Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers/counters. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)
 - To trigger analog-to-digital conversions
- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - ADC event trigger
- 16-bit Input Capture modes
 - Input edge count capture

- Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal

8.1 Block Diagram

Note: In Figure 8-1 on page 260, the specific CCP pins available depend on the Stellaris device. See Table 8-1 on page 260 for the available CCPs.

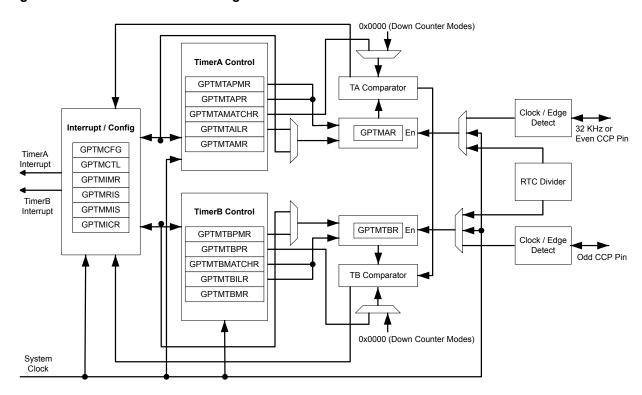


Figure 8-1. GPTM Module Block Diagram

Table 8-1. Available CCP Pins

Timer	16-Bit Up/Down Counter	Even CCP Pin	Odd CCP Pin
Timer 0	TimerA	CCP0	-
	TimerB	-	CCP1
Timer 1	TimerA	CCP2	-
	TimerB	-	CCP3
Timer 2	TimerA	CCP4	-
	TimerB	-	CCP5

8.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit

WWW BD Is um ints Production Data

load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 271), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 272), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 274). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

8.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load** (**GPTMTAILR**) register (see page 285) and the **GPTM TimerB Interval Load** (**GPTMTBILR**) register (see page 286). The prescale counters are initialized to 0x00: the **GPTM TimerA Prescale** (**GPTMTAPR**) register (see page 289) and the **GPTM TimerB Prescale** (**GPTMTBPR**) register (see page 290).

8.2.2 32-Bit Timer Operating Modes

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 285
- GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 286
- GPTM TimerA (GPTMTAR) register [15:0], see page 293
- GPTM TimerB (GPTMTBR) register [15:0], see page 294

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

8.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 272), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 276), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

www.bbbunits Production Data /TI

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches the 0x000.0000 state. The GPTM sets the TATORIS bit in the **GPTM Raw Interrupt Status** (GPTMRIS) register (see page 281), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 283). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTMIRR) register (see page 279), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 282). The ADC trigger is enabled by setting the TAOTE bit in GPTMCTL.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is set, the timer freezes counting while the processor is halted by the debugger. The timer resumes counting when the processor resumes execution.

8.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 287) by the controller.

The input clock on an even CCP input is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTMIMR**, the GPTM also sets the RTCMIS bit in **GPTMMIS** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

8.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 271). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an **n** to reference both.

8.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTMIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt. The ADC trigger is enabled by setting the TnOTE bit in the **GPTMCTL** register.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the **GPTMCTL** register is set, the timer freezes counting while the processor is halted by the debugger. The timer resumes counting when the processor resumes execution.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).

Prescale	#Clock (T c) ^a	Max Time	Units
0000000	1	1.3107	mS
0000001	2	2.6214	mS
00000010	3	3.9322	mS
1111101	254	332.9229	mS
1111110	255	334.2336	mS
1111111	256	335.5443	mS

Table 8-2. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.

8.2.3.2 16-Bit Input Edge Count Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling-edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- Note: The prescaler is not available in 16-Bit Input Edge Count mode.

WWW.BDUInts Production Data

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked).

The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 8-2 on page 264 shows how input edge count mode works. In this case, the timer start value is set to **GPTMTnILR** =0x000A and the match value is set to **GPTMTnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMTnMATCHR** register.

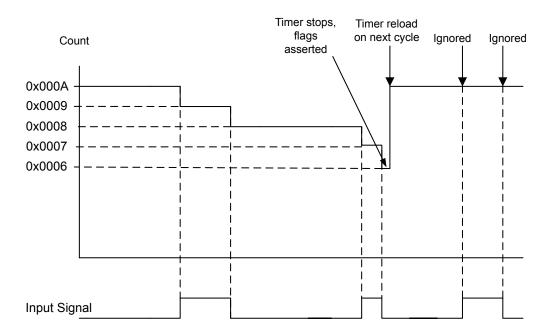
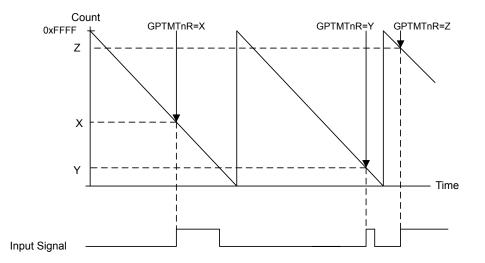


Figure 8-2. 16-Bit Input Edge Count Mode Example

8.2.3.3 16-Bit Input Edge Time Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- **Note:** The prescaler is not available in 16-Bit Input Edge Time mode.

Tix s is um ints Production Data


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of either rising or falling edges, but not both. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCTL** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current Tn counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMTNILR** register.

Figure 8-3 on page 265 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

Figure 8-3. 16-Bit Input Edge Time Mode Example

8.2.3.4 16-Bit PWM Mode

Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. In this mode, the PWM frequency and period are synchronous events and therefore guaranteed to be glitch free. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMTnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 8-4 on page 266 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMTnIRL**=0xC350 and the match value is **GPTMTnMATCHR**=0x411A.

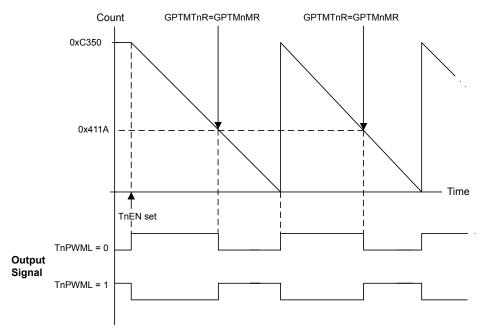


Figure 8-4. 16-Bit PWM Mode Example

8.3 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, and TIMER2 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

8.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - **a.** Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

T x s ns. um ints Production Data

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 267. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

8.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on an even CCP input. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the GPTM asserts the RTCRIS bit in the **GPTMRIS** register and continues counting until Timer A is disabled or a hardware reset. The interrupt is cleared by writing the RTCCINT bit in the **GPTMICR** register.

8.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - **a.** Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).

WWW.BDU ints Production Data

- 6. If interrupts are required, set the **TNTOIM** bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the ThTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the ThTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 267. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

8.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 268 through step 9 on page 268.

8.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.

WWW D D Is um ints Production Data

- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TREN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM

Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

8.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- **1.** Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnPWML field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

8.4 Register Map

Table 8-3 on page 269 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000
- Timer1: 0x4003.1000
- Timer2: 0x4003.2000

Note that the Timer module clock must be enabled before the registers can be programmed (see page 191). There must be a delay of 3 system clocks after the Timer module clock is enabled before any Timer module registers are accessed.

Offset	Name	Туре	Reset	Description	See page
0x000	GPTMCFG	R/W	0x0000.0000	GPTM Configuration	271
0x004	GPTMTAMR	R/W	0x0000.0000	GPTM TimerA Mode	272
0x008	GPTMTBMR	R/W	0x0000.0000	GPTM TimerB Mode	274
0x00C	GPTMCTL	R/W	0x0000.0000	GPTM Control	276

WWW BD Is um ints Production Data

Table 8-3. Timers Register Map

Offset	Name	Туре	Reset	Description	See page
0x018	GPTMIMR	R/W	0x0000.0000	GPTM Interrupt Mask	279
0x01C	GPTMRIS	RO	0x0000.0000	GPTM Raw Interrupt Status	281
0x020	GPTMMIS	RO	0x0000.0000	GPTM Masked Interrupt Status	282
0x024	GPTMICR	W1C	0x0000.0000	GPTM Interrupt Clear	283
0x028	GPTMTAILR	R/W	0xFFFF.FFFF	GPTM TimerA Interval Load	285
0x02C	GPTMTBILR	R/W	0x0000.FFFF	GPTM TimerB Interval Load	286
0x030	GPTMTAMATCHR	R/W	0xFFFF.FFFF	GPTM TimerA Match	287
0x034	GPTMTBMATCHR	R/W	0x0000.FFFF	GPTM TimerB Match	288
0x038	GPTMTAPR	R/W	0x0000.0000	GPTM TimerA Prescale	289
0x03C	GPTMTBPR	R/W	0x0000.0000	GPTM TimerB Prescale	290
0x040	GPTMTAPMR	R/W	0x0000.0000	GPTM TimerA Prescale Match	291
0x044	GPTMTBPMR	R/W	0x0000.0000	GPTM TimerB Prescale Match	292
0x048	GPTMTAR	RO	0xFFFF.FFFF	GPTM TimerA	293
0x04C	GPTMTBR	RO	0x0000.FFFF	GPTM TimerB	294

Table 8-3. Timers Register Map (continued)

8.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG) Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x000 Type R/W, reset 0x0000.0000 31 30 29 28 24 23 22 16 27 26 25 21 20 19 18 17 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 GPTMCFG reserved RO R/W R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description Software should not rely on the value of a reserved bit. To provide RO 0x00 31:3 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2:0 GPTMCFG R/W 0x0 **GPTM** Configuration The GPTMCFG values are defined as follows: Description Value 0x0 32-bit timer configuration. 32-bit real-time clock (RTC) counter configuration. 0x1 0x2 Reserved 0x3 Reserved 0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of GPTMTAMR and GPTMTBMR.

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

GPTM TimerA Mode (GPTMTAMR)

Time Time Offse	0 base: 0 1 base: 0 2 base: 0 t 0x004 R/W, rese	x4003.10 x4003.20	000 000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1		1	1	1 1	rese	rved	1	1	1	1	1 1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1			res	erved			1	1	1	TAAMS	TACMR	TA	MR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	ucts, the	e of a res value of e operatio	a reserv		
	3		TAAMS		R/W		0		GPTM TimerA Alternate Mode Select The TAAMS values are defined as follows:							
								Val	ue Desc	ription						
								0	Capt	ure mod	e is ena	bled.				
								1	PWN	1 mode i	s enable	d.				
									Note				de, you m R field to		clear the	TACMR
	2		TACN	ΛR	R/	W	0			rA Captu values ai			lows:			
								Val	ue Desc	ription						
								0	Edge	e-Count r	node					
								1	Edge	e-Time m	ode					

www.BDTIC.com/TI

Bit/Field	Name	Туре	Reset	Description
1:0	TAMR	R/W	0x0	GPTM TimerA Mode The TAMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The Timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register (16-or 32-bit). In 16-bit timer configuration, TAMR controls the 16-bit timer modes for TimerA. In 32-bit timer configuration, this register controls the mode and the contents of GPTMTBMR are ignored.

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

GPTM TimerB Mode (GPTMTBMR)

Time Time Offse	r0 base: (r1 base: (r2 base: (t 0x008 R/W, res	0x4003.1 0x4003.2	1000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	rved	I	1	Ì	1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	•			res	erved			1	1	1	TBAMS	TBCMR	ТВ	MR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	ucts, the		erved bit. a reserv on.		
	3		TBAN	MS	R/	W	0			rB Altern values a			-			
								Valu	ue Desc	cription						
								0	Capt	ure mod	e is enal	oled.				
								1	PWN	/I mode i	s enable	d.				
									Note				de, you n R field to	nust also (0x2.	clear the	TBCMR
	2		TBCM	ИR	R/	W	0			rB Captu values a			lows:			
								Valu	ue Desc	cription						
								0	Edge	e-Count i	node					
								1	Edge	e-Time m	ode					

www.BDTIC.com/TI

Bit/Field	Name	Туре	Reset	Description
1:0	TBMR	R/W	0x0	GPTM TimerB Mode The TBMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register. In 16-bit timer configuration, these bits control the 16-bit timer modes for TimerB. In 32-bit timer configuration, this register's contents are ignored and GPTMTAMR is used.

GPTM Control (GPTMCTL)

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall and the output trigger. The output trigger can be used to initiate transfers on the ADC module.

Timer Timer Offse	r1 base: (r2 base: (et 0x00C	0x4003.00 0x4003.10 0x4003.20 et 0x0000	00 00	-,												
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1				rese	erved	1				1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	TBPWML	TBOTE	reserved	TBE	/ENT	TBSTALL	TBEN	reserved	TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
Туре	RO	R/W	R/W	RO	R/W	R/W	R/W	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
31:15 reserved RO 0x00 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.											a reser					
	14		TBPW	/ML	R/	W	0			rB PWM J values a	•		llows:			
								Val	ue Desc	cription						
								C		out is una	ffected.					
								1		out is inve						
									Outp		itou.					
	13		TBO	TE	R/	W	0			rB Outpu values ar			ows:			
								Val	ue Desc	cription						
								C	The	output Ti	merB AD	DC trigge	er is disa	bled.		
								1	The	output Ti	merB AD	DC trigge	er is enal	bled.		
															ected as a e page 33	00
12 reserved RO 0 Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.																

www.bburntsProduction Data WWW.bburntsProduction Data

Bit/Field	Name	Туре	Reset	Description
11:10	TBEVENT	R/W	0x0	GPTM TimerB Event Mode The TBEVENT values are defined as follows:
				ValueDescription0x0Positive edge0x1Negative edge0x2Reserved0x3Both edges
9	TBSTALL	R/W	0	GPTM Timer B Stall Enable The TBSTALL values are defined as follows:
				 Value Description Timer B continues counting while the processor is halted by the debugger. Timer B freezes counting while the processor is halted by the debugger.
				If the processor is executing normally, the TBSTALL bit is ignored.
8	TBEN	R/W	0	GPTM TimerB Enable The TBEN values are defined as follows:
				Value Description 0 TimerB is disabled.
				 TimerB is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level The TAPWML values are defined as follows:
				Value Description0 Output is unaffected.1 Output is inverted.
5	TAOTE	R/W	0	GPTM TimerA Output Trigger Enable The TAOTE values are defined as follows:
				Value Description 0 The output TimerA ADC trigger is disabled.
				0 The output TimerA ADC trigger is disabled.1 The output TimerA ADC trigger is enabled.
				In addition, the ADC must be enabled and the timer selected as a trigger source with the EMn bit in the ADCEMUX register (see page 333).

Bit/Field	Name	Туре	Reset	Description
4	RTCEN	R/W	0	GPTM RTC Enable The RTCEN values are defined as follows:
				Value Description
				0 RTC counting is disabled.
				1 RTC counting is enabled.
3:2	TAEVENT	R/W	0x0	GPTM TimerA Event Mode
				The TAEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges
1	TASTALL	R/W	0	GPTM Timer A Stall Enable
				The TASTALL values are defined as follows:
				Value Description
				0 Timer A continues counting while the processor is halted by the debugger.
				1 Timer A freezes counting while the processor is halted by the debugger.
				If the processor is executing normally, the TASTALL bit is ignored.
0	TAEN	R/W	0	GPTM TimerA Enable
				The TAEN values are defined as follows:
				Value Description
				0 TimerA is disabled.
				1 TimerA is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.

www.BSD Tic.com/TI

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR) Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x018 Type R/W, reset 0x0000.0000 31 30 29 28 24 22 27 26 25 23 21 20 19 18 17 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RTCIM reserved CBEIM CBMIM твтоім CAEIM CAMIM TATOIM reserved R/W R/W R/W R/W RO RO RO RO RO R/W RO RO RO RO R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type RO 0x00 Software should not rely on the value of a reserved bit. To provide 31:11 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. CBEIM R/W GPTM CaptureB Event Interrupt Mask 10 0 The CBEIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled. R/W 9 CBMIM 0 GPTM CaptureB Match Interrupt Mask The CBMIM values are defined as follows: Value Description 0 Interrupt is disabled. Interrupt is enabled. 1 8 TBTOIM R/W 0 GPTM TimerB Time-Out Interrupt Mask The TBTOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled. 7:4 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.bbunntsProduction Data

Bit/Field	Name	Туре	Reset	Description
3	RTCIM	R/W	0	GPTM RTC Interrupt Mask The RTCIM values are defined as follows:
				Value Description0 Interrupt is disabled.1 Interrupt is enabled.
2	CAEIM	R/W	0	GPTM CaptureA Event Interrupt Mask The CAEIM values are defined as follows: Value Description 0 Interrupt is disabled.
				1 Interrupt is enabled.
1	CAMIM	R/W	0	GPTM CaptureA Match Interrupt Mask The CAMIM values are defined as follows:
				Value Description0 Interrupt is disabled.1 Interrupt is enabled.
0	ΤΑΤΟΙΜ	R/W	0	GPTM TimerA Time-Out Interrupt Mask The TATOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.

www.Bbunts Production Data /TI

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

GPTM Raw Interrupt Status (GPTMRIS)

Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x01C
Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	1		1 1			1	1	rese	rved	1	[1	1	1	I			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	1		reserved			CBERIS	CBMRIS	TBTORIS		rese	rved	1	RTCRIS	CAERIS	CAMRIS	TATORIS		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
В	8it/Field		Nam	e	Ту	ре	Reset	Des	Description									
	31:11		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	ucts, the	e of a res value of e operatio	a reserv				
	10		CBEF	RIS	R	0	0		•	ureB Eve aptureB		•	t status pri	or to ma	sking.			
	9		CBMF	RIS	R	0	0		•	ureB Mat aptureB		•	ot status pr	ior to ma	isking.			
	8		TBTO	RIS	R	0	0			rB Time- imerB tin			pt status pri	or to ma	sking.			
	7:4		reserv	ved	R	O	0x0	com	patibility	with futu	ure prod	ucts, the	e of a res value of e operatio	a reserv				
	3		RTCF	RIS	R	0	0			Raw Inte	•	pt statu:	s prior to	masking	I.			
	2		CAEF	RIS	R	0	0		•	ureA Eve aptureA		•	t status pri	or to ma	sking.			
	1		CAMF	RIS	R	0	0			ureA Mat aptureA			upt pt status prior to masking.					
	0 TATORIS RO 0							GPTM TimerA Time-Out Raw Interrupt This the TimerA time-out interrupt status prior to masking.										

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

Timer Timer Timer Offse	r0 base: 0 r1 base: 0 r2 base: 0 tt 0x020 RO, rese)x4003.0)x4003.1)x4003.2	000 000			,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
							•	resei	rved			•				•		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			reserved			CBEMIS	CBMMIS	TBTOMIS		rese	rved		RTCMIS	CAEMIS	CAMMIS	TATOMIS		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	0 RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0										
В	Bit/Field		Nam	ie	Ту	ре	Reset	Desc	cription									
	31:11 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit should not rely on the value of a reserved bit should not r																	
	10		CBEM	/IS	R	0	0		•	ureB Eve aptureB			rupt status afte	er maski	ing.			
	9		CBMN	<i>I</i> IS	R	0	0		•	ureB Mat aptureB			rrupt status aff	ter mask	king.			
	8		твтог	MIS	R	0	0			B Time- merB tir			errupt status aft	er mask	ing.			
	7:4		reserv	ved	R	0	0x0	com	patibility	with futu	ure prod	ucts, the	e of a rese value of operatio	a reserv				
	3		RTCM	/IS	R	0	0			Masked TC ever			s after ma	asking.				
	2		CAEM	IIS	R	0	0	GPTM CaptureA Event Masked Interrupt This is the CaptureA event interrupt status after masking.										
	1		CAMN	<i>I</i> IS	R	0	0		•	ureA Mat aptureA			rrupt status aff	ter mask	king.			
	0		ΤΑΤΟΝ	MIS	R	0	0	O GPTM TimerA Time-Out Masked Interrupt This is the TimerA time-out interrupt status after masking.										

GPTM Masked Interrupt Status (GPTMMIS)

www.BDITC.com/T

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

Timer Timer Timer Offse	M Inter to base: 0 to base: 0 to 2 base: 0 to 24 W1C, res	x4003.00 x4003.10 x4003.20	000 000	TMICF	R)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•		rese	rved						•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			CBECINT	CBMCINT	TBTOCINT		rese	rved		RTCCINT	CAECINT	CAMCINT	TATOCINT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0
В	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
31:11 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit show preserved across a read-modify-write operation.																
10 CBECINT W1C 0 GPTM CaptureB Event Interrupt Clear The CBECINT values are defined as follows:																
								Valu 0 1		nterrupt	is unaffe is cleare					
	9		CBMC	INT	W	1C	0	The	•	T values	tch Interr are defi	•				
								0		•	is unaffe	ected				
								1			is cleare					
	8		твтос	INT	W	1C	0	GPT	M Time	B Time-	Out Inter	rrupt Cle	ear s follows:			
								Valu	ue Desc	ription						
								0	The i	nterrupt	is unaffe	ected.				
								1	The i	nterrupt	is cleare	ed.				
	7:4		reserv	ved	R	0	0x0	com	patibility	with futu	ure produ	ucts, the	e of a rese value of e operatio	a reserv		

www.BDTC.com/TI

Bit/Field	Name	Туре	Reset	Description
3	RTCCINT	W1C	0	GPTM RTC Interrupt Clear The RTCCINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.
2	CAECINT	W1C	0	GPTM CaptureA Event Interrupt Clear The CAECINT values are defined as follows:
				Value Description
				0 The interrupt is unaffected.
				1 The interrupt is cleared.
1	CAMCINT	W1C	0	GPTM CaptureA Match Interrupt Clear The CAMCINT values are defined as follows:
				Value Description
				0 The interrupt is unaffected.
				1 The interrupt is cleared.
0	TATOCINT	W1C	0	GPTM TimerA Time-Out Interrupt Clear The TATOCINT values are defined as follows:
				Value Description
				0 The interrupt is unaffected.
				1 The interrupt is cleared.

www.Bbunts Production Data m/TI

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

Timer Offse	1 base: (2 base: (t 0x028 R/W, res	0x4003.2	2000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1	1	r I		ì	I TAI	I LRH I	I	I	1	1	ſ	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	I	1		I	TAI	LRL	I	I	1	1	I	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1 Bit/Field	1	1 Na	1 me	1 Tv	1 pe	1 Reset	1 Des	1 cription	1	1	1	1	1	1	1
	31:16		TAIL	₋RH	R/	W	0xFFFF	Whe Tim write In 1	en config I erB Inte e. A read	ured for rval Loa I returns de, this f	32-bit m ad (GPT the curr field read	ode via MTBILF rent valu	er High the GPTN R) register ue of GPT and does i	loads the MTBILF	nis value R.	e on a
	15:0		TAII	_RL	R/	W	0xFFFF	For		and 32-	-bit mod	es, writir	er Low ng this fiel alue of GI			nter for

GPTM TimerA Interval Load (GPTMTAILR)

Timer0 base: 0x4003.0000

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

Time Time Offse	r0 base: 0 r1 base: 0 r2 base: 0 t 0x02C R/W, rese)x4003.10)x4003.20	000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	reserved																	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			1		, , , , , , , , , , , , , , , , , , ,		1 1	TBI	LRL	1			Ì	1				
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1		
E	Bit/Field		Nam	Туре		Reset	Des	Description										
31:16			reserved		RO		0x0000	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	15:0		TBILRL			N	0xFFFF	Whe upda	GPTM TimerB Interval Load Register When the GPTM is not configured as a 32-bit timer, a write to this field updates GPTMTBILR . In 32-bit mode, writes are ignored, and reads return the current value of GPTMTBILR .									

www.Bbunnts Production Data m/TI

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

M Time	erA Ma	tch (GP	TMTAM	ATCHF	R)												
r1 base: (r2 base: (t 0x030)x4003.10)x4003.20	000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
TAMRH											1						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
TAMRL									1		'						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Bit/Field 31:16		Name TAMRH		Type R/W		Reset 0xFFFF	GPT	Description GPTM TimerA Match Register High									
							GP1 GP1 In 1	GPTMCFG register, this value is compared to the upper half of GPTMTAR , to determine match events.							f		
15:0		TAMRL			R/W 0xFFFF			GPTM TimerA Match Register Low When configured for 32-bit Real-Time Clock (RTC) mode via the GPTMCFG register, this value is compared to the lower half of GPTMTAR , to determine match events. When configured for PWM mode, this value along with GPTMTAILR , determines the duty cycle of the output PWM signal. When configured for Edge Count mode, this value along with GPTMTAILR , determines how many edge events are counted. The total number of edge events counted is equal to the value in GPTMTAILR									
	r0 base: (r1 base: (r2 base: (et 0x030 R/W, res 31 R/W 1 15 R/W 1 15 Bit/Field 31:16	r0 base: 0x4003.00 r1 base: 0x4003.10 r2 base: 0x4003.20 et 0x030 R/W, reset 0xFFFI 31 30 R/W R/W 1 1 15 14 R/W R/W 1 1 Sit/Field 31:16	r0 base: 0x4003.0000 r1 base: 0x4003.1000 r2 base: 0x4003.2000 et 0x030 R/W, reset 0xFFFF.FFFF 31 30 29 R/W R/W R/W 1 1 1 1 15 14 13 R/W R/W R/W 1 1 1 1 Bit/Field Nan 31:16 TAM	r0 base: 0x4003.0000 r1 base: 0x4003.1000 r2 base: 0x4003.2000 t0x030 R/W, reset 0xFFF.FFFF 31 30 29 28 R/W R/W R/W R/W 1 1 1 1 15 14 13 12 R/W R/W R/W R/W 1 1 1 1 R/W R/W R/W R/W 1 1 1 1 Sit/Field Name 31:16 TAMRH	To base: 0x4003.0000 r1 base: 0x4003.1000 r2 base: 0x4003.2000 r2 base: 0x4003.2000 R/W, reset 0xFFFF.FFF 31 30 29 28 27 R/W R/W R/W R/W R/W 1 1 1 1 15 14 13 12 11 15 14 13 12 11 R/W R/W R/W R/W R/W 1 1 1 1 R/W R/W R/W R/W 1 11 1 1 1 1 R/W R/W R/W R/W 1 R/W R/W R/W R/W R/W 31:16 TAMRH R/	r1 base: 0x4003.1000 12 base: 0x4003.2000 kt 0x030 R/W, reset 0xFFFF.FFF 31 30 29 28 27 26 R/W R/W R/W R/W R/W R/W 1 1 1 1 1 1 15 14 13 12 11 10 R/W R/W R/W R/W R/W R/W 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W 1 1 1 1 1 1 Bit/Field Name Type 31:16 TAMRH R/W	To base: 0x4003.0000 r1 base: 0x4003.1000 r2 base: 0x4003.2000 rd 0x030 R/W, reset 0xFFFF.FFF 31 30 29 28 27 26 25 R/W, reset 0xFFFF.FFF R/W R/W R/W R/W R/W R/W 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 1 1 1 1 1 1 Sit/Field Name Type Reset 31:16 TAMRH R/W 0xFFFF	To base: 0x4003.0000 r1 base: 0x4003.2000 r2 base: 0x4003.2000 t0x030 R/W, reset 0xFFF.FFFF 31 30 29 28 27 26 25 24 R/W R/W	10 base: 0x4003.0000 11 base: 0x4003.1000 12 base: 0x4003.2000 12 base: 0x4003.2000 12 base: 0x4003.2000 12 base: 0x4003.2000 R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 Image: 0x4003.000 R/W, reset 0xFFF.FFFF 31 30 29 28 27 26 25 24 23 Image: 0x4003.000 R/W R/W R/W R/W <td>n0 base: 0x4003.0000 r1 base: 0x4003.1000 r2 base: 0x4003.2000 r2 base: 0x4003.200 r2 base: 0x400 r2 base: 0x4003.200 r2 base: 0x40</td> <td>n0 base: 0x4003.0000 n1 base: 0x4003.0000 n1 base: 0x4003.0000 n0000 n0 base: 0x4003.0000 n1 base: 0x4003.0000 n1 base: 0x4003.0000 n1 base: 0x4003.000 n1 base: 0x4003.0000 n1 base: 0x4000.000 n1 base: 0x4000.000 n1 base: 0x4000.000 n1 base: 0x4000.0000 n1 base: 0</td> <td>n0 base: 0x4003.0000 r1 base: 0x4003.0000 r1 base: 0x4003.2000 rx4003.300 RW, reset 0xFFFF.FFF 31 30 29 28 27 26 25 24 23 22 21 20 RW, reset 0xFFFF.FFF 31 30 29 28 27 26 25 24 23 22 21 20 RW, reset 0xFFFF.FFF TAMRH RW RW</td> <td>n0 base: 0x4003.0000 r1 base: 0x4003.1000 r1 base: 0x4003.2000 r1 base: 0x4003.1000 11 30 29 28 27 26 25 24 23 22 21 20 19 11 30 29 28 27 26 25 24 23 22 21 20 19 1 30 29 28 27 26 25 24 23 22 21 20 19 1</td> <td>10 base: 0x4003.0000 1 base: 0x4003.0000 12 base: 0x4003.2000 10 x030 RW, reset 0xFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 RW, reset 0xFFF.FFFF 1<td>no base: 0x4003_0000 r1 base: 0x4003_2000 r1 XX303 RW, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 TAMRH RW RW R</td></td>	n0 base: 0x4003.0000 r1 base: 0x4003.1000 r2 base: 0x4003.2000 r2 base: 0x4003.200 r2 base: 0x400 r2 base: 0x4003.200 r2 base: 0x40	n0 base: 0x4003.0000 n1 base: 0x4003.0000 n1 base: 0x4003.0000 n0000 n0 base: 0x4003.0000 n1 base: 0x4003.0000 n1 base: 0x4003.0000 n1 base: 0x4003.000 n1 base: 0x4003.0000 n1 base: 0x4000.000 n1 base: 0x4000.000 n1 base: 0x4000.000 n1 base: 0x4000.0000 n1 base: 0	n0 base: 0x4003.0000 r1 base: 0x4003.0000 r1 base: 0x4003.2000 rx4003.300 RW, reset 0xFFFF.FFF 31 30 29 28 27 26 25 24 23 22 21 20 RW, reset 0xFFFF.FFF 31 30 29 28 27 26 25 24 23 22 21 20 RW, reset 0xFFFF.FFF TAMRH RW RW	n0 base: 0x4003.0000 r1 base: 0x4003.1000 r1 base: 0x4003.2000 r1 base: 0x4003.1000 11 30 29 28 27 26 25 24 23 22 21 20 19 11 30 29 28 27 26 25 24 23 22 21 20 19 1 30 29 28 27 26 25 24 23 22 21 20 19 1	10 base: 0x4003.0000 1 base: 0x4003.0000 12 base: 0x4003.2000 10 x030 RW, reset 0xFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 RW, reset 0xFFF.FFFF 1 <td>no base: 0x4003_0000 r1 base: 0x4003_2000 r1 XX303 RW, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 TAMRH RW RW R</td>	no base: 0x4003_0000 r1 base: 0x4003_2000 r1 XX303 RW, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 TAMRH RW RW R		

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 16-bit PWM and Input Edge Count modes.

Timer Timer Timer Offse	0 base: (1 base: (2 base: (t 0x034	erB Mai 0x4003.00 0x4003.10 0x4003.20 et 0x0000	000 000 000	ТМТВ№	1ATCHF	R)										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[reserved															
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TBMRL													'		
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	it/Field		Name			Туре		Des	Description							
31:16			reserved RO			0x0000	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
15:0			TBMRL R/W			0xFFFF	Whe dete Whe GP 1 num	GPTM TimerB Match Register Low When configured for PWM mode, this value along with GPTMTBILR , determines the duty cycle of the output PWM signal. When configured for Edge Count mode, this value along with GPTMTBILR , determines how many edge events are counted. The total number of edge events counted is equal to the value in GPTMTBILR minus this value.								

January 09, 2011

www.Bstumits Production Data Market C.COm/TI

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x038 Type R/W, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1	1	rese	erved	1	1	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		1	rese	rved	1		1		I	1	TAF	PSR	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	tware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	7:0		TAP	SR	R/	W	0x00	The	TM Time register ne registe	loads th		on a write	e. A read	returns	the curre	nt value

Refer to Table 8-2 on page 263 for more details and an example.

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x03C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved		1	1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1 1	rese	rved		1 1	[ſ	1	TBF	PSR			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	tware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	7:0		TBPS	SR	R/	W	0x00	The	TM Time register nis regist	loads thi		on a write	e. A read	returns t	he curre	nt value

Refer to Table 8-2 on page 263 for more details and an example.

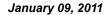
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x040 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	 	[1 1	rese	erved	ſ		ſ		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		•	rese	rved							TAP	SMR	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ıe	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		TAPS	MR	R/	W	0x00	This	TM Timer value is nts while	used al	ongside	GPTMT/	аматсі	HR to de	tect time	r match


Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x044 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1	rese	rved		[ſ		ſ	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1				<u> </u>		· ·				<u> </u>		· ·	<u> </u>
			-	rese	erved		-				-	TBP	SMR	-	-	-
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	C	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		TBPS	SMR	R/	W	0x00	This	TM Timer value is nts while	used al	ongside	GPTMT	BMATCI	HR to de	tect time	er match

www.BDTIC.com/TI

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the number of edges that have occurred.

GP1	M Tir	ner	A (G	PT	MTA	R)																				
Timer Timer Offse	r0 base r1 base r2 base et 0x048 RO, re	e: 0x e: 0x 3	4003. 4003.	1000 2000																						
	31		30		29		28	2	7	26	2	5	24	23		22	2	1	20	19		18		17		16
		1		1				, ,	1		1	ſ	T	ARH	1		1	1							1	
Туре	leset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															RO										
Reset																1										
	15		14		13		12	1	1	10	g	1	8	7		6	5	5	4	3		2		1		0
[ype RO																									
Туре																RO										
Reset	1		1		1		1	1		1	1		1	1		1	1		1	1		1		1		1
E	Bit/Field	d			Na	me			Тур	е	Re	set	De	scriptio	n											
	31:16				TA	RH			RC)	0xFl	FF	lf th	TM Tin ne GPT TMCF(MC	FG is	in a 3	2-bi					rea	id. If i	the	
15:0 TARL RO 0xFFFF GPTM TimerA Register Low A read returns the current value of the GPTM Time except in Input Edge-Count mode, when it returns that have occurred.																•										

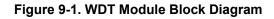
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

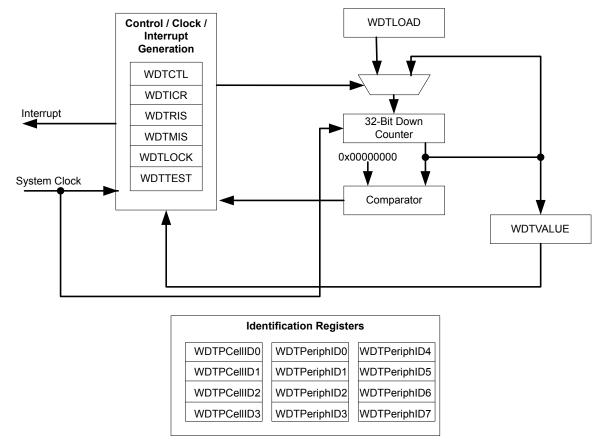
This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the number of edges that have occurred.

GP1	FM Tir	nei	rB (G	PT	MTE	BR)																							
Time Time Offse	r0 base r1 base r2 base et 0x040 R0, res	: 0x : 0x C	4003. 4003.2	1000 2000)																								
	31		30		29		28		27		26		25		24	23		22		21		20		19		18		17	16
		1				1		-		1		1		1	rese	rved	I		1								1		
Туре	Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																												
Reset																													
	Reset 0																												
	Type RO																												
Туре																													
Reset	1	-1	1		1		1		1	-	1	-	1		1	1		1		1		1		1		1		1	1
E	Bit/Field	d			Na	ame			I	уре	9	F	Rese	t	Des	criptic	n												
	31:16				rese	erve	d			RO		0:	<000	0	com	ware patibi servec	lity v	vith fu	uture	e pro	duc	ts, th	e va	alue	of a	rese		•	e ıld be
	15:0				TE	BRL				RO		0>	(FFF	F	A re exce		urns npu	the of th	je-C										ister , edges

www.BDTIC.com/TI

9 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.


The Stellaris[®] Watchdog Timer module has the following features:

- 32-bit down counter with a programmable load register
- Separate watchdog clock with an enable
- Programmable interrupt generation logic with interrupt masking
- Lock register protection from runaway software
- Reset generation logic with an enable/disable
- User-enabled stalling when the controller asserts the CPU Halt flag during debug

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

9.1 Block Diagram

9.2 Functional Description

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. Once the Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

WWW DD Internet Production Data

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

9.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the WDTLOAD register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

9.4 Register Map

Table 9-1 on page 297 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

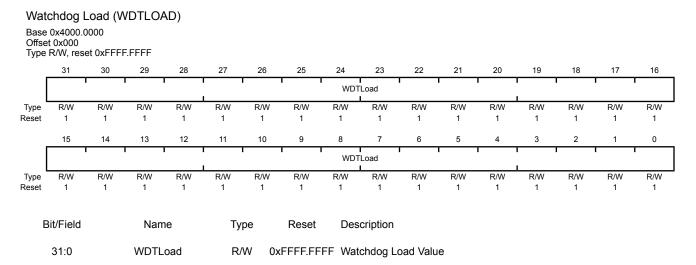
Offset	Name	Туре	Reset	Description	See page
0x000	WDTLOAD	R/W	0xFFFF.FFFF	Watchdog Load	299
0x004	WDTVALUE	RO	0xFFFF.FFFF	Watchdog Value	300
0x008	WDTCTL	R/W	0x0000.0000	Watchdog Control	301
0x00C	WDTICR	WO	-	Watchdog Interrupt Clear	302
0x010	WDTRIS	RO	0x0000.0000	Watchdog Raw Interrupt Status	303
0x014	WDTMIS	RO	0x0000.0000	Watchdog Masked Interrupt Status	304
0x418	WDTTEST	R/W	0x0000.0000	Watchdog Test	305
0xC00	WDTLOCK	R/W	0x0000.0000	Watchdog Lock	306
0xFD0	WDTPeriphID4	RO	0x0000.0000	Watchdog Peripheral Identification 4	307
0xFD4	WDTPeriphID5	RO	0x0000.0000	Watchdog Peripheral Identification 5	308
0xFD8	WDTPeriphID6	RO	0x0000.0000	Watchdog Peripheral Identification 6	309
0xFDC	WDTPeriphID7	RO	0x0000.0000	Watchdog Peripheral Identification 7	310
0xFE0	WDTPeriphID0	RO	0x0000.0005	Watchdog Peripheral Identification 0	311
0xFE4	WDTPeriphID1	RO	0x0000.0018	Watchdog Peripheral Identification 1	312
0xFE8	WDTPeriphID2	RO	0x0000.0018	Watchdog Peripheral Identification 2	313

Table 9-1. Watchdog Timer Register Map

January 09, 2011

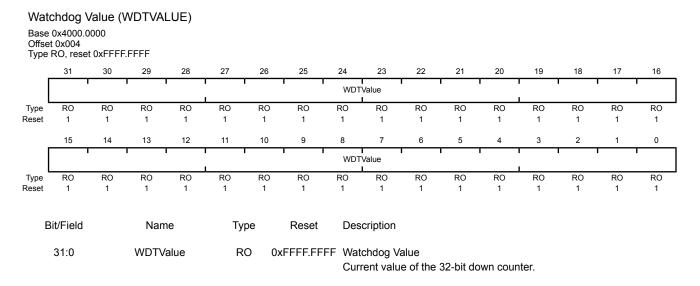
Offset	Name	Туре	Reset	Description	See page
0xFEC	WDTPeriphID3	RO	0x0000.0001	Watchdog Peripheral Identification 3	314
0xFF0	WDTPCellID0	RO	0x0000.000D	Watchdog PrimeCell Identification 0	315
0xFF4	WDTPCellID1	RO	0x0000.00F0	Watchdog PrimeCell Identification 1	316
0xFF8	WDTPCellID2	RO	0x0000.0005	Watchdog PrimeCell Identification 2	317
0xFFC	WDTPCellID3	RO	0x0000.00B1	Watchdog PrimeCell Identification 3	318

Table 9-1. Watchdog Timer Register Map (continued)


9.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

www.Bstumits Production Data Market C.COm/TI


Register 1: Watchdog Load (WDTLOAD), offset 0x000

This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.

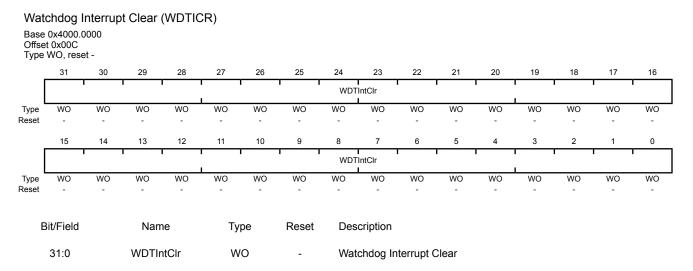
Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

www.bbunntsProduction Data WWW.bbunntsProduction Data TI

Register 3: Watchdog Control (WDTCTL), offset 0x008

This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.


When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

Base Offse	0x4000.0 t 0x008		(WDTC)	CTL)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1		rese	erved		•	1		•	1	
Г уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1	1	ſ	1	1	reser	ved	1		1	1	1	1	RESEN	INTEN
															R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0		INTE	ΞN	R/	W	0	The	Enat	terrupt E values a	Ū		reset ou ows:	itput.		
								0		•	nt disable hardware	•	e this bit i	s set, it	can only	be

1 Interrupt event enabled. Once enabled, all writes are ignored.

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

www.BDTTC.com/TI

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)

Offse	0x4000.0 et 0x010 RO, rese		0.0000	X		,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	T	T	,		1	rese	rved		1	1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	T			1	reserved			1	1		1	1	WDTRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset E	⁰ Bit/Field	0	o Nan	o ne	o Tyj	o pe	0 Reset	0 Des	0 cription	0	0	0	0	0	0	0
	31:1		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	the value ucts, the dify-write	value of	a reserv	•	vide hould be
	0		WDT	RIS	R	0	0		chdog R es the rav			tus (prior to	masking) of WD	TINTR.	

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)

Base 0x4000.0000 Offset 0x014 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	•				rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1	1	1	r	1	reserved			r			1		WDTMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	a reserv	•	vide hould be
	0		WDTI	MIS	R	0	0	Give	chdog M es the ma rrupt.		•	Status tate (afte	r maskii	ng) of the		NTR

January 09, 2011

Register 7: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

	chdog ⁻ 0x4000.0	•	/DTTES	ST)												
Offse	0x4000.0 t 0x418 R/W, res		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1			1	r	rese	rved	1	1	1	1	1	ſ	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	reserved		1	•	STALL		1	1	rese	erved	1	I	•
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Б	sit/Field		Nar	20	т		Reset	Dee	cription							
L			Indi		iy	pe	Reset	Des	cription							
	31:9		reser	ved	R	0	0x00				,	he value			•	
											•	ucts, the dify-write			ed bit sr	nould be
								pree		01000 01	caa moo	any write	operation			
	8		STA	LL	R	/W	0	Wate	chdog S	tall Enab	ole					
												nicrocon		••		00 .
											•	nting. On countinc		icroconti	oller is re	estarted,
										0			,			
	7:0		reser	ved	R	0	0x00					he value				
											•	ucts, the dify-write			ed bit sh	iould be
								p. 00				,				

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

Base Offse	0x4000. t 0xC00		/DTLOC	CK)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[Ì	1		ı – – – –		1 1	WDT	Lock			r	1	1	ſ	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I		1		1 1	WDT	Lock			Ì	1	1	Î	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:0		WDTL	.ock	R/	W	0x0000	A wi write any	e access register	e value 0 . A write updates	of any c	other valu		e watchd lies the l lues:		
									Value	Descr	iption					
								0x0	000.000	1 Locke	d					
								0x0	000.000	0 Unloc	ked					

www.BDTTC.com/T

Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1		, ,	rese	rved	1		1	r I	I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1	r	I Pl	1 D4 I	T	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	npatibility	with futu	ure prod	he value ucts, the dify-write	value of	f a reserv	•	
	7:0		PID	4	R	0	0x00	WD	T Periph	eral ID F	Register[7:0]				

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000 Offset 0xFD4 Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 PID5 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Туре Reset 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID5 RO 0x00 WDT Peripheral ID Register[15:8]

January 09, 2011

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000

Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		i	1	1			1 1	rese	erved	1		1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved					1		PI	D6	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		
	7:0		PIE	06	R	0	0x00	WD	T Periph	ieral ID F	Register	23:16]				

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000 Offset 0xFDC Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 PID7 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Туре Reset 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID7 RO 0x00 WDT Peripheral ID Register[31:24]

January 09, 2011

www.BDTIC.com/TI

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000

Offset 0xFE0 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				т т	rese	erved		r	1	ı 1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1				[I Pl	D0	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ie	Туј	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	7:0		PID	0	R	С	0x05	Wat	chdog P	eripheral	ID Reg	ister[7:0]				

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)

PID1

RO

Base 0x4000.0000

7:0

Offset 0xFE4 Type RO, reset 0x0000.0018 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 1 PID1 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Bit/Field Description Name Туре Reset 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

> 0x18 Watchdog Peripheral ID Register[15:8]

16

RO

0

0

RO

0

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000

Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1 1			1 1	rese	rved	I		1	1		r	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1		I Pl	D2	1	ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		vide nould be
	7:0		PIC	02	R	0	0x18	Wat	chdog P	eriphera	ID Reg	ister[23:	16]			

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000 Offset 0xFEC Type RO, reset 0x0000.0001

• •																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	T	1	1	1 1	rese	erved		1	1	1 1	1	T	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	1	1 1			ſ	T	I Pl	1 D3	T	T	Т
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	scription							
	31:8		reser	ved	R	0	0x00	com	npatibility	with fut	ure prod	the value lucts, the dify-write	value of	a reser		
	7:0		PID	03	R	0	0x01	Wat	tchdog P	eriphera	I ID Reg	jister[31:2	24]			

www.Bbunnts Production Data m/TI

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		· · ·		т т	rese	rved	1	r	1	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	rese	rved		1 I			I	I	CI	D0	ſ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:8		reserv	/ed	R	C	0x00	com	npatibility	ould not with futo cross a r	ure prod	ucts, the	value of	a reserv	•	
	7:0		CID	0	R	C	0x0D	Wat	chdog P	rimeCell	ID Regi	ster[7:0]				

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The **WDTPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)

Offse	0x4000.0 t 0xFF4 RO, rese	0000 t 0x0000	.00F0		,		,									
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1				г г	rese	rved		1	I	1	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved						1	CI	D1	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
B	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with fut	rely on tl ure produ ead-mod	ucts, the	value of	a reserv	•	
	7:0		CID	1	R	0	0xF0	Wate	chdog P	rimeCell	ID Regi	ster[15:8]			

January 09, 2011

www.Bbunnts Production Data m/TI

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 2 (WDTPCellID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1 1		r r		г г	rese	rved	1	r	1	r 1	1	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1 1	rese	rved		т т			1	ı	CI	D2	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	e	Тур	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	com	patibility	ould not / with futu cross a r	ure prod	ucts, the	value of	a reserv	•	
	7:0		CID	2	R	C	0x05	Wat	chdog P	rimeCell	ID Regi	ster[23:1	6]			

Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)

Base 0x4000.0000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	1	1	1	1	rese	erved		1	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	rese	erved	1		I			1	CI	D3	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		CIE)3	R	0	0xB1	Wat	chdog P	rimeCell	ID Regi	ster[31:2	24]			

www.BDTIC.com/TI

10 Analog-to-Digital Converter (ADC)

An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The Stellaris[®] ADC module features 10-bit conversion resolution and supports eight input channels, plus an internal temperature sensor. The ADC module contains four programmable sequencer which allows for the sampling of multiple analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

The Stellaris ADC module provides the following features:

- Eight analog input channels
- Single-ended and differential-input configurations
- On-chip internal temperature sensor
- Sample rate of 500 thousand samples/second
- Flexible, configurable analog-to-digital conversion
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
 - Controller (software)
 - Timers
 - Analog Comparators
 - GPIO
- Hardware averaging of up to 64 samples for improved accuracy
- Converter uses an internal 3-V reference

10.1 Block Diagram

Figure 10-1 on page 320 provides details on the internal configuration of the ADC controls and data registers.

10.2 Functional Description

The Stellaris ADC collects sample data by using a programmable sequence-based approach instead of the traditional single or double-sampling approaches found on many ADC modules. Each *sample sequence* is a fully programmed series of consecutive (back-to-back) samples, allowing the ADC to collect data from multiple input sources without having to be re-configured or serviced by the controller. The programming of each sample in the sample sequence includes parameters such as the input source and mode (differential versus single-ended input), interrupt generation on sample completion, and the indicator for the last sample in the sequence.

10.2.1 Sample Sequencers

The sampling control and data capture is handled by the sample sequencers. All of the sequencers are identical in implementation except for the number of samples that can be captured and the depth of the FIFO. Table 10-1 on page 320 shows the maximum number of samples that each sequencer can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit word, with the lower 10 bits containing the conversion result.

T x s is um ints Production Data

Sequencer	Number of Samples	Depth of FIFO
SS3	1	1
SS2	4	4
SS1	4	4
SS0	8	8

For a given sample sequence, each sample is defined by two 4-bit nibbles in the ADC Sample Sequence Input Multiplexer Select (ADCSSMUXn) and ADC Sample Sequence Control (ADCSSCTLn) registers, where "n" corresponds to the sequence number. The ADCSSMUXn

January 09, 2011

nibbles select the input pin, while the **ADCSSCTLn** nibbles contain the sample control bits corresponding to parameters such as temperature sensor selection, interrupt enable, end of sequence, and differential input mode. Sample sequencers are enabled by setting the respective ASENn bit in the **ADC Active Sample Sequencer (ADCACTSS)** register, and should be configured before being enabled.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence is allowed. In the **ADCSSCTLn** register, the IEn bits can be set for any combination of samples, allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the **ADC Sample Sequence Result FIFO (ADCSSFIFOn)** registers. The FIFOs are simple circular buffers that read a single address to "pop" result data. For software debug purposes, the positions of the FIFO head and tail pointers are visible in the **ADC Sample Sequence FIFO Status (ADCSSFSTATn)** registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored using the **ADCOSTAT** and **ADCUSTAT** registers.

10.2.2 Module Control

Outside of the sample sequencers, the remainder of the control logic is responsible for tasks such as:

- Interrupt generation
- Sequence prioritization
- Trigger configuration

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is configured automatically by hardware when the system XTAL is selected. The automatic clock divider configuration targets 16.667 MHz operation for all Stellaris devices.

10.2.2.1 Interrupts

The register configurations of the sample sequencers dictate which events generate raw interrupts, but do not have control over whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signals are controlled by the state of the MASK bits in the ADC Interrupt Mask (ADCIM) register. Interrupt status can be viewed at two locations: the ADC Raw Interrupt Status (ADCRIS) register, which shows the raw status of the various interrupt signals, and the ADC Interrupt Status and Clear (ADCISC) register, which shows active interrupts that are enabled by the ADCIM register. Sequencer interrupts are cleared by writing a 1 to the corresponding IN bit in ADCISC.

10.2.2.2 Prioritization

When sampling events (triggers) happen concurrently, they are prioritized for processing by the values in the **ADC Sample Sequencer Priority (ADCSSPRI)** register. Valid priority values are in the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active sample sequencer units with the same priority do not provide consistent results, so software must ensure that all active sample sequencer units have a unique priority value.

WWW BD Is um ints Production Data

10.2.2.3 Sampling Events

Sample triggering for each sample sequencer is defined in the **ADC Event Multiplexer Select** (**ADCEMUX**) register. The external peripheral triggering sources vary by Stellaris family member, but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by setting the SSx bits in the **ADC Processor Sample Sequence Initiate** (**ADCPSSI**) register.

Care must be taken when using the "Always" trigger. If a sequence's priority is too high, it is possible to starve other lower priority sequences.

10.2.3 Hardware Sample Averaging Circuit

Higher precision results can be generated using the hardware averaging circuit, however, the improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the number of samples in the averaging calculation. For example, if the averaging circuit is configured to average 16 samples, the throughput is decreased by a factor of 16.

By default the averaging circuit is off and all data from the converter passes through to the sequencer FIFO. The averaging hardware is controlled by the **ADC Sample Averaging Control (ADCSAC)** register (see page 340). There is a single averaging circuit and all input channels receive the same amount of averaging whether they are single-ended or differential.

10.2.4 Analog-to-Digital Converter

The converter itself generates a 10-bit output value for selected analog input. Special analog pads are used to minimize the distortion on the input. An internal 3 V reference is used by the converter resulting in sample values ranging from 0x000 at 0 V input to 0x3FF at 3 V input when in single-ended input mode.

10.2.5 Differential Sampling

In addition to traditional single-ended sampling, the ADC module supports differential sampling of two analog input channels. To enable differential sampling, software must set the Dn bit in the **ADCSSCTLOn** register in a step's configuration nibble.

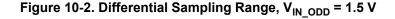
When a sequence step is configured for differential sampling, its corresponding value in the **ADCSSMUXn** register must be set to one of the four differential pairs, numbered 0-3. Differential pair 0 samples analog inputs 0 and 1; differential pair 1 samples analog inputs 2 and 3; and so on (see Table 10-2 on page 322). The ADC does not support other differential pairings such as analog input 0 with analog input 3. The number of differential pairs supported is dependent on the number of analog inputs (see Table 10-2 on page 322).

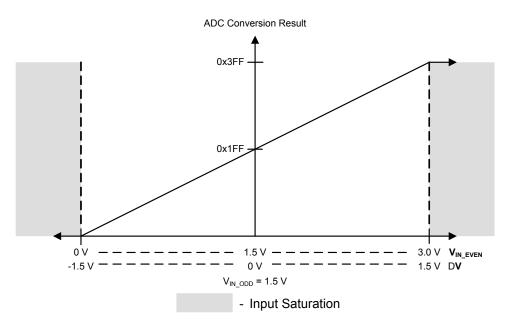
Differential Pair	Analog Inputs
0	0 and 1
1	2 and 3
2	4 and 5
3	6 and 7

Table 10-2. Differential Sampling Pairs

The voltage sampled in differential mode is the difference between the odd and even channels:

 ΔV (differential voltage) = V_{IN EVEN} (even channels) – V_{IN ODD} (odd channels), therefore:


WWW.DDD Ints Production Data


• If $\Delta V = 0$, then the conversion result = 0x1FF

- If $\Delta V > 0$, then the conversion result > 0x1FF (range is 0x1FF–0x3FF)
- If $\Delta V < 0$, then the conversion result < 0x1FF (range is 0–0x1FF)

The differential pairs assign polarities to the analog inputs: the even-numbered input is always positive, and the odd-numbered input is always negative. In order for a valid conversion result to appear, the negative input must be in the range of \pm 1.5 V of the positive input. If an analog input is greater than 3 V or less than 0 V (the valid range for analog inputs), the input voltage is clipped, meaning it appears as either 3 V or 0 V, respectively, to the ADC.

Figure 10-2 on page 323 shows an example of the negative input centered at 1.5 V. In this configuration, the differential range spans from -1.5 V to 1.5 V. Figure 10-3 on page 324 shows an example where the negative input is centered at -0.75 V, meaning inputs on the positive input saturate past a differential voltage of -0.75 V since the input voltage is less than 0 V. Figure 10-4 on page 324 shows an example of the negative input centered at 2.25 V, where inputs on the positive channel saturate past a differential voltage of 0.75 V since the input voltage would be greater than 3 V.

T x s nstruments Production Data

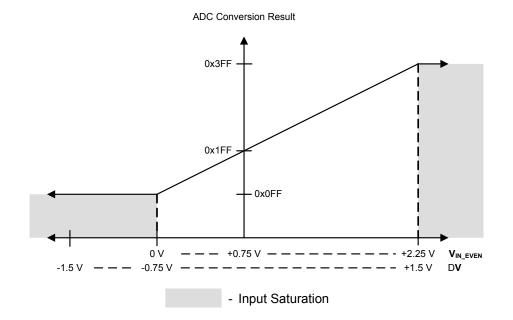
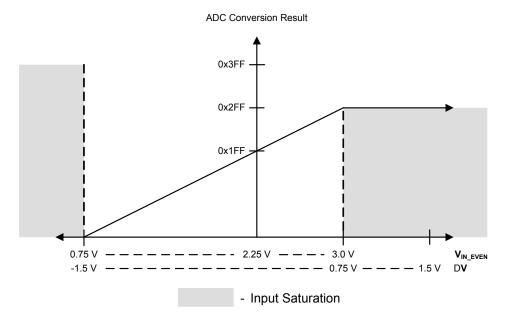



Figure 10-3. Differential Sampling Range, $V_{IN ODD}$ = 0.75 V

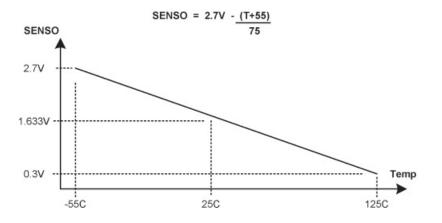
Figure 10-4. Differential Sampling Range, V_{IN ODD} = 2.25 V

T x s is rum ints Production Data

10.2.6 Test Modes

There is a user-available test mode that allows for loopback operation within the digital portion of the ADC module. This can be useful for debugging software without having to provide actual analog stimulus. This mode is available through the **ADC Test Mode Loopback (ADCTMLB)** register (see page 353).

10.2.7 Internal Temperature Sensor


The temperature sensor does not have a separate enable, since it also contains the bandgap reference and must always be enabled. The reference is supplied to other analog modules; not just the ADC.

The internal temperature sensor provides an analog temperature reading as well as a reference voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 10-5 on page 325.

Figure 10-5. Internal Temperature Sensor Characteristic

10.3 Initialization and Configuration

In order for the ADC module to be used, the PLL must be enabled and using a supported crystal frequency (see the **RCC** register). Using unsupported frequencies can cause faulty operation in the ADC module.

10.3.1 Module Initialization

Initialization of the ADC module is a simple process with very few steps. The main steps include enabling the clock to the ADC and reconfiguring the sample sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

- 1. Enable the ADC clock by writing a value of 0x0001.0000 to the RCGC0 register (see page 186).
- 2. If required by the application, reconfigure the sample sequencer priorities in the ADCSSPRI register. The default configuration has Sample Sequencer 0 with the highest priority, and Sample Sequencer 3 as the lowest priority.

10.3.2 Sample Sequencer Configuration

Configuration of the sample sequencers is slightly more complex than the module initialization since each sample sequence is completely programmable.

The configuration for each sample sequencer should be as follows:

T x s ns.rum ints Priduction Data

- 1. Ensure that the sample sequencer is disabled by writing a 0 to the corresponding ASENn bit in the **ADCACTSS** register. Programming of the sample sequencers is allowed without having them enabled. Disabling the sequencer during programming prevents erroneous execution if a trigger event were to occur during the configuration process.
- 2. Configure the trigger event for the sample sequencer in the ADCEMUX register.
- **3.** For each sample in the sample sequence, configure the corresponding input source in the **ADCSSMUXn** register.
- 4. For each sample in the sample sequence, configure the sample control bits in the corresponding nibble in the **ADCSSCTLn** register. When programming the last nibble, ensure that the END bit is set. Failure to set the END bit causes unpredictable behavior.
- 5. If interrupts are to be used, write a 1 to the corresponding MASK bit in the ADCIM register.
- 6. Enable the sample sequencer logic by writing a 1 to the corresponding ASENn bit in the ADCACTSS register.

10.4 Register Map

Table 10-3 on page 326 lists the ADC registers. The offset listed is a hexadecimal increment to the register's address, relative to the ADC base address of 0x4003.8000.

Note that the ADC module clock must be enabled before the registers can be programmed (see page 186). There must be a delay of 3 system clocks after the ADC module clock is enabled before any ADC module registers are accessed.

Offset	Name	Туре	Reset	Description	See page
0x000	ADCACTSS	R/W	0x0000.0000	ADC Active Sample Sequencer	328
0x004	ADCRIS	RO	0x0000.0000	ADC Raw Interrupt Status	329
0x008	ADCIM	R/W	0x0000.0000	ADC Interrupt Mask	330
0x00C	ADCISC	R/W1C	0x0000.0000	ADC Interrupt Status and Clear	331
0x010	ADCOSTAT	R/W1C	0x0000.0000	ADC Overflow Status	332
0x014	ADCEMUX	R/W	0x0000.0000	ADC Event Multiplexer Select	333
0x018	ADCUSTAT	R/W1C	0x0000.0000	ADC Underflow Status	336
0x020	ADCSSPRI	R/W	0x0000.3210	ADC Sample Sequencer Priority	337
0x028	ADCPSSI	WO	-	ADC Processor Sample Sequence Initiate	339
0x030	ADCSAC	R/W	0x0000.0000	ADC Sample Averaging Control	340
0x040	ADCSSMUX0	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 0	341
0x044	ADCSSCTL0	R/W	0x0000.0000	ADC Sample Sequence Control 0	343
0x048	ADCSSFIF00	RO	-	ADC Sample Sequence Result FIFO 0	346
0x04C	ADCSSFSTAT0	RO	0x0000.0100	ADC Sample Sequence FIFO 0 Status	347

Table 10-3. ADC Register Map

Offset	Name	Туре	Reset	Description	See page
0x060	ADCSSMUX1	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 1	348
0x064	ADCSSCTL1	R/W	0x0000.0000	ADC Sample Sequence Control 1	349
0x068	ADCSSFIF01	RO	-	ADC Sample Sequence Result FIFO 1	346
0x06C	ADCSSFSTAT1	RO	0x0000.0100	ADC Sample Sequence FIFO 1 Status	347
0x080	ADCSSMUX2	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 2	348
0x084	ADCSSCTL2	R/W	0x0000.0000	ADC Sample Sequence Control 2	349
0x088	ADCSSFIFO2	RO	-	ADC Sample Sequence Result FIFO 2	346
0x08C	ADCSSFSTAT2	RO	0x0000.0100	ADC Sample Sequence FIFO 2 Status	347
0x0A0	ADCSSMUX3	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 3	351
0x0A4	ADCSSCTL3	R/W	0x0000.0002	ADC Sample Sequence Control 3	352
0x0A8	ADCSSFIFO3	RO	-	ADC Sample Sequence Result FIFO 3	346
0x0AC	ADCSSFSTAT3	RO	0x0000.0100	ADC Sample Sequence FIFO 3 Status	347
0x100	ADCTMLB	R/W	0x0000.0000	ADC Test Mode Loopback	353

Table 10-3. ADC Register Map (continued)

10.5 Register Descriptions

The remainder of this section lists and describes the ADC registers, in numerical order by address offset.

Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000

This register controls the activation of the sample sequencers. Each sample sequencer can be enabled or disabled independently.

ADC Active Sample Sequencer (ADCACTSS)

Base 0x4003.8000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	ſ	1	rese	rved	1		ſ	1		ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	I	1 I	rese	rved	1	1				ASEN3	ASEN2	ASEN1	ASEN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:4	reserved	RO	0x0000.000	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	ASEN3	R/W	0	ADC SS3 Enable Specifies whether Sample Sequencer 3 is enabled. If set, the sample sequence logic for Sequencer 3 is active. Otherwise, the sequencer is inactive.
2	ASEN2	R/W	0	ADC SS2 Enable Specifies whether Sample Sequencer 2 is enabled. If set, the sample sequence logic for Sequencer 2 is active. Otherwise, the sequencer is inactive.
1	ASEN1	R/W	0	ADC SS1 Enable Specifies whether Sample Sequencer 1 is enabled. If set, the sample sequence logic for Sequencer 1 is active. Otherwise, the sequencer is inactive.
0	ASEN0	R/W	0	ADC SS0 Enable Specifies whether Sample Sequencer 0 is enabled. If set, the sample sequence logic for Sequencer 0 is active. Otherwise, the sequencer is

inactive.

WWW.BDITC.CON n/TI

Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004

This register shows the status of the raw interrupt signal of each sample sequencer. These bits may be polled by software to look for interrupt conditions without having to generate controller interrupts.

ADC Raw Interrupt Status (ADCRIS)

Base 0x4003.8000 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	I			1 1	ſ	rese	rved			ſ		[]]	ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	1		rese	rved	1					INR3	INR2	INR1	INR0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:4	reserved	RO	0x000	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	INR3	RO	0	SS3 Raw Interrupt Status This bit is set by hardware when a sample with its respective ADCSSCTL3 IE bit has completed conversion. This bit is cleared by setting the IN3 bit in the ADCISC register.
2	INR2	RO	0	SS2 Raw Interrupt Status This bit is set by hardware when a sample with its respective ADCSSCTL2 IE bit has completed conversion. This bit is cleared by setting the IN2 bit in the ADCISC register.
1	INR1	RO	0	SS1 Raw Interrupt Status This bit is set by hardware when a sample with its respective ADCSSCTL1 IE bit has completed conversion. This bit is cleared by setting the IN1 bit in the ADCISC register.
0	INR0	RO	0	SS0 Raw Interrupt Status This bit is set by hardware when a sample with its respective ADCSSCTL0 IE bit has completed conversion. This bit is cleared by setting the IN30 bit in the ADCISC register.

Register 3: ADC Interrupt Mask (ADCIM), offset 0x008

This register controls whether the sample sequencer raw interrupt signals are promoted to controller interrupts. Each raw interrupt signal can be masked independently.

	C Interro	-	sk (ADC	IM)												
Offse	t 0x008	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•		•		•	•	rese	erved	•					•	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		•		res	served			•	•		MASK3	MASK2	MASK1	MASK0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:4		reser	ved	R	0	0x000	con	npatibility	with fut	ure prod	ucts, the	e of a res value of e operatio	a reserv		
	3		MAS	K3	R	W	0	Whe 3 (A Whe	DCRIS	is bit allo register the statu	INR3 bit) to be p	upt signa promoted quencer 3	to a con	troller in	terrupt.
	2		MAS	K2	R	W	0	Whe 2 (A Whe	DCRIS	is bit allo register the statu	INR2 bit) to be p	upt signa promoted quencer 2	to a con	troller in	terrupt.
	1		MAS	K1	R	W	0	Whe 1 (A Whe	DCRIS	is bit allo register the statu	INR1 bit) to be p	upt signa promoted quencer	to a con	troller in	terrupt.
	0		MAS	К0	R/	W	0	Whe 0 (A	DCRIS	is bit allo register	INRO bit) to be p	upt signa promoted quencer (to a con	troller in	terrupt.

www.BSDITIC.com/TI

interrupt status.

Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C

This register provides the mechanism for clearing sample sequence interrupt conditions and shows the status of controller interrupts generated by the sample sequencers. When read, each bit field is the logical AND of the respective INR and MASK bits. Sample sequence nterrupts are cleared by setting the corresponding bit position. If software is polling the **ADCRIS** instead of generating interrupts, the sample sequence INR bits are still cleared via the **ADCISC** register, even if the IN bit is not set.

ADC Interrupt Status and Clear (ADCISC)

Base 0x4003.8000 Offset 0x00C

Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved				1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	10	14	- 15 	12			rved	0	,			4	IN3	IN2	IN1	INO
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam		Ту		Reset		cription							
	31:4		reserv	ved	R	0	0x000	com	patibility	with futu	ire produ	ucts, the	e of a rese value of operation	a reserv		
	3		IN3	3	R/M	/1C	0	This MAS to th	bit is se K3 bit in e contro	the ADC I Iler.	oth the : I M regist	INR3 bit er are se	t in the A et, providi aring this	ng a leve	el-based i	interrupt
	2		IN2	2	R/M	/1C	0	This MAS to th	bit is se K2 bit in e contro	the ADC I Iler.	oth the : I M regist	INR2 bil er are se	t in the A et, providi aring this	ng a leve	el-based i	interrupt
	1		IN1		R/M	/1C	0	This MAS to th	bit is se K1 bit in e contro	the ADC I Iler.	oth the : I M regist	INR1 bil er are se	t in the A et, providi aring this	ng a leve	el-based i	interrupt
	0		INC)	R/M	/1C	0	This MAS to th	bit is se K0 bit in e contro	the ADC I Iler.	oth the : I M regist	INR0 bit er are se	t in the A et, providi aring this	ng a leve	el-based i	interrupt

Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010

This register indicates overflow conditions in the sample sequencer FIFOs. Once the overflow condition has been handled by software, the condition can be cleared by writing a 1 to the corresponding bit position.

ADC Overflow Status (ADCOSTAT)

Base 0x4003.8000 Offset 0x010 Type R/W1C, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1	I			1 1	rese	erved			1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
]	r		1	r		re	eserved		1 I	1	r	1	OV3	OV2	OV1	OV0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C	R/W1C	R/W1C	R/W1C 0
Reset	0	0	0	0	0	0	0	U	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	scription							
	31:4		reserv	ved	R	0	0x0000.000	con	tware sho npatibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	3		OV	3	R/M	/1C	0	Whe hit a requ drop	3 FIFO O en set, th an overflo uested. V pped. s bit is cle	is bit spe ow condi Vhen an	tion whe overflow	re the F / is dete	IFO is fu	II and a v	vrite was	5
	2		OV	2	R/M	/1C	0	Whe hit a requ drop	2 FIFO O en set, th an overflo uested. V pped. s bit is cle	is bit spe ow condi Vhen an	tion whe overflow	re the F / is dete	IFO is fu	ll and a v	write was	5
	1		OV	1	R/M	/1C	0	Wh hit a req droj	1 FIFO O en set, th an overflo uested. V pped. s bit is cle	iis bit spe ow condi Vhen an	tion whe overflow	re the F / is dete	IFO is fu	ll and a v	vrite was	5
	0		OV	0	R/M	/1C	0	Whe hit a requ drop) FIFO O en set, th an overflo uested. V pped. s bit is cle	is bit spe ow condi Vhen an	tion whe overflow	re the F / is dete	IFO is fu	II and a v	vrite was	5

www.bbunntsProduction Data m/T

Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014

The **ADCEMUX** selects the event (trigger) that initiates sampling for each sample sequencer. Each sample sequencer can be configured with a unique trigger source.

ADC Event Multiplexer Select (ADCEMUX)

Base 0x4003.8000 Offset 0x014 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	i		I	Î		Í	1 1	reserv	/ed	1		I	1	I		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ	EN	I //3	I		E	M2			I EN	И1	1		I EN	1 0	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ne	Ту	ре	Reset	Desc	ription							
	31:16		reserv	ved	R	0	0x0	comp	atibilit	nould not y with futu across a r	ure prod	ucts, the	value of	a reserv		
	15:12		EM	3	R/	W	0x0	This f	field se	r Select elects the onfiguratio				e Sequei	ncer 3.	
								Value	e E	vent						
								0x0	С	ontroller ((default)					
								0x1	A	nalog Co	mparato	r 0				
								0x2	R	leserved						
								0x3	R	leserved						
								0x4	E	xternal (C	SPIO PB	4)				
								0x5		imer						
										n addition, ne GPTM					the TnO	re bit in
								0x6	re	eserved						
								0x7	re	eserved						
								0x8	re	eserved						
								0x9-0	0xE re	eserved						
								0xF	A	lways (co	ntinuous	sly samp	le)			

Bit/Field	Name	Туре	Reset	Description
11:8	EM2	R/W	0x0	SS2 Trigger Select This field selects the trigger source for Sample Sequencer 2. The valid configurations for this field are:
				Value Event
				0x0 Controller (default)
				0x1 Analog Comparator 0
				0x2 Reserved
				0x3 Reserved
				0x4 External (GPIO PB4)
				0x5 Timer In addition, the trigger must be enabled with the TnOTE bit in the GPTMCTL register (see page 276).
				0x6 reserved
				0x7 reserved
				0x8 reserved
				0x9-0xE reserved
				0xF Always (continuously sample)
7:4	EM1	R/W	0x0	SS1 Trigger Select This field selects the trigger source for Sample Sequencer 1. The valid configurations for this field are:
				Value Event
				0x0 Controller (default)
				0x1 Analog Comparator 0
				0x2 Reserved
				0x3 Reserved
				0x4 External (GPIO PB4)
				0x5 Timer In addition, the trigger must be enabled with the TnOTE bit in the GPTMCTL register (see page 276).
				0x6 reserved
				0x7 reserved
				0x8 reserved
				0x9-0xE reserved
				0xF Always (continuously sample)

www.BbunntsPreduction Data m/TI

Bit/Field	Name	Туре	Reset	Descript	ion
3:0	EM0	R/W	0x0	This field	ger Select I selects the trigger source for Sample Sequencer 0. I configurations for this field are:
				Value	Event
				0x0	Controller (default)
				0x1	Analog Comparator 0
				0x2	Reserved
				0x3	Reserved
				0x4	External (GPIO PB4)
				0x5	Timer In addition, the trigger must be enabled with the TnOTE bit in the GPTMCTL register (see page 276).
				0x6	reserved
				0x7	reserved
				0x8	reserved
				0x9-0xE	reserved
				0xF	Always (continuously sample)

Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018

This register indicates underflow conditions in the sample sequencer FIFOs. The corresponding underflow condition is cleared by writing a 1 to the relevant bit position.

ADC Underflow Status (ADCUSTAT)

Base 0x4003.8000 Offset 0x018 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
						1	1 1	rese	rved				1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Neset																	
Г	15	14	13	12	11	10	9	8	7	6	5	4	3	2 UV2	1 UV1	0 UV0	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	UV3 R/W1C	R/W1C	R/W1C	R/W1C	
Type Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription								
	31:4		reserv	ved	R	0	0x0000.000						of a res value of				
													e operatio				
	3		UV	3	R/W	V1C	0	SS3	FIFO U	nderflow	,						
										•			IFO for S	•	•		
													FIFO is e s not mov				
								0s a	re return	ied.					•		
								This	s bit is cle	eared by	writing a	a 1.					
	2		UV	2	R/W	V1C	0		FIFO U								
													IFO for S FIFO is e				
								requ	uested. T	he probl			s not mov				
									re return bit is cle		writing a	a 1.					
	1		UV	1	R/M	110	0		FIFO U	-	-						
	I		00	I	D/ W	vic	0					at the F	IFO for S	Sample S	equence	er 1 has	
													FIFO is e				
								requested. The problematic read does not move the FIFO po 0s are returned.									
								This									
	0		UV	0	R/W	V1C	0	SS0 FIFO Underflow									
													IFO for S				
								requ	uested. T	he probl			s not mov				
								0s a	re return	ied.							

This bit is cleared by writing a 1.

www.BDTIC.com/TI

Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020

This register sets the priority for each of the sample sequencers. Out of reset, Sequencer 0 has the highest priority, and Sequencer 3 has the lowest priority. When reconfiguring sequence priorities, each sequence must have a unique priority for the ADC to operate properly.

	R/W, res	et 0x0000	.3210													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		I	1			1	т т	rese	rved	1	1			[1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	rese	erved	S	53	rese	rved	SS	62	rese	rved	s	I S1	rese	rved	S	50
Type Reset	RO 0	RO 0	R/W 1	R/W 1	RO 0	RO 0	R/W 1	R/W 0	RO 0	RO 0	R/W 0	R/W 1	RO 0	RO 0	R/W 0	R/W 0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
;	31:14		reserv	ved	R	0	0x0000.0	com	patibility	with fut	ure prod		value of	a reserv	•	
compatibility with future products, the value of a resp preserved across a read-modify-write operation. 13:12 SS3 R/W 0x3 SS3 Priority This field contains a binary-encoded value that spece encoding of Sample Sequencer 3. A priority encodin and 3 is lowest. The priorities assigned to the sequeu uniquely mapped. The ADC may not operate proper fields are equal.											ncoding sequenc	of 0 is hi cers mus	ghest t be			
	11:10		reserv	ved	R	0	0x0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	9:8		SS	2	R/	W	0x2	This enco and uniq	oding of 3 is low	Sample est. The pped. Th	Sequen	ncoded v cer 2. A p s assigne may not o	oriority e d to the	ncoding sequenc	of 0 is hi cers mus	ghest t be
	7:6		reserv	ved	R	0	0x0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv		
5:4 SS1 R/W 0x1 SS1 Priority This field contains a binary-encoded value that specifies the p encoding of Sample Sequencer 1. A priority encoding of 0 is h and 3 is lowest. The priorities assigned to the sequencers mu uniquely mapped. The ADC may not operate properly if two o fields are equal.										of 0 is hi cers mus	ghest t be					
	3:2		reserv	ved	R	0	0x0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv		

ADC Sample Sequencer Priority (ADCSSPRI) Base 0x4003.8000

Offset 0x020

Bit/Field	Name	Туре	Reset	Description
1:0	SS0	R/W	0x0	SS0 Priority This field contains a binary-encoded value that specifies the priority encoding of Sample Sequencer 0. A priority encoding of 0 is highest and 3 is lowest. The priorities assigned to the sequencers must be uniquely mapped. The ADC may not operate properly if two or more fields are equal.

www.BSDI TIC.com/TI

Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028

This register provides a mechanism for application software to initiate sampling in the sample sequencers. Sample sequences can be initiated individually or in any combination. When multiple sequences are triggered simultaneously, the priority encodings in **ADCSSPRI** dictate execution order.

Offse	0x4003.8 t 0x028 WO, rese															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1	1	rese	rved			1	1		1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1		res	erved				•	1	SS3	SS2	SS1	SS0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	wo -	WO -	wo -	WO -
В	8it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:4		reser	ved	R	0	0	com	patibility	with futu	ure prod	ucts, the	of a resolution of a resolutio	a reserv		
	3		SS	3	W	0	-	Whe sequence Only	uencer is	enable by softw	d in the	ADCAC	n Sampl TSS regis ad of this	ster.		
	2		SS	2	W	0	-	Whe seq Only	uencer is / a write	enableo by softw	d in the /	ADCAC	n Sampl TSS regis ad of this	ster.		
meaningful data. 1 SS1 WO - SS1 Initiate When set, this bit trig sequencer is enabled Only a write by softwa meaningful data.										d in the	ADCAC	TSS regi	ster.			
	0		SS	0	W	0	-	Whe sequence Only	uencer is	enable by softw	d in the	ADCAC	n Sampl TSS regi ad of this	ster.		

ADC Processor Sample Sequence Initiate (ADCPSSI)

Base 0x4003.8000

ADC Sample Averaging Control (ADCSAC)

Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030

This register controls the amount of hardware averaging applied to conversion results. The final conversion result stored in the FIFO is averaged from 2^{AVG} consecutive ADC samples at the specified ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG=6, then 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An AVG = 7 provides unpredictable results.

, , ,	R/W, rese															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•			• •	rese	erved	•	•	•		•	•	•
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	1	1	1			reserved			1	1	1			AVG	1
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:3		reserv	ved	R	o c	0x0000.00	0 Soft	ware sh	ould not	rely on t	he value	of a res	erved bit	. To prov	vide
									patibility		ure prod ead-mod	ucts, the	value of	a reserv	ved bit sh	nould
	2:0		AVO	Э	R/	w	0x0	pres Haro Spe sam	patibility served a dware A cifies the ples. Th	cross a r veraging e amount e AVG fie	Control	ucts, the dify-write ware ave we any va	value of operation raging the alue betw	a reserv	e appliec	l to AE
	2:0		AVG	G	R/	w	0x0	pres Hard Spe sam valu	patibility served a dware A cifies the ples. Th	cross a r veraging e amouni e AVG fie eates ur	Control t of hardveld can b	ucts, the dify-write ware ave we any va	value of operation raging the alue betw	a reservon. on.	e appliec	l to AE
	2:0		AVG	G	R/	W	0x0	pres Hard Spe sam valu	apatibility served a dware A cifies the aples. Th a of 7 cr ue Desc	cross a r veraging e amoun e AVG fie eates ur cription	Control t of hardveld can b	ucts, the dify-write ware ave be any va ble resu	value of operation raging the alue betw	a reservon.	e appliec	l to AE
	2:0		AVC	G	R/	W	0x0	pres Hard Spe sam valu Valu	apatibility served a dware A cifies the oples. Th ie of 7 cr ue Desc No h	cross a r veraging e amount e AVG fie reates ur cription ardware	Control Control t of hardv eld can b predicta	ucts, the dify-write ware ave be any va ble resu npling	value of operation raging the alue betw	a reservon.	e appliec	l to AE
	2:0		AVC	3	R/	W	0x0	pres Hard Spe sam valu Valu 0x0	apatibility served a dware A cifies the pples. The le of 7 cr ue Desc No h 2x ha	cross a r veraging e amount e AVG fie reates ur cription ardware ardware	Control Control t of hardv eld can b predicta	ucts, the dify-write ware ave be any va ble resu npling npling	value of operation raging the alue betw	a reservon.	e appliec	l to AD
	2:0		AVO	3	R/	w	0x0	pres Hard Spe sam valu Valu 0x0 0x1	apatibility served a dware A cifies the pples. Th e of 7 cr ue Desc No h 2x ha 2 4x ha	cross a r veraging a amouni e AVG fid eates ur cription ardware ardware	control Control t of hards eld can b predicta oversam	ucts, the dify-write ware ave be any va ble resu npling npling	value of operation raging the alue betw	a reservon. on.	e appliec	l to AD
	2:0		AVG	3	R/	w	0x0	pres Hard Spe sam valu Valu 0x0 0x1 0x2	apatibility served a dware A crifies the ples. Th ie of 7 cr ue Desc No h 2x ha 2 4x ha 3 8x ha	cross a r veraging e amoun e AVG fit eates ur cription ardware ardware ardware ardware	control tof hardv eld can b predicta oversam oversam	ucts, the dify-write ware ave be any va bble resu npling npling npling	value of operation raging the alue betw	a reservon. on.	e appliec	l to AD
	2:0		AVO	3	R/	w	0x0	pres Hard Spe sam valu Valu 0x0 0x1 0x2 0x3	apatibility served a dware A crifies the pples. The of 7 cr ue Desc No h 2 x ha 2 4x ha 3 8x ha 4 16x h	cross a r veraging e amoun e AVG fie eates ur cription ardware ardware ardware ardware hardware	control tof hardweld can b predicta oversan oversan oversan	ucts, the dify-write ware ave be any va bble resu npling npling npling mpling	value of operation raging the alue betw	a reservon. on.	e appliec	l to AD
	2:0		AVO	3	R/	w	0x0	press Hard Spe sam valu 0x0 0x1 0x2 0x3 0x4	apatibility served a dware A crifies the aples. Th le of 7 cr ue Desc No h 2x ha 2 4x ha 3 8x ha 4 16x h 5 32x h	cross a r veraging e amoun e AVG fie eates ur cription ardware ardware ardware ardware nardware	control tof hardweld can be predictan oversam oversam oversam oversam	ucts, the dify-write ware ave be any va ble resu npling npling mpling mpling mpling	value of operation raging the alue betw	a reservon.	e appliec	l to AD

www.bbbletermints Production Data m/T

Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 0. This register is 32 bits wide and contains information for eight possible samples.

Offse	e 0x4003.d et 0x040 R/W, rese		0.0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	reserved		MUX7		reserved		MUX6		reserved		MUX5		reserved		MUX4		
Type Reset	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved		MUX3		reserved		MUX2		reserved		MUX1		reserved		MUX0		
Type Reset	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	scription								
	31		reserv	ved	R	0	0	con	npatibility	with fut	ure produ	ucts, the	of a rese value of operatio	a reserv	•		
30:28 MUX7 R/W 0x0 8th Sample Input Select The MUX7 field is used during the eighth sar with the sample sequencer. It specifies wh sampled for the analog-to-digital conversion the corresponding pin, for example, a valu ADC1.											es which o ersion. The	of the ar e value s	nalog inp set here i	uts is ndicates			
	27		reserv	ved	R	0	0	con	npatibility	with fut	ure produ	ucts, the	of a rese value of operatio	a reserv			
	26:24		MUX	6	R/	W	0x0	The exe	cuted wit	id is us h the sa	ed during Imple sec	quencer.	venth sam It specifi gital conv	es whic			
inputs is sampled for the analog-to-dig 23 reserved RO 0 Software should not rely on the value compatibility with future products, the preserved across a read-modify-write										value of	a reserv	•					
	22:20		MUX	5	R/	W	0x0	6th Sample Input Select The MUX5 field is used during the sixth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.									
	19		reserv	ved	R	0	0	con	npatibility	with fut	ure produ	ucts, the	of a rese value of operatio	a reserv	•		

ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0) Base 0x4003.8000

Bit/Field	Name	Туре	Reset	Description
18:16	MUX4	R/W	0x0	5th Sample Input Select The MUX4 field is used during the fifth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14:12	MUX3	R/W	0x0	4th Sample Input Select The MUX3 field is used during the fourth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
11	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
10:8	MUX2	R/W	0x0	3rd Sample Input Select The MUX72 field is used during the third sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6:4	MUX1	R/W	0x0	2nd Sample Input Select The MUX1 field is used during the second sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2:0	MUX0	R/W	0x0	1st Sample Input Select The MUX0 field is used during the first sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.

www.BbunntsPreduction Data m/TI

Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044

This register contains the configuration information for each sample for a sequence executed with a sample sequencer. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. This register is 32-bits wide and contains information for eight possible samples.

	R/W, rese	et 0x0000	0.0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	TS7	IE7	END7	D7	TS6	IE6	END6	D6	TS5	IE5	END5	D5	TS4	IE4	END4	D4	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
В	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription								
	31		TS7	TS7 R/W 0 8th Sample Temp Sensor Select This bit is used during the eighth sample of the sample sequence and and specifies the input source of the sample. When set, the temperature sensor is read. When clear, the input pin specified by the ADCSSMUX register is read.													
	30		IE7		R/	W	0	This spea end is se Whe Whe	cifies wh of the sa et, the inf en this bi en this bi	ed durin ether the ample's o terrupt is t is set, f t is clear	ig the eig e raw inte conversions promote the raw in r, the raw	errupt sig on. If the ed to a co nterrupt i v interrup	mal (INF MASK0 I ontroller- is assert ot is not a	eo bit) is bit in the level int ed. asserted	·	l at the register	
	29		END	97	R/	w	0	The pose afte even the whice	sible to e r the sam n though END bit s ch only h END0 bit	t indicate nd the so ple cont the field comewhe as a sing set.)	es that th equence taining a s may be ere withir gle samp	is is the on any s set END non-zer the seq ole in the	ample p are not i o. It is req juence. (sequence	osition. S requeste quired th Sample ce, is ha		defined version re write ær 3, o have	
	28		D7		R/	w	0	 which only has a single sample in the sequence, is hardwired to have the END0 bit set.) Setting this bit indicates that this sample is the last in the sequence. 8th Sample Diff Input Select The D7 bit indicates that the analog input is to be differentially sampled. The corresponding ADCSSMUXx nibble must be set to the pair number "i", where the paired inputs are "2i and 2i+1". The temperature sensor does not have a differential option. When set, the analog inputs are differentially sampled. 									
	27		TSE	3	R/	W	0		Sample ⁻ ne definit	•			ng the se	eventh sa	ample.		

ADC Sample Sequence Control 0 (ADCSSCTL0)

Base 0x4003.8000

Offset 0x044

January 09, 2011

Bit/Field	Name	Туре	Reset	Description
26	IE6	R/W	0	7th Sample Interrupt Enable Same definition as IE7 but used during the seventh sample.
25	END6	R/W	0	7th Sample is End of Sequence Same definition as $END7$ but used during the seventh sample.
24	D6	R/W	0	7th Sample Diff Input Select Same definition as $D7$ but used during the seventh sample.
23	TS5	R/W	0	6th Sample Temp Sensor Select Same definition as ${\rm TS7}$ but used during the sixth sample.
22	IE5	R/W	0	6th Sample Interrupt Enable Same definition as IE7 but used during the sixth sample.
21	END5	R/W	0	6th Sample is End of Sequence Same definition as END7 but used during the sixth sample.
20	D5	R/W	0	6th Sample Diff Input Select Same definition as ${\tt D7}$ but used during the sixth sample.
19	TS4	R/W	0	5th Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the fifth sample.
18	IE4	R/W	0	5th Sample Interrupt Enable Same definition as IE7 but used during the fifth sample.
17	END4	R/W	0	5th Sample is End of Sequence Same definition as $END7$ but used during the fifth sample.
16	D4	R/W	0	5th Sample Diff Input Select Same definition as ${\tt D7}$ but used during the fifth sample.
15	TS3	R/W	0	4th Sample Temp Sensor Select Same definition as ${\rm TS7}$ but used during the fourth sample.
14	IE3	R/W	0	4th Sample Interrupt Enable Same definition as IE7 but used during the fourth sample.
13	END3	R/W	0	4th Sample is End of Sequence Same definition as $END7$ but used during the fourth sample.
12	D3	R/W	0	4th Sample Diff Input Select Same definition as ${\tt D7}$ but used during the fourth sample.
11	TS2	R/W	0	3rd Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the third sample.
10	IE2	R/W	0	3rd Sample Interrupt Enable Same definition as $IE7$ but used during the third sample.
9	END2	R/W	0	3rd Sample is End of Sequence Same definition as END7 but used during the third sample.
8	D2	R/W	0	3rd Sample Diff Input Select Same definition as ${\tt D7}$ but used during the third sample.

www.BSD TIC.com/TI

Bit/Field	Name	Туре	Reset	Description
7	TS1	R/W	0	2nd Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the second sample.
6	IE1	R/W	0	2nd Sample Interrupt Enable Same definition as IE7 but used during the second sample.
5	END1	R/W	0	2nd Sample is End of Sequence Same definition as END7 but used during the second sample.
4	D1	R/W	0	2nd Sample Diff Input Select Same definition as ${\mathbb D}7$ but used during the second sample.
3	TSO	R/W	0	1st Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the first sample.
2	IE0	R/W	0	1st Sample Interrupt Enable Same definition as IE7 but used during the first sample.
1	END0	R/W	0	1st Sample is End of Sequence Same definition as END7 but used during the first sample.
0	D0	R/W	0	1st Sample Diff Input Select Same definition as ${\mathbb D}7$ but used during the first sample.

Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 Register 14: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 Register 15: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088 Register 16: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8

Important: Use caution when reading this register. Performing a read may change bit status.

This register contains the conversion results for samples collected with the sample sequencer (the **ADCSSFIFO0** register is used for Sample Sequencer 0, **ADCSSFIFO1** for Sequencer 1, **ADCSSFIFO2** for Sequencer 2, and **ADCSSFIFO3** for Sequencer 3). Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0)

Base 0x4003.8000 Offset 0x048 Type RO, reset -31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре RO RO RO RO RO Reset 15 14 13 12 11 10 9 8 7 6 5 3 2 1 0 reserved DATA RO Type Reset **Bit/Field** Description Name Туре Reset Software should not rely on the value of a reserved bit. To provide 31:10 reserved RO compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9:0 DATA RO **Conversion Result Data**

Register 17: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C

Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C

Register 19: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C

Register 20: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC

This register provides a window into the sample sequencer, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO. The **ADCSSFSTAT0** register provides status on FIFO0, **ADCSSFSTAT1** on FIFO1, **ADCSSFSTAT2** on FIFO2, and **ADCSSFSTAT3** on FIFO3.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)

Base 0x4003.8000

Offset 0x04C Type RO, reset 0x0000.0100

	,															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1 1		1		1	1	rese	rved	1	1	1			1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		FULL		reserved		EMPTY		HP	TR	•		TP	TR	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	Bit/Field Name Type Reset Description 31:13 reserved RO 0x0 Software should not rely on the value of a reserved bit. To procompatibility with future products, the value of a reserved bit s preserved across a read-modify-write operation.											•				
	12		FUI	_L	R	0	0		D Full en set, th	nis bit ind	licates th	nat the Fl	FO is cu	irrently fi	ull.	
	11:9		reser	ved	R	0	0x0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	8		EMP	ΥTY	R	0	1	preserved across a read-modify-write operation. FIFO Empty When set, this bit indicates that the FIFO is currently empty.								
	7:4		HPI	ſR	R	0	0x0									, that is,
	3:0		TPT	R	R	0	0x0	This				t "tail" pc	ointer ind	ex for th	e FIFO,	that is,

www.BbunntsProduction Data WWW.BbunntsProduction Data

Register 21: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060

Register 22: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 1 or 2. These registers are 16-bits wide and contain information for four possible samples. See the **ADCSSMUX0** register on page 341 for detailed bit descriptions. The **ADCSSMUX1** register affects Sample Sequencer 1 and the **ADCSSMUX2** register affects Sample Sequencer 2.

	r 0x060 R/W, rese	et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•					rese	erved		•		· ·			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved		MUX3		reserved		MUX2		reserved		MUX1		reserved		MUX0	
Type Reset	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0
В	Bit/Field		Nam	ie	Ту	ре	Reset	Des	scription							
	31:15		reserv	ved	R	0	0x0000	con		with fut	ure produ	ucts, the	value of	a reserv	t. To prov ved bit sh	
	14:12		MUX	(3	R/	W	0x0	4th	Sample I	nput Se	lect					
	11		reserv	ved	R	0	0	con		with fut	ure produ	ucts, the	value of	a reserv	t. To prov ved bit sh	
	10:8		MUX	(2	R/	W	0x0	3rd	Sample	nput Se	lect					
	10:8 MUX2 R/W 0x0 3rd Sample Input Select 7 reserved RO 0 Software should not rely compatibility with future preserved across a read-										ure produ	ucts, the	value of	a reserv		
	6:4		MUX	(1	R/	W	0x0	0x0 2nd Sample Input Select								
	3		reserv	/ed	R	0	0	com		with fut	ure produ	ucts, the	value of	a reserv	t. To prov ved bit sh	
	2:0		MUX	(0	R/	W	0x0	1st	Sample I	nput Sel	lect					

ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1) Base 0x4003.8000

www.BDTTC.com/T

Register 23: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064 Register 24: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084

These registers contain the configuration information for each sample for a sequence executed with Sample Sequencer 1 or 2. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. These registers are 16-bits wide and contain information for four possible samples. See the **ADCSSCTL0** register on page 343 for detailed bit descriptions. The **ADCSSCTL1** register configures Sample Sequencer 1 and the **ADCSSCTL2** register configures Sample Sequencer 2.

	t 0x064 R/W, rese	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	rved				1		1 1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:16 reserved		ved	R	0	0x0000	com	patibility	with futu	ould not rely on the value of a reserved bit. To provide with future products, the value of a reserved bit should be cross a read-modify-write operation.							
15 TS3		3	R/	W	0		4th Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the f				ng the fo	fourth sample.				
	14	14 IE3		3	R/	R/W 0				Interrupt ion as I	Enable E7 but u	sed duri	ng the fo	ourth san	nple.	
	13		END)3	R/W 0		0	4th Sample is End of Sequence Same definition as $END7$ but used during the fourth sample.								
	12		D3	6	R/W 0			4th Sample Diff Input Select Same definition as D7 but used during the fourth sample.								
	11		TS	2	R/W		0		3rd Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the third sample.							
	10		IE2	2	R/	W	0	3rd Sample Interrupt Enable Same definition as $IE7$ but used during the third sample.								
	9 END2)2	R/W		0		3rd Sample is End of Sequence Same definition as END7 but used during the third sample.								
	8		D2	!	R/	W	0		•	Diff Inpu ion as ⊃	t Select 7 but use	ed durin	g the thir	d sampl	e.	
7 TS1			R/	W	0	2nd Sample Temp Sensor Se Same definition as ${\tt TS7}$ but us				uring the second sample.						

ADC Sample Sequence Control 1 (ADCSSCTL1) Base 0x4003.8000 Offset 0x064

Bit/Field	Name	Туре	Reset	Description
6	IE1	R/W	0	2nd Sample Interrupt Enable Same definition as IE7 but used during the second sample.
5	END1	R/W	0	2nd Sample is End of Sequence Same definition as END7 but used during the second sample.
4	D1	R/W	0	2nd Sample Diff Input Select Same definition as ${\td}$ 7 but used during the second sample.
3	TSO	R/W	0	1st Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the first sample.
2	IE0	R/W	0	1st Sample Interrupt Enable Same definition as IE7 but used during the first sample.
1	END0	R/W	0	1st Sample is End of Sequence Same definition as $END7$ but used during the first sample.
0	D0	R/W	0	1st Sample Diff Input Select Same definition as ${\mathbb D}7$ but used during the first sample.

www.BSD TIC.com/TI

Register 25: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0

This register defines the analog input configuration for a sample executed with Sample Sequencer 3. This register is 4-bits wide and contains information for one possible sample. See the **ADCSSMUX0** register on page 341 for detailed bit descriptions.

Туре	Type R/W, reset 0x0000.0000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	1	1	1	т т	rese	rved			I	1	ſ	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	1		•	reserved					1			MUX0	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
	Reset 0 0 0 0 Bit/Field Name		o Ty	o pe	⁰ Reset	0 Des	0 scription	0	0	0	0	0	0	0		
31:3 reserved			R	0	0x0000.000	.000 Software should not rely on the value compatibility with future products, the preserved across a read-modify-write					value of	a reserv	•			
2:0 MUX0		R/	W	0	1st	1st Sample Input Select										

ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3) Base 0x4003.8000 Offset 0x0A0

Register 26: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4

This register contains the configuration information for a sample executed with Sample Sequencer 3. The END bit is always set since there is only one sample in this sequencer. This register is 4-bits wide and contains information for one possible sample. See the **ADCSSCTL0** register on page 343 for detailed bit descriptions.

ADC Sample Sequence Control 3 (ADCSSCTL3)

Base 0x4003.8000

Offset 0x0A4 Type R/W, reset 0x0000.0002

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	1	г г 1		<u>т г</u>	rese	rved		1	1	ı – – – –		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1		г г 1	res	served		, , , , , , , , , , , , , , , , , , ,		1	1	TS0	IE0	END0	D0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
E	Bit/Field 31:4 3		Nam reserv TS(ved	Typ RC RA	с (Reset 0x0000.000 0	Soft com pres	cription ware sho patibility served ac Sample 1 ne definit	with futu cross a r Femp Se	ure prod ead-mo	ucts, the dify-write lect	value of operation	a reservon.	ved bit sh	
	2		IEC)	R۸	N	0		Sample I ne definit	•		ised duri	ng the fir	st samp	le.	
	1		END	00	R۸	N	1	Sam	Sample is ne definit ce this se	ion as E	ND7 but	used du	0		•	
	0		D0)	R۸	N	0		Sample I ne definit			ed during	g the firs	t sample	Э.	

January 09, 2011

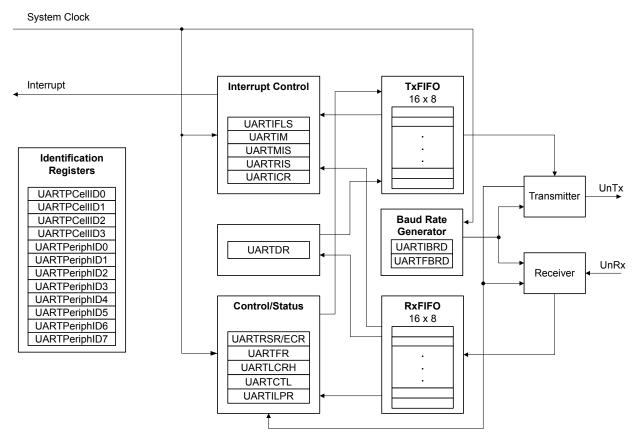
Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100

This register provides loopback operation within the digital logic of the ADC, which can be useful in debugging software without having to provide actual analog stimulus. This test mode is entered by writing a value of 0x0000.0001 to this register. When data is read from the FIFO in loopback mode, the read-only portion of this register is returned.

	t 0x100 R/W, rese	et 0x0000	0.0000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1					reser	rved	1	•	•				•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				•		1	re re	eserved		1	1	•				LB	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	
В	it/Field		Nam	ne	Ту	ре	Reset	Desc	cription								
	31:1		reserv	ved	R	0 (0x0000.000	com	patibility	with fu	t rely on t ture prode read-mod	ucts, the	value of	a reserv	•		
	0		LB		R/	W	0	Loopback Mode Enable When set, forces a loopback within the digital block to provide information on input and unique numbering. The ADCSSFIFOn registers do not provide sample data, but instead provide the 10-bit loopback data as shown below.									
								Bit/F	-ield Na	ame	Descript	tion					
								9:6	CI	NT	Continue Continue and cou helps pre	ous sam nts each	ple coun sample	ter that is as it pro	cessed.	This	
								5	C	TNC	sample. run back	et, indica For exa k-to-back	tes that	this is a o wo seque icates th	encers v at the co	vere to	
								4	DI	FF	Different When se sample.		ole Indica Ites that f		different	ial	
								3	т	3	Temp Se When se sensor s	et, indica	imple Ind ites that f		tempera	ture	
								2:0	M	UX	Analog I Indicates	•	icator analog in	iput is to	be sam	pled.	

ADC Test Mode Loopback (ADCTMLB)

Base 0x4003.8000


11 Universal Asynchronous Receivers/Transmitters (UARTs)

Each Stellaris[®] Universal Asynchronous Receiver/Transmitter (UART) has the following features:

- Two fully programmable 16C550-type UARTs
- Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading
- Programmable baud-rate generator allowing speeds up to 3.125 Mbps
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Standard asynchronous communication bits for start, stop, and parity
- Line-break generation and detection
- Fully programmable serial interface characteristics
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation

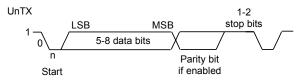
11.1 Block Diagram

Figure 11-1. UART Module Block Diagram

11.2 Functional Description

Each Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 371). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.


11.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 11-2 on page 356 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

WWW BD Is um ints Production Data

11.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 367) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 368). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)

where UARTSysClk is the system clock connected to the UART.

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 369), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write

T x s is um ints Production Data

- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

11.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 365) is asserted as soon as

data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 355).

The start bit is valid and recognized if UnRx is still low on the eighth cycle of Baud16, otherwise it is ignored. After a valid start bit is detected, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

11.2.4 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 361). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 369).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 365) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 373). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, and 7/8. For example, if the $\frac{1}{4}$ option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the $\frac{1}{2}$ mark.

11.2.5 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error
- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)

Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 378).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 375) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 377).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 379).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO becomes empty through reading all the data (or by reading the holding register), or when a 1 is written to the corresponding bit in the **UARTICR** register.

11.2.6 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 371). In loopback mode, data transmitted on UnTx is received on the UnRx input.

11.3 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the **RCGC1** register.

This section discusses the steps that are required to use a UART module. For this example, the UART clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit
- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 356, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 367) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 368) is calculated by the equation:

```
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
```

WWW BD Is um ints Production Data

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the **UARTIBRD** register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- **4.** Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the UARTCTL register.

11.4 Register Map

Table 11-1 on page 359 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000

Note that the UART module clock must be enabled before the registers can be programmed (see page 191). There must be a delay of 3 system clocks after the UART module clock is enabled before any UART module registers are accessed.

Note: The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 371) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Offset	Name	Туре	Reset	Description	See page
0x000	UARTDR	R/W	0x0000.0000	UART Data	361
0x004	UARTRSR/UARTECR	R/W	0x0000.0000	UART Receive Status/Error Clear	363
0x018	UARTFR	RO	0x0000.0090	UART Flag	365
0x024	UARTIBRD	R/W	0x0000.0000	UART Integer Baud-Rate Divisor	367
0x028	UARTFBRD	R/W	0x0000.0000	UART Fractional Baud-Rate Divisor	368
0x02C	UARTLCRH	R/W	0x0000.0000	UART Line Control	369
0x030	UARTCTL	R/W	0x0000.0300	UART Control	371
0x034	UARTIFLS	R/W	0x0000.0012	UART Interrupt FIFO Level Select	373
0x038	UARTIM	R/W	0x0000.0000	UART Interrupt Mask	375
0x03C	UARTRIS	RO	0x0000.000F	UART Raw Interrupt Status	377
0x040	UARTMIS	RO	0x0000.0000	UART Masked Interrupt Status	378
0x044	UARTICR	W1C	0x0000.0000	UART Interrupt Clear	379
0xFD0	UARTPeriphID4	RO	0x0000.0000	UART Peripheral Identification 4	381
0xFD4	UARTPeriphID5	RO	0x0000.0000	UART Peripheral Identification 5	382

Table 11-1. UART Register Map

January 09, 2011

Offset	Name	Туре	Reset	Description	See page
0xFD8	UARTPeriphID6	RO	0x0000.0000	UART Peripheral Identification 6	383
0xFDC	UARTPeriphID7	RO	0x0000.0000	UART Peripheral Identification 7	384
0xFE0	UARTPeriphID0	RO	0x0000.0011	UART Peripheral Identification 0	385
0xFE4	UARTPeriphID1	RO	0x0000.0000	UART Peripheral Identification 1	386
0xFE8	UARTPeriphID2	RO	0x0000.0018	UART Peripheral Identification 2	387
0xFEC	UARTPeriphID3	RO	0x0000.0001	UART Peripheral Identification 3	388
0xFF0	UARTPCellID0	RO	0x0000.000D	UART PrimeCell Identification 0	389
0xFF4	UARTPCellID1	RO	0x0000.00F0	UART PrimeCell Identification 1	390
0xFF8	UARTPCellID2	RO	0x0000.0005	UART PrimeCell Identification 2	391
0xFFC	UARTPCellID3	RO	0x0000.00B1	UART PrimeCell Identification 3	392

Table 11-1. UART Register Map (continued)

11.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

www.Bbunnts Production Data m/TI

Register 1: UART Data (UARTDR), offset 0x000

Important: Use caution when reading this register. Performing a read may change bit status.

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

UART UART Offset	T0 base: 0 T1 base: 0 t 0x000 R/W, rese	x4000.C x4000.D	000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	erved	1	1	1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	rese	erved		OE	BE	PE	FE		•	•	D4	TA			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
31:12 reserved RO 0 Software should not recompatibility with future preserved across a recompatibility of the compatibility of the preserved across a recomparison of the comparison of the comp						ure prod	ucts, the	value of	a reserv	•						
The OE values are defi Value Description						efined as										
								0					due to a			
								1			s receive	ed when	the FIFC) was fu	ll, resulti	ng in
	10		BE	:	R	 New data was received when the FIFO was full, residata loss. UART Break Error This bit is set to 1 when a break condition is detected, indicate receive data input was held Low for longer than a full-with transmission time (defined as start, data, parity, and stop b In FIFO mode, this error is associated with the character at the FIFO. When a break occurs, only one 0 character is load FIFO. The next character is only enabled after the received goes to a 1 (marking state) and the next valid start bit is received. 					full-word top bits). ter at the s loaded eived da	e top of into the ta input				
9 PE					R	0	0	This not In F	RT Parity s bit is se match th TFO moo FIFO.	et to 1 wh e parity o	defined b	by bits 2 a	and 7 of	the UAR	TLCRH	register.

UART Data (UARTDR)

Bit/Field	Name	Туре	Reset	Description
8	FE	RO	0	UART Framing Error This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	Data Transmitted or Received When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

www.BSD TIC.com/TI

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

The **UARTRSR** register cannot be written.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

Reads

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ	r		1	1			1 1	rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
nooor	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[10		1	1	· · · ·		I I erved		· · ·				OE	BE	PE	FE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
В	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:4		reser	ved	R	0	0	com	patibility	with futu	ire prodi	he value ucts, the dify-write	value of	a reserv	•	
	3		OE	≣	R	0	0	Whe This The the	s bit is cle FIFO co FIFO is f	t is set to eared to intents re ull, only	0 by a w emain va the cont	is receiv rrite to U alid since ents of th data in o	ARTECF no furth ne shift re	t . er data i egister a	s written re overw	when
	2					ut was h efined as 0 by a w rror is as eak occu acter is c	neld Low s start, da write to U/ ssociated urs, only o only enab	for longe ata, parit ARTECF I with the one 0 cha oled after	er than a y, and st a. e charact aracter i the rec	t full-wor op bits). ter at the s loaded eive data	e top of into the a input					
	1		PE	Ξ	R	0	0	This not	match the	t to 1 wh e parity c	lefined b	parity of the pa	and 7 of t	he UAR		

Bit/Field	Name	Туре	Reset	Description
0	FE	RO	0	UART Framing Error This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1). This bit is cleared to 0 by a write to UARTECR . In FIFO mode, this error is associated with the character at the top of the FIFO.

Writes

UART0 base: 0x4000.C000

UART Receive Status/Error Clear (UARTRSR/UARTECR)

Offse	T1 base: et 0x004 WO, rese															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				r r	rese	erved			1			r	
Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							т т		DATA							
Туре	WO	WO	WO	WO	WO	WO	WO	WO	wo	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Туј	be	Reset	Des	cription							
	31:8		reser	ved	W	0	0	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	7:0		DAT	A	W	0	0	Aw	or Clear rite to thi rrun flage		r of any	data clea	ars the fr	aming, p	arity, bre	eak, and

www.BSD TIC.com/TI

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

UAF	RT Flag	(UAR	TFR)													
UAR ⁻ Offse	T0 base: 0 T1 base: 0 t 0x018 RO, reset	x4000.	D000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[ľ		1		1		· · ·	rese	l erved	1	1	1	Î I		1 1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	- 1	0
[10	17	1		rved	10	<u> </u>	0	TXFE	RXFF	TXFF	RXFE	BUSY	2	reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0	com	npatibility	with fut	ure prod	ucts, the		a reser	it. To prov ved bit sh	
	7		TXF	E	R	0	1	 UART Transmit FIFO Empty The meaning of this bit depends on the state of the FEN bit in UARTLCRH register. If the FIFO is disabled (FEN is 0), this bit is set when the transmis register is empty. If the FIFO is enabled (FEN is 1), this bit is set when the transmis empty. 							e transmit	holding
	6		RXF							e holding r	egister					
	5 TXFF RO 0 UART Transmit FIFO Full The meaning of this bit depends or UARTLCRH register. If the FIFO is disabled, this bit is s is full.				he meaning of this bit depends on the state of the FEN bit in the ARTLCRH register. the FIFO is disabled, this bit is set when the transmit holding register											
	4		RXFE RO			1	UART Receive FIFO Empty The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. If the FIFO is disabled, this bit is set when the receive holding register is empty. If the FIFO is enabled, this bit is set when the receive FIFO is empty.							egister		

Bit/Field	Name	Туре	Reset	Description
3	BUSY	RO	0	UART Busy When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register. This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.BSDTIC.com/TI

Register 4: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD=**0), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 356 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UART0 base: 0x4000.C000

UART1 base: 0x4000.D000 Offset 0x024 Type R/W, reset 0x0000.0000 31 30 29 23 28 27 26 25 24 22 21 20 19 18 17 16 reserved RO Туре RO RO RO 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 DIVINT Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DIVINT R/W 0x0000 Integer Baud-Rate Divisor

Register 5: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 356 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

UAR Offse	Γ0 base: Γ1 base: t 0x028 R/W, res	0x4000.D	0000		,		,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1				1	rese	rved			1	I		1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1		r	rese	rved	1 1	r	, , , , , , , , , , , , , , , , , , ,			r	DIVF	RAC	r	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	8it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:6		reserv	/ed	R	С	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	5:0		DIVFR	RAC	R/	W	0x000	Frac	ctional Ba	aud-Rate	e Divisor					

January 09, 2011

www.BDITC.com/TI

Register 6: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x02C Type R/W, reset 0x0000.0000

, ypc	1011,100																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		•	•	•		•	• •	rese	erved		•	•		I	•	•		
Type	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Reset	U	U	0	0	0	0	U	U	U	U	0	U	0	U	U	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			-	rese	rved				SPS	WI	EN	FEN	STP2	EPS	PEN	BRK		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0		
Reset	0	0	0	Ū	0	0	0	0	0	0	U	0	Ū	U	0	0		
В	it/Field		Nam		Т	pe	Reset	Dee	cription									
D			Indii		iy	he	Reset	Des	cription									
	31:8		reserv	ved	R	0	0						of a rese					
									•		•		value of		ed bit sh	nould be		
								pres	served a	cross a r	ead-mo	any-write	operatio	n.				
	7		SPS	S	R	/W	0	UAF	RT Stick	Parity S	elect							
													are set, th					
												its 1 and hecked a	7 are se	t and 2 i	s cleare	d, the		
When this							•					d.						
					_													
	6:5		WLE	ĒN	R	W	0		RT Word	-			-:			al in a		
									ne as foll		numper	of data i	oits trans	smitted or received in a				
									-									
									ue Desc									
								0x										
								0x										
								0x										
								0x	0 5 bits	s (defaul	t)							
					-													
	4		FEN	N	R	/W	0		RT Enab			nd rocoiv		uffore or	o onable			
								moo			ansmit and receive FIFO buffers are enabled (FIFO							
									,	d to 0, F), FIFOs are disabled (Character mode). The FIFOs							
								bec	ome 1-b	/te-deep	holding	register	S.					
	3		STP	2	R	W	0	UAF	RT Two S	Stop Bits	Select							
	-						-					bits are	transmitt	ed at the	e end of a	a frame.		
								The	receive	logic do	es not cl	neck for t	two stop	bits beir	ng receiv	ed.		

Bit/Field	Name	Туре	Reset	Description
2	EPS	R/W	0	UART Even Parity Select If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits. When cleared to 0, then odd parity is performed, which checks for an odd number of 1s. This bit has no effect when parity is disabled by the PEN bit.
1	PEN	R/W	0	UART Parity Enable If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be

cleared to 0.

Register 7: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

- **Note:** The **UARTCTL** register should not be changed while the UART is enabled or else the results are unpredictable. The following sequence is recommended for making changes to the **UARTCTL** register.
 - **1.** Disable the UART.
 - 2. Wait for the end of transmission or reception of the current character.
 - 3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).
 - 4. Reprogram the control register.
 - 5. Enable the UART.

UART Control (UARTCTL)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x030 Type R/W, reset 0x0000.0300

1300	10,00,103	01 0/1000	0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	erved	1	1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	rese	rved		r	RXE	TXE	LBE		1	rese	erved	1	1	UARTEN
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
_					_			_								
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:10		reserv	ved	R	0	0	com	npatibilit	nould not y with fut across a r	ure prod	ucts, the	value of	a reserv	•	
	9		RXI	E	R/	W	1	If thi	is bit is UART is	eive Enab set to 1, t disablec efore stop	the recei					d. When e current
								Not	e: T	o enable	receptio	n, the UA	ARTEN bi	t must al	lso be s	et.
	8		TXI	E	R/	W	1	If thi the	is bit is UART i	smit Enal set to 1, t s disableo racter be	he transi d in the r	niddle of				
								Not	e: T	o enable	transmis	sion, the	UARTEI	v bit mus	st also b	e set.

Bit/Field	Name	Туре	Reset	Description
7	LBE	R/W	0	UART Loop Back Enable If this bit is set to 1, the $UnTX$ path is fed through the $UnRX$ path.
6:1	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	UARTEN	R/W	0	UART Enable If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current character before stopping.

www.BSD TIC.com/TI

Register 8: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The **UARTIFLS** register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the **UARTRIS** register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

UAF	RT Interi	upt Fll	FO Leve	el Select	t (UAR1	(IFLS)										
UAR ⁻ Offse	T0 base: 0 T1 base: 0 t 0x034	x4000.E	0000													
Туре	R/W, rese			20	07	26	25	24	23	22	01	20	10	10	47	16
I	31 T	30	29	28	27	26	1 1		1	22	21	20	19	18	17	
					l				rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	45		10	10		40			_		_					- -
I	15 T	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						erved			I			RXIFLSEL			TXIFLSEL	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 1	R/W 0
	Ū	•	0	Ū	Ū	°,	Ū	Ŭ		Ū	Ũ		Ū	0	·	Ū
Bit/Field Name Type Reset Description 31:6 reserved RO 0x00 Software sho compatibility preserved at											ure prod	ucts, the	value of	a reserv	•	
	5:3		RXIFL	SEL	R/	W	0x2			ive Interr points for	•			as follov	vs:	
								Va	lue De	escription	1					
								0x0	R	<pre>< FIFO ≥</pre>	⅓ full					
								0x1	R	<pre>< FIFO ≥</pre>	¼ full					
								0x2	R	<pre>< FIFO ≥</pre>	$\frac{1}{2}$ full (d	lefault)				
								0x3		<pre>< FIFO ≥</pre>	•	,				
								0x0		<pre>< FIFO ≥</pre>						
											78 IUII					
								025	-0x7 Re	served						

Bit/Field	Name	Туре	Reset	Descriptio	on
2:0	TXIFLSEL	R/W	0x2		ansmit Interrupt FIFO Level Select er points for the transmit interrupt are as follows:
				Value	Description
				0x0	TX FIFO ≤ ⅓ empty
				0x1	TX FIFO ≤ ¾ empty
				0x2	TX FIFO ≤ ½ empty (default)
				0x3	TX FIFO ≤ ¼ empty
				0x4	TX FIFO ≤ ¼ empty
				0x5-0x7	Reserved

www.BSDI TIC.com/TI

Register 9: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

UART UART Offse	T0 base: (T1 base: (t 0x038 R/W, rese 31)x4000.C)x4000.E	0000	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	30	1 1	20	21	1	1		rved	1	1	1			17	10
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			OEIM	BEIM	PEIM	FEIM	RTIM	ТХІМ	RXIM		rese	rved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0
В	8it/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:11		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv		
	10		OEII	M	R/	W	0	On a	a read, tl	he currei		t Mask for the O he OEIM		•		
	9		BEI	И	R	W	0	On a	a read, tl	he currei		/lask for the в he ветм		•		
	8		PEI	M	R	W	0	On a	a read, tl	he currei		/lask for the p: he peim		•		
	7		FEIM	И	R	W	0	On a	a read, tl	he currei		ot Mask for the Finn he FEIM		•		
	6		RTI	M	R	W	0	On a	a read, tl	he currei	nt mask	errupt Ma for the R he RTIM	тім inte	•		
	5		TXI	И	R/	W	0	On a	a read, tl	he currei		sk for the T he TXIM		•		ontroller.
	4		RXII	И	R	W	0	On a	a read, tl	he currei		k for the RI he RXIM		•		

UART Interrupt Mask (UARTIM)

Bit/Field	Name	Туре	Reset	Description
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.BSD TIC.com/TI

Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x03C Type RO, reset 0x0000.000F

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1					rese	rved	1						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset							9						3			
ſ	15	14	13 reserved	12	11	10 OERIS	9 BERIS	8 PERIS	7 FERIS	6 RTRIS	5 TXRIS	4 RXRIS	3	2	1 rved	0
Т уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:11		reserv	ved	R	0	0x00	Soft	ware sho	ould not	rely on tl	he value	of a rese	erved bit	. To prov	ride
									• •		•	ucts, the			ed bit sh	ould be
		operation preserved across a read-modify-write operation. OERIS RO 0 UART Overrun Error Raw Interrupt Status Oiven the raw integrupt date (gring to meaking) of this integrupt														
	10	OERIS RO 0 UART Overrun Error Raw Interrupt Status Gives the raw interrupt state (prior to masking) of this interrupt.														
		Gives the raw interrupt state (prior to masking) of this interrupt.														
	9		BER	IS	R	0	0					•				
								Give	es the ra	w interru	pt state	(prior to ı	masking) of this i	interrupt.	
	8		PER	IS	R	0	0		-			upt Statu				
								Give	es the ra	w interru	pt state	(prior to ı	masking) of this i	interrupt.	
	7		FER	IS	R	0	0			•		errupt St				
								Give	es the ra	w interru	pt state	(prior to I	masking) of this i	interrupt.	
	6		RTR	IS	R	0	0					v Interrup				
								Give	es the ra	w interru	pt state	(prior to I	masking) of this i	interrupt.	
	5		TXR	IS	R	0	0	UAF	RT Trans	mit Raw	Interrup	t Status				
								Give	es the ra	w interru	pt state	(prior to I	masking) of this i	interrupt.	
	4		RXR	IS	R	0	0	UAF	RT Recei	ve Raw	Interrupt	Status				
								Give	es the ra	w interru	pt state	(prior to ı	masking) of this i	interrupt.	
	3:0		reserv	/ed	R	0	0xF	Soft	ware sho	ould not	rely on tl	he value	of a rese	erved bit	. To prov	ride
									• •		•	ucts, the dify-write			ed bit sh	ould be
								pres		1055 d I	eau-mou	ing-write	operatio	<i>л</i> т.		

Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x040 Type RO, reset 0x0000.0000

_	31	30	RO RO<											17	16	
	I							rese	rved				1	I		
Type Reset	RO 0														RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r		reserved			OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS	i	rese	rved	
Type Reset	RO 0														RO 0	RO 0
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:11		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	ucts, the	value of	a reserv		
Gives the masked interrupt state of this interr													pt.			
Gives the masked interrupt state of this interrupt. 9 BEMIS RO 0 UART Break Error Masked Interrupt Status Gives the masked interrupt state of this interrupt.																
	8		PEM	IS	R	0	0					terrupt S tate of thi		pt.		
	7		FEM	IS	R	0	0			-		l Interrup tate of thi		pt.		
	6		RTM	IS	R	0	0					sked Inte tate of thi	•			
	5		ТХМ	IS	R	0	0					rupt Stat tate of thi		pt.		
	4		RXM	IS	R	0	0					rupt Statu tate of thi		pt.		
	3:0		reserv	ved	R	0	0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		

www.BDTIC.com/TI

Register 12: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x044 Type W1C, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 10 9 6 15 14 13 11 8 7 5 4 3 2 0 1 OEIC BEIC PEIC FEIC RTIC TXIC RXIC reserved reserved W1C W1C RO W1C W1C W1C W1C W1C Туре RO RO RO RO RO RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Reset Description Туре 31:11 RO 0x00 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 10 OEIC W1C 0 Overrun Error Interrupt Clear The OEIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt. 9 BEIC W1C 0 Break Error Interrupt Clear The BEIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt. PEIC W1C 8 Parity Error Interrupt Clear 0 The PEIC values are defined as follows: Value Description No effect on the interrupt. 0 1 Clears interrupt. 7 FEIC W1C Framing Error Interrupt Clear 0 The FEIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.

UART Interrupt Clear (UARTICR)

Bit/Field	Name	Туре	Reset	Description
6	RTIC	W1C	0	 Receive Time-Out Interrupt Clear The RTIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
5	TXIC	W1C	0	Transmit Interrupt Clear The TXIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
4	RXIC	W1C	0	Receive Interrupt Clear The RXIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.BSD TIC.com/TI

Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD0 Type RO, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	I	1		1 1	rese	rved	I	I	1		ſ	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			I	I	PI	D4	ſ	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv		vide nould be
	7:0		PID	4	R	0	0x0000		RT Peripl		•	[7:0] dentify th	ne prese	nce of th	is peripl	neral.

Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		· ·			rese	rved		1	•		1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	l					1	PI	D5	1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field								cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide nould be
	7:0		PID	5	R	0	0x0000		RT Peripl		•	[15:8] dentify th	ne prese	nce of th	is peripl	neral.

www.Bbunts Production Data m/TI

Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved	1	1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1	1	PI	D6	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field															
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure produ	he value ucts, the lify-write	value of	a reserv	•	
	7:0		PID	6	R	0	0x0000		RT Peripl		•	[23:16] dentify th	ne prese	nce of th	is peripł	ieral.

Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		1					rese	rved							•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		•	rese	rved							PI	D7			'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam													
	31:8		reserv	/ed	R	0	0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		PID	7	R	0	0x0000		RT Peripl		-		ne prese	nce of th	is peripł	neral.

www.Bbunts Production Data m/TI

Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE0 Type RO, reset 0x0000.0011

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1		1		rese	rved		1			1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		т т			[PI	D0	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	a reserv	•	vide nould be
	7:0		PID	0	R	0	0x11		RT Peripl		-	[7:0] dentify th	ie prese	nce of th	is peripł	ıeral.

Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE4 Type RO, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	1		1	ſ	1		1 1	reserved										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	•		1	rese	rved							PI	D1	I		'		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
E	Bit/Field		Nam	ıe	Type Reset			Des	cription									
	31:8		reserved		RO		0x00	com	Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.									
7:0			PID1 F		R	0	0x00		ART Peripheral ID Register[15:8] an be used by software to identify the presence of this peripheral.									

www.Bbunts Production Data m/TI

Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1		1		1 I			rese	reserved							•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	I		1	rese	rved		1 1					PI	D2				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription								
	31:8		reserved		RO 0x00		0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.								
7:0			PID2		RO		0x18		UART Peripheral ID Register[23:16] Can be used by software to identify the presence of this peri							neral.	

Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	I		1					rese	reserved										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
I	15	14	1			10		0	,					2					
				rese	rved							PII	D3 I						
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1			
E	Bit/Field		Nam	e	Туре		Reset	Des	cription										
	24.0			ا م ما		~	000	0.4	Software should not rely on the value of a reserved bit. To										
	31:8		reser	/ea	R	0	0x00								•				
									compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
								P											
	7:0		PID	3	R	0	0x01	UAF	RT Periph	neral ID	Register	[31:24]							
								Can	be used	l by softw	vare to i	dentify th	ie prese	nce of th	is periph	eral.			

Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 0 (UARTPCellID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1			1		rese	rved		1			•	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		т т			[CII	D0	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserved		RO		0x00	com	Software should not rely on the value of a reserved bit. To provi compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.							
7:0			CID0		RO		0x0D		UART PrimeCell ID Register[7:0] Provides software a standard cross-peripheral identification s							stem.

Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1		1	1		1		rese	reserved								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	i		I	rese	rved		r i					CI	D1	Ì	i		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
	31:8		reserved		RO		0x00	com	oftware should not rely on the value of a reserved bit. To provid ompatibility with future products, the value of a reserved bit sho reserved across a read-modify-write operation.								
	7:0		CID1		RO 0xF0		0xF0		UART PrimeCell ID Register[15:8] Provides software a standard cross-peripheral identification system.								

www.Bbunts Production Data m/TI

Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 2 (UARTPCellID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1			1		rese	rved		1			•	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	rese	rved							CII	D2	1	I	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1
E	Bit/Field		Nam	ie	Туре		Reset	Des	cription							
	31:8		reserved		RO		0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit ship reserved across a read-modify-write operation.							
	7:0		CID2		RO		0x05		JART PrimeCell ID Register[23:16] Provides software a standard cross-peripheral identification							stem.

Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

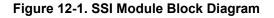
The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

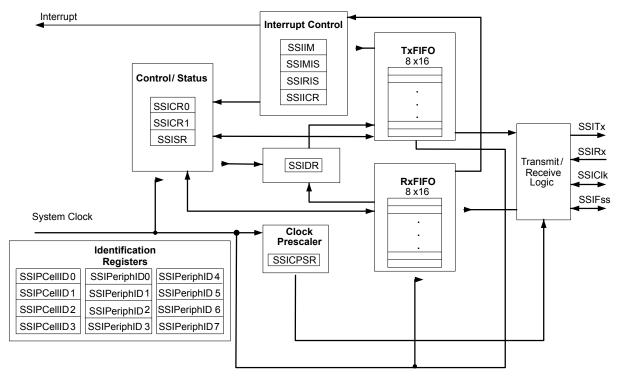
UART PrimeCell Identification 3 (UARTPCellID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	I		1					rese	rved								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	ľ		1	rese	rved		r r		CID3								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1	
E	Bit/Field		Nam	ie	Туре		Reset	Des	cription								
	31:8		reserv	reserved		0	co		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
7:0			CID	3	R	0	0xB1		RT Prime vides sof			-	eriphera	l identific	ation sy	stem.	

www.BDTIC.com/TI


12 Synchronous Serial Interface (SSI)


The Stellaris[®] Synchronous Serial Interface (SSI) is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

The Stellaris SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

12.1 Block Diagram

WWW DD Is yum ints Production Data

12.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

12.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 1.5 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale** (**SSICPSR**) register (see page 412). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0 (SSICR0)** register (see page 405).

The frequency of the output clock SSIClk is defined by:

```
SSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note: For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 496 to view SSI timing parameters.

12.2.2 FIFO Operation

12.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 409), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

In slave mode, the SSI transmits data each time the master initiates a transaction. If the transmit FIFO is empty and the master initiates, the slave transmits the 8th most recent value in the transmit FIFO. If less than 8 values have been written to the transmit FIFO since the SSI module clock was enabled using the SSI bit in the **RGCG1** register, then 0 is transmitted. Care should be taken to ensure that valid data is in the FIFO as needed. The SSI can be configured to generate an interrupt or a μ DMA request when the FIFO is empty.

12.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

12.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

WWW.DDD Ints Production Data

- Transmit FIFO service
- Receive FIFO service

- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask** (**SSIIM**) register (see page 413). Setting the appropriate mask bit to 1 enables the interrupt.

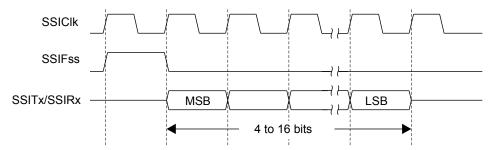
Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 415 and page 416, respectively).

12.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

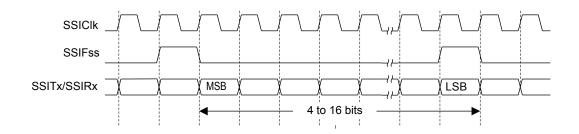

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIC1k, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

12.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 12-2 on page 396 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.


Figure 12-2. TI Synchronous Serial Frame Format (Single Transfer)

In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIClk after the LSB has been latched.

Figure 12-3 on page 396 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

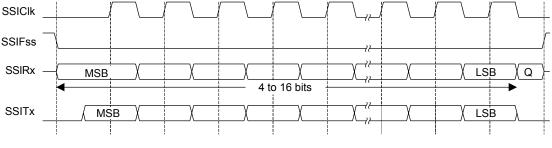
Figure 12-3. TI Synchronous Serial Frame Format (Continuous Transfer)

12.2.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.


SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

12.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

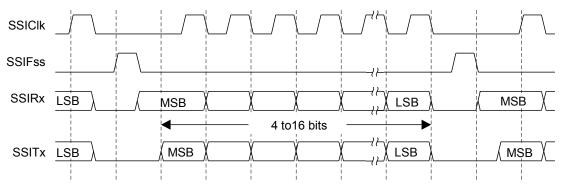

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 12-4 on page 397 and Figure 12-5 on page 397.

Figure 12-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

Tx s is um ints Production Data

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSICIk period after the last bit has been captured.

12.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 12-6 on page 398, which covers both single and continuous transfers.

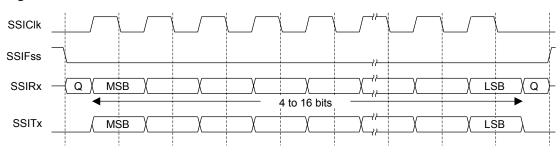


Figure 12-6. Freescale SPI Frame Format with SPO=0 and SPH=1

Note: Q is undefined.

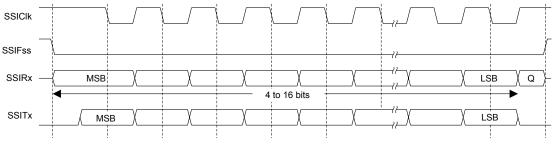
In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

WWW D S Strum ints Production Data

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.


In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

12.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

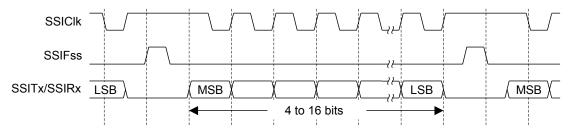

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 12-7 on page 399 and Figure 12-8 on page 399.

Figure 12-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0

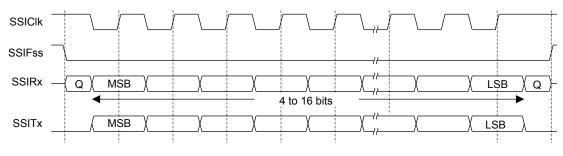
Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

T x s ns. um ints Production Data

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.


One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

12.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 12-9 on page 400, which covers both single and continuous transfers.

Figure 12-9. Freescale SPI Frame Format with SPO=1 and SPH=1

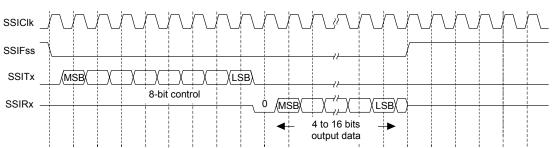
Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

To sinsum interreduction Data

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.


After all bits have been transferred, in the case of a single word transmission, the SSIFSS line is returned to its idle high state one SSICIk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

12.2.4.7 MICROWIRE Frame Format

Figure 12-10 on page 401 shows the MICROWIRE frame format, again for a single frame. Figure 12-11 on page 402 shows the same format when back-to-back frames are transmitted.

Figure 12-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:


- SSICIk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIC1k, after the LSB of the frame has been latched into the SSI.

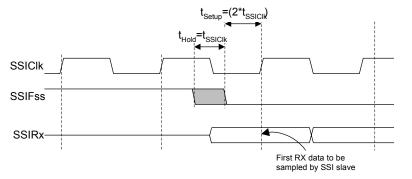


Figure 12-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 12-12 on page 402 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

Figure 12-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements

12.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - **a.** For master operations, set the **SSICR1** register to 0x0000.0000.
 - b. For slave mode (output enabled), set the SSICR1 register to 0x0000.0004.
 - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.

Tx s instrum ints Production Data

- 3. Configure the clock prescale divisor by writing the SSICPSR register.
- 4. Write the SSICR0 register with the following configuration:

- Serial clock rate (SCR)
- Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
- The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
- The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the SSICR1 register is disabled.
- 2. Write the SSICR1 register with a value of 0x0000.0000.
- 3. Write the SSICPSR register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

12.4 Register Map

Table 12-1 on page 404 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

SSI0: 0x4000.8000

Note that the SSI module clock must be enabled before the registers can be programmed (see page 191). There must be a delay of 3 system clocks after the SSI module clock is enabled before any SSI module registers are accessed.

Note: The SSI must be disabled (see the SSE bit in the **SSICR1** register) before any of the control registers are reprogrammed.

www.BDJIC.com/TI

Table 12-1. SSI Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	SSICR0	R/W	0x0000.0000	SSI Control 0	405
0x004	SSICR1	R/W	0x0000.0000	SSI Control 1	407
0x008	SSIDR	R/W	0x0000.0000	SSI Data	409
0x00C	SSISR	RO	0x0000.0003	SSI Status	410
0x010	SSICPSR	R/W	0x0000.0000	SSI Clock Prescale	412
0x014	SSIIM	R/W	0x0000.0000	SSI Interrupt Mask	413
0x018	SSIRIS	RO	0x0000.0008	SSI Raw Interrupt Status	415
0x01C	SSIMIS	RO	0x0000.0000	SSI Masked Interrupt Status	416
0x020	SSIICR	W1C	0x0000.0000	SSI Interrupt Clear	417
0xFD0	SSIPeriphID4	RO	0x0000.0000	SSI Peripheral Identification 4	418
0xFD4	SSIPeriphID5	RO	0x0000.0000	SSI Peripheral Identification 5	419
0xFD8	SSIPeriphID6	RO	0x0000.0000	SSI Peripheral Identification 6	420
0xFDC	SSIPeriphID7	RO	0x0000.0000	SSI Peripheral Identification 7	421
0xFE0	SSIPeriphID0	RO	0x0000.0022	SSI Peripheral Identification 0	422
0xFE4	SSIPeriphID1	RO	0x0000.0000	SSI Peripheral Identification 1	423
0xFE8	SSIPeriphID2	RO	0x0000.0018	SSI Peripheral Identification 2	424
0xFEC	SSIPeriphID3	RO	0x0000.0001	SSI Peripheral Identification 3	425
0xFF0	SSIPCellID0	RO	0x0000.000D	SSI PrimeCell Identification 0	426
0xFF4	SSIPCellID1	RO	0x0000.00F0	SSI PrimeCell Identification 1	427
0xFF8	SSIPCellID2	RO	0x0000.0005	SSI PrimeCell Identification 2	428
0xFFC	SSIPCellID3	RO	0x0000.00B1	SSI PrimeCell Identification 3	429

12.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

www.BDTIC.com/TI

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI0	base: 0x		SICR0) 00													
	R/W, res			00	07	00	05	04	00		04	00	10	10	47	10
	31	30	29	28	27	26	25	24	23 I erved	22	21	20	19 I	18	17	16
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	1 5	SCR				SPH	SPO	F	I RF		D	SS	1
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	rved	R	0	0x00	com	npatibility	with fut	ure prod	ucts, the	of a reso value of operation	a reser		vide nould be
	15:8		SC	R	R/	W	0x0000	The	Serial C value S SSI. The	CR is use	ed to ger	nerate th	e transm	iit and re	eceive bi	t rate of
BR=FSSIClk/(CPSDVSR * (1 + SC											SCR))					
where CPSDVSR is an even value from 2-254 programmed SSICPSR register, and SCR is a value from 0-255.											nmed in t	he				
	7		SP	Ή	R/	w	0	-								hitted by t data ansition.
	6		SP	0	R/	R/W 0 SSI Serial Clock Polarity This bit is only applicable to the Freescale SPI Format. When the SPO bit is 0, it produces a steady state Low value on the SSICIk pin. If SPO is 1, a steady state High value is placed on the SSICIk pin when data is not being transferred.										
	5:4		FR	F	R/	W	0x0		Frame F			as follow	s:			
								Val	ue Fram	e Forma	at					
									0 Free			Format				
								0x					us Seria	I Frame	Format	
								0x	2 MICF							
								0x	3 Rese	erved						

Bit/Field	Name	Туре	Reset	Description
3:0	DSS	R/W	0x00	SSI Data Size Select The DSS values are defined as follows:
				Value Data Size
				0x0-0x2 Reserved
				0x3 4-bit data
				0x4 5-bit data
				0x5 6-bit data
				0x6 7-bit data
				0x7 8-bit data
				0x8 9-bit data
				0x9 10-bit data
				0xA 11-bit data
				0xB 12-bit data
				0xC 13-bit data
				0xD 14-bit data
				0xE 15-bit data
				0xF 16-bit data

www.BSD TIC.com/TI

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

SSI Control 1 (S SSI0 base: 0x4000.80 Offset 0x004 Type R/W, reset 0x00	000													
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•	• •	rese	rved		•	•		•	•	•
Type RO RO Reset 0 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
								-						
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	
					erved		L				SOD	MS	SSE	LBM
Type RO RO Reset 0 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Bit/Field	Nam	e	Ту	ре	Reset	Des	cription							
31:4	SOD R/W 0 SSI Slave Mode Output Disable													
3	SOE	D	R/	W	0	This bit is relevant only in the Slave mode (MS=1). In multiple-slave systems, it is possible for the SSI master to broadcast a message to a slaves in the system while ensuring that only one slave drives data ont the serial output line. In such systems, the TXD lines from multiple slave could be tied together. To operate in such a system, the SOD bit can b configured so that the SSI slave does not drive the SSIT _X pin. The SOD values are defined as follows:								
						0	ue Desc	•		outout ir)utout m	odo	
						1					Slave C			
2	MS		R/	W	0									

Bit/Field	Name	Туре	Reset	Description
1	SSE	R/W	0	SSI Synchronous Serial Port Enable Setting this bit enables SSI operation. The SSE values are defined as follows:
				Value Description
				0 SSI operation disabled.
				1 SSI operation enabled.
				Note: This bit must be set to 0 before any control registers are reprogrammed.
0	LBM	R/W	0	SSI Loopback Mode Setting this bit enables Loopback Test mode. The LBM values are defined as follows:
				Value Description
				0 Normal serial port operation enabled.

1 Output of the transmit serial shift register is connected internally to the input of the receive serial shift register.

www.BSD TIC.com/TI

Register 3: SSI Data (SSIDR), offset 0x008

Important: Use caution when reading this register. Performing a read may change bit status.

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR) SSI0 base: 0x4000.8000 Offset 0x008 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	I	1			1 1	rese	rved			1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1					DA	TA				1	1	1	•
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:16							Description Software should not rely on the value of a reserved bit. To provide								
							compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.									ould be
	15:0		DAT	A	R/	W	0x0000	SSI	Receive	/Transm	it Data					
							A read operation reads the receive FIFO. A write operation writes the transmit FIFO.									
								Software must right-justify data when the SSI is programmed for a data								

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI0 Offset	base: 0x4 t 0x00C	(SSISF 4000.800 t 0x0000	0														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
ſ		[1		1	1	т т	rese	rved	1		1	1	I		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
						reserved	· · ·		I	•		BSY	RFF	RNE	TNF	TFE	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	R0 1	
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription								
	31:5		reser	ved	R	0	0x00	com	patibility	with futu	ure prod	the value ucts, the dify-write	value of	a reserv			
	4		BS'	Y	R	0	0		Busy Bi BSY val		defined	as follow	s:				
							 Value Description SSI is idle. SSI is currently transmitting and/or receiving a frame, or t transmit FIFO is not empty. 										
	3		RF	F	R	0	0			FIFO Fu		as follow	s:				
								Val	ue Desc	ription							
								C	Rece	eive FIFC) is not f	full.					
								1	Rece	eive FIFC) is full.						
	2		RN	E	R	0	0			FIFO Notes are of		y as follow	s:				
								Val	ue Desc	ription							
								C	Rece	eive FIFC) is emp	oty.					
								1	Rece	eive FIFC) is not e	empty.					
	1		TN	F	R	0	1			t FIFO N ues are o		as follow	s:				
								Val	ue Desc	ription							
								C	Tran	smit FIF	O is full.						
1 Transmit FIFO is not full.											O is not	full.					

www.BDTIC.com/TI

Bit/Field	Name	Туре	Reset	Description
0	TFE	R0	1	SSI Transmit FIFO Empty The TFE values are defined as follows:
				Value Description
				0 Transmit FIFO is not empty.

1 Transmit FIFO is empty.

SSI Clock Prescale (SSICPSR)

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

001		10000	0,0010	1 013												
Offse	base: 0x4 et 0x010 R/W, rese															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		г т 1		1 1	rese	erved	ſ	1	1	1	ï	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1	rese	rved		1 1				1	CPSI	DVSR	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ie	Туј	ре	Reset	Description								
	31:8 reserved RO 0x00						Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
7:0			CPSD	CPSDVSR R/W		0x00	This	I Clock Prescale Divisor is value must be an even number from 2 to 254, depending on the quency of SSIC1k. The LSB always returns 0 on reads.							on the	

www.Bbunts Production Data m/TI

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

SSI0	Interrup base: 0x4 t 0x014		k (SSIIM ⁰)												
Туре	R/W, rese	et 0x0000 30	0.0000 29	28	27	26	25	24	23	22	21	20	19	18	17	16
]	51		1	20	1	20	1 1		rved	1	1	1	19	10	1	
Т уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Turna	RO	RO	RO	RO	RO	res RO	RO	RO	RO	RO	RO	RO	TXIM R/W	RXIM R/W	RTIM R/W	RORIM R/W
Type Reset	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4 reserved RO 0x00 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.												a reserv			
3 TXIM R/W 0 SSI Transmit FIFO Interrupt Mask The TXIM values are defined as f												ws:				
								Valı 0 1		IFO half	-full or le -full or le					ed.
	2		RXII	М	R/	W	0				iterrupt N e defined		ws:			
								Val	ue Desc	rintion						
								0			f-full or m	nore con	dition int	errupt is	masked	l.
								1			f-full or m			•		
	1		RTII	M	R/	W	0				ut Interru e defined	•				
								Val	ue Desc	ription						
								0	RX F	IFO time	e-out inte	errupt is	masked.			
								1	RX F	IFO time	e-out inte	errupt is	not masl	ked.		

Bit/Field	Name	Туре	Reset	Description
0	RORIM	R/W	0	SSI Receive Overrun Interrupt Mask The RORIM values are defined as follows:
				Value Description
				0 RX FIFO overrun interrupt is masked.

1 RX FIFO overrun interrupt is not masked.

www.BSDI TIC.com/TI

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

Offse	base: 0x4 t 0x018 RO, rese				,														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
[1		· · · · ·		, ,	rese	rved		1	1	1	1	1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			1			res	erved				1	1	TXRIS	RXRIS	RTRIS	RORRIS			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0			
	Bit/Field 31:4			Name Type Reset reserved RO 0x00					Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be										
	3		TXR	IS	R	С	1	pres SSI	served ac Transmit	ross a r FIFO F	ead-moo Raw Inter	dify-write rupt Stat	operatio						
	2		RXR	IS	R	С	0	SSI Receive FIFO Raw Interrupt Status Indicates that the receive FIFO is half full or more, when set.											
	1		RTR	IS	R	С	0	0 SSI Receive Time-Out Raw Interrupt Status Indicates that the receive time-out has occurred, when set.											
	0		ROR	RIS	R	С	0	0 SSI Receive Overrun Raw Interrupt Status Indicates that the receive FIFO has overflowed, when set.											

SSI Raw Interrupt Status (SSIRIS)

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The SSIMIS register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)

SSI0 base: 0x4000.8000 Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1		r	rese	rved			I	1	1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	1	rese	rved	1				1	TXMIS	RXMIS	RTMIS	RORMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	TXMIS	RO	0	SSI Transmit FIFO Masked Interrupt Status Indicates that the transmit FIFO is half full or less, when set.
2	RXMIS	RO	0	SSI Receive FIFO Masked Interrupt Status Indicates that the receive FIFO is half full or more, when set.
1	RTMIS	RO	0	SSI Receive Time-Out Masked Interrupt Status Indicates that the receive time-out has occurred, when set.
0	RORMIS	RO	0	SSI Receive Overrun Masked Interrupt Status Indicates that the receive FIFO has overflowed, when set.

WWW.BDITC.CON n/TI

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

SSI0 Offse	base: 0x t 0x020	opt Clea 4000.800		R)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				rese	rved	1	1	1			1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	1			reser	ved		1	1	1			RTIC	RORIC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	W1C	W1C
Reset 0 0 0 0 0 0 0 0 0 0 0 0												0	0	0	0	
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:2		reser	ved	R	0	0x00	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		vide nould be
	1		RTI	С	W	1C	0			e Time-O alues are		•				
								Val	ue Deso	cription						
								0	Noe	ffect on i	nterrupt.					
								1	Clea	rs interru	ıpt.					
	0		ROF	RIC	W	1C	0			e Overrur values a			ows:			
								Val	ue Deso	cription						
								0	No e	ffect on i	nterrupt					
								1	Clea	rs interru	ipt.					

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•						rese	erved		1			1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved	l					1	PI	D4	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	ure produ	he value ucts, the lify-write	value of	a reserv		vide nould be
	7:0		PID	4	R	0	0x00		Periphe		•••	0] dentify th	ne prese	nce of th	is peripl	neral.

WWW.BDITC.CO n/TI

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 Offset 0xFD4 Type RO, reset 0x0000.0000

• •																
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	ſ	т т	rese	erved	ſ	1	1	r 1	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1	rese	rved		т т			ſ	I	I Pl	D5	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field N				Ту	ре	Reset	Des	cription							
	31:8	reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•		
	7:0		PID	5	R	0	0x00		Peripher		•••	-	ne prese	nce of th	is periph	ieral.

Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[i	1	r	i		1 1	rese	rved	ſ	r	1		ì	i	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved						1	PI	D6	1	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	6	R	0	0x00		Periphe be used		•••	3:16] dentify th	ie prese	nce of th	is peripł	neral.

WWW.BDITC.CO n/TI

Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 Offset 0xFDC Type RO, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1	ſ	1 1	rese	erved	ſ	1	1		ſ	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1 1			ſ	I	I Pl	D7	Γ	I	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	7	R	0	0x00		Periphe		• •	1:24] dentify th	ie presei	nce of th	is peripł	ieral.

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 Offset 0xFE0 Type RO, reset 0x0000.0022

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1	rese	rved	1	1 1	[r	PI	20	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	0	R	0	0x22		Peripher be used		• •	0] dentify th	e prese	nce of th	is peripł	ieral.

WWW.BDITC.CO n/TI

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 Offset 0xFE4 Type RO, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	[1 1	rese	rved	ſ	1	1		ſ	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	rese	rved		1 1			ſ	I	PI	D1	Γ	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Reset 0 0 Bit/Field			ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	1	R	0	0x00		Periphe be used		• •	5:8] dentify th	ne prese	nce of th	is periph	ieral.

Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 Offset 0xFE8 Type RO, reset 0x0000.0018

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved			1				1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	erved	ſ	1 1			ſ	I	I Pl	D2	Γ	I	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
B	Bit/Field Name					ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	2	R	0	0x18		Periphe be used			:3:16] dentify th	ne prese	nce of th	is peripł	ieral.

WWW.BDITC.CO n/TI

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•						rese	rved							·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	 RO 0	RO 0	RO 0	RO 0	RO 0
Reset															U	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved	l						PI	53			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	3	R	0	0x01		Peripher be used		• •	1:24] dentify th	ie presei	nce of th	is periph	neral.

Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	erved				1			
Type	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO						
Reset		0										0			U	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved							CI	D0			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served a	with futu	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		CID	0	R	0	0x0D		PrimeCe vides sof			-	eriphera	l identific	ation sy	stem.

Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCelIID1)

SSI0 base: 0x4000.8000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1				1	rved				1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Resei															0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved								CID1								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	
Bit/Field			Nam	Type Reset			Des	Description									
31:8			reserved		R	0	com		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		CID	CID1 RO		0xF0		PrimeCell ID Register [15:8] ides software a standard cross-peripheral identification system.									

Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 2 (SSIPCellID2)

SSI0 base: 0x4000.8000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		ſ	1	I	1	1	1 1	rved			1		1	ſ	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset															0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved											CI	D2	1		·	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
Bit/Field			Nam	Type Reset		Des	Description										
31:8			reserved		R	0	com		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		CID	2	RO		0x05			PrimeCell ID Register [23:16] ides software a standard cross-peripheral identification system.							

Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

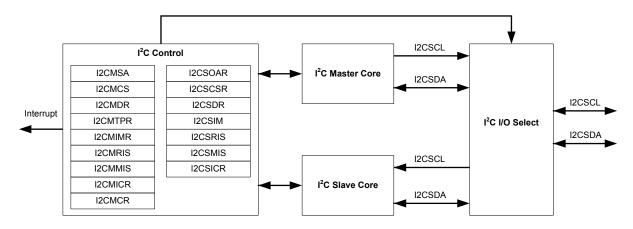
The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 3 (SSIPCelIID3)

SSI0 base: 0x4000.8000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1	1 1	[[1 1	erved	ſ		I		1	I	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Reset																		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		reserved								CID3								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1		
E	Bit/Field		Nam	Type Reset		Des	Description											
31:8			reserved		R	0	com		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
7:0			CID	CID3 RO		0xB1			PrimeCell ID Register [31:24] ides software a standard cross-peripheral identification system.									

13 Inter-Integrated Circuit (I²C) Interface

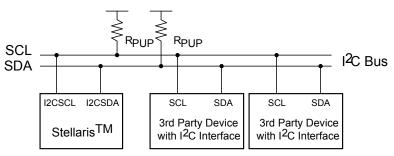

The Inter-Integrated Circuit (I^2C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL), and interfaces to external I^2C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I^2C bus may also be used for system testing and diagnostic purposes in product development and manufacture. The LM3S808 microcontroller includes one I^2C module, providing the ability to interact (both send and receive) with other I^2C devices on the bus.

The Stellaris[®] I²C interface has the following features:

- Devices on the I²C bus can be designated as either a master or a slave
 - Supports both sending and receiving data as either a master or a slave
 - Supports simultaneous master and slave operation
- Four I²C modes
 - Master transmit
 - Master receive
 - Slave transmit
 - Slave receive
- Two transmission speeds: Standard (100 Kbps) and Fast (400 Kbps)
- Master and slave interrupt generation
 - Master generates interrupts when a transmit or receive operation completes (or aborts due to an error)
 - Slave generates interrupts when data has been sent or requested by a master
- Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode

13.1 Block Diagram

Figure 13-1. I²C Block Diagram

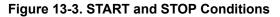


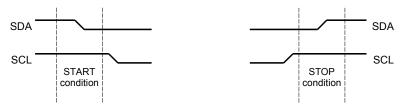
13.2 Functional Description

I²C module is comprised of both master and slave functions which are implemented as separate peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional open-drain pads. A typical I²C bus configuration is shown in Figure 13-2 on page 431.

See "Inter-Integrated Circuit (I²C) Interface" on page 498 for I²C timing diagrams.

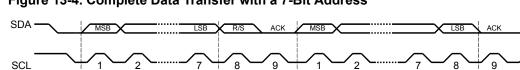
Tix s is um ints Production Data


13.2.1 I²C Bus Functional Overview


The I²C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line. The bus is considered idle when both lines are High.

Every transaction on the I²C bus is nine bits long, consisting of eight data bits and a single acknowledge bit. The number of bytes per transfer (defined as the time between a valid START and STOP condition, described in "START and STOP Conditions" on page 432) is unrestricted, but each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

13.2.1.1 START and STOP Conditions


The protocol of the I²C bus defines two states to begin and end a transaction: START and STOP. A High-to-Low transition on the SDA line while the SCL is High is defined as a START condition. and a Low-to-High transition on the SDA line while SCL is High is defined as a STOP condition. The bus is considered busy after a START condition and free after a STOP condition. See Figure 13-3 on page 432.

13.2.1.2 Data Format with 7-Bit Address

Data transfers follow the format shown in Figure 13-4 on page 432. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (R/S bit in the I2CMSA register). A zero indicates a transmit operation (send), and a one indicates a request for data (receive). A data transfer is always terminated by a STOP condition generated by the master, however, a master can initiate communications with another device on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within a single transfer.

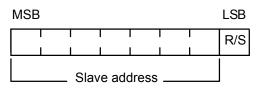
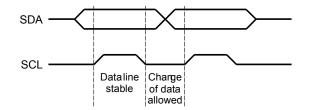


Figure 13-4. Complete Data Transfer with a 7-Bit Address

The first seven bits of the first byte make up the slave address (see Figure 13-5 on page 432). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) data to the selected slave, and a one in this position means that the master will receive data from the slave.

Data


Slave address

13.2.1.3 **Data Validity**

The data on the SDA line must be stable during the high period of the clock, and the data line can only change when SCL is Low (see Figure 13-6 on page 433).

x s ns. um ints Production Data

Figure 13-6. Data Validity During Bit Transfer on the I²C Bus

13.2.1.4 Acknowledge

All bus transactions have a required acknowledge clock cycle that is generated by the master. During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data validity requirements described in "Data Validity" on page 432.

When a slave receiver does not acknowledge the slave address, SDA must be left High by the slave so that the master can generate a STOP condition and abort the current transfer. If the master device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer made by the slave. Since the master controls the number of bytes in the transfer, it signals the end of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a repeated START condition.

13.2.1.5 Arbitration

A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate a START condition within minimum hold time of the START condition. In these situations, an arbitration scheme takes place on the SDA line, while SCL is High. During arbitration, the first of the competing master devices to place a '1' (High) on SDA while another master transmits a '0' (Low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if both masters are trying to address the same device, arbitration continues on to the comparison of data bits.

13.2.2 Available Speed Modes

The I²C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

 ${\tt CLK_PRD}$ is the system clock period

SCL_LP is the low phase of SCL (fixed at 6)

SCL_HP is the high phase of SCL (fixed at 4)

TIMER_PRD is the programmed value in the I²C Master Timer Period (I2CMTPR) register (see page 451).

The I²C clock period is calculated as follows:

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

WWW DD T is rum ints Production Data

For example:

CLK_PRD = 50 ns TIMER_PRD = 2 SCL_LP=6 SCL HP=4

yields a SCL frequency of:

1/T = 333 Khz

Table 13-1 on page 434 gives examples of timer period, system clock, and speed mode (Standard or Fast).

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
4 MHz	0x01	100 Kbps	-	-
6 MHz	0x02	100 Kbps	-	-
12.5 MHz	0x06	89 Kbps	0x01	312 Kbps
16.7 MHz	0x08	93 Kbps	0x02	278 Kbps
20 MHz	0x09	100 Kbps	0x02	333 Kbps
25 MHz	0x0C	96.2 Kbps	0x03	312 Kbps
33 MHz	0x10	97.1 Kbps	0x04	330 Kbps
40 MHz	0x13	100 Kbps	0x04	400 Kbps
50 MHz	0x18	100 Kbps	0x06	357 Kbps

Table 13-1. Examples of I²C Master Timer Period versus Speed Mode

13.2.3 Interrupts

The I²C can generate interrupts when the following conditions are observed:

WWW BD Is um ints Production Data

- Master transaction completed
- Master arbitration lost
- Master transaction error
- Slave transaction received
- Slave transaction requested

There is a separate interrupt signal for the I²C master and I²C slave modules. While both modules can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt controller.

13.2.3.1 I²C Master Interrupts

The I²C master module generates an interrupt when a transaction completes (either transmit or receive), when arbitration is lost, or when an error occurs during a transaction. To enable the I²C master interrupt, software must set the IM bit in the I²C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition is met, software must check the ERROR and ARBLST bits in the I²C Master Control/Status (I2CMCS) register to verify that an error didn't occur during the last transaction and to ensure that arbitration has not been lost. An error condition is asserted if the last transaction wasn't acknowledged by the slave. If an error is not detected and the master has not lost arbitration,

the application can proceed with the transfer. The interrupt is cleared by writing a 1 to the IC bit in the I^2C Master Interrupt Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the **I²C Master Raw Interrupt Status (I2CMRIS)** register.

13.2.3.2 I²C Slave Interrupts

The slave module can generate an interrupt when data has been received or requested. This interrupt is enabled by writing a 1 to the DATAIM bit in the I²C Slave Interrupt Mask (I2CSIMR) register. Software determines whether the module should write (transmit) or read (receive) data from the I²C Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I²C Slave Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a 1 to the DATAIC bit in the I²C Slave Interrupt Clear (I2CSICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I²C Slave Raw Interrupt Status (I2CSRIS) register.

13.2.4 Loopback Operation

The I²C modules can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LPBK bit in the I²C Master Configuration (I2CMCR) register. In loopback mode, the SDA and SCL signals from the master and slave modules are tied together.

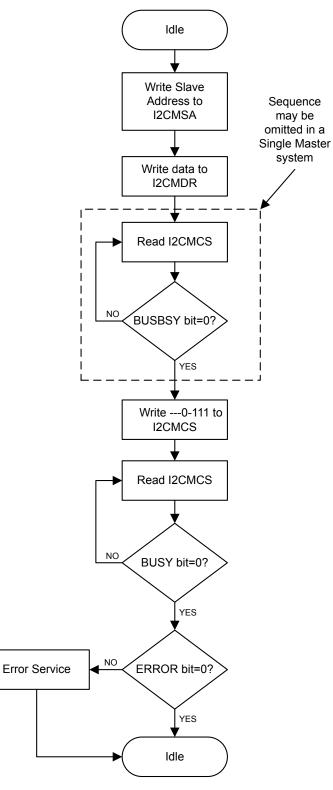
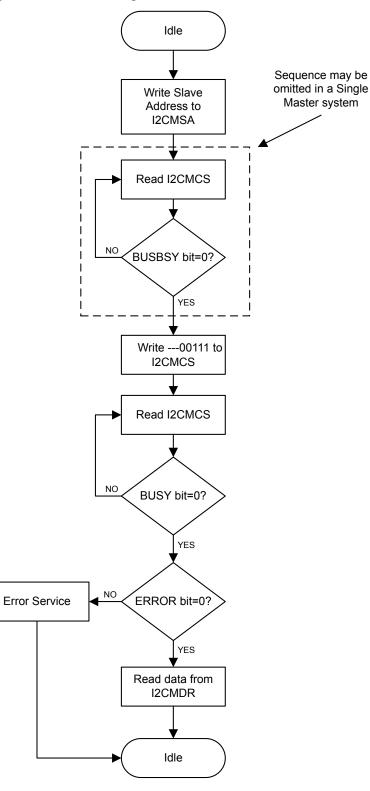
13.2.5 Command Sequence Flow Charts

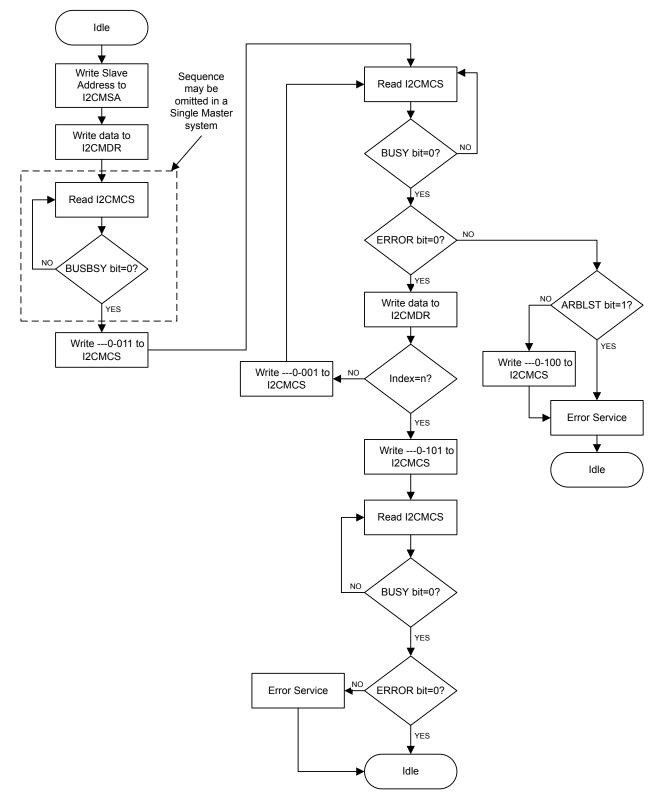
This section details the steps required to perform the various I²C transfer types in both master and slave mode.

13.2.5.1 I²C Master Command Sequences

The figures that follow show the command sequences available for the I²C master.

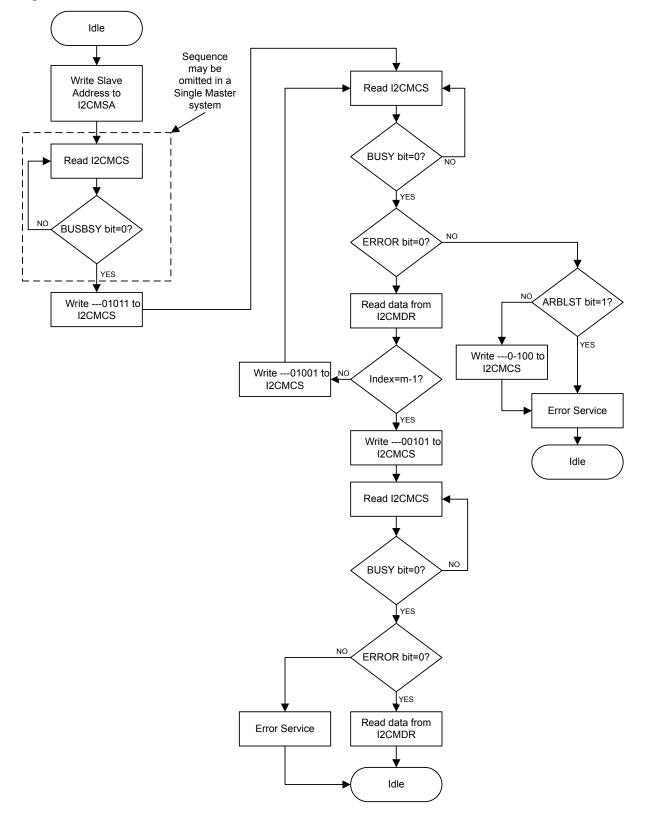
Figure 13-7. Master Single SEND


Figure 13-8. Master Single RECEIVE

WWW.BDDTC.COm

וי


Figure 13-9. Master Burst SEND

January 09, 2011

www.BDTIC.com/T

Figure 13-10. Master Burst RECEIVE

www.bbunntsProduction Data T

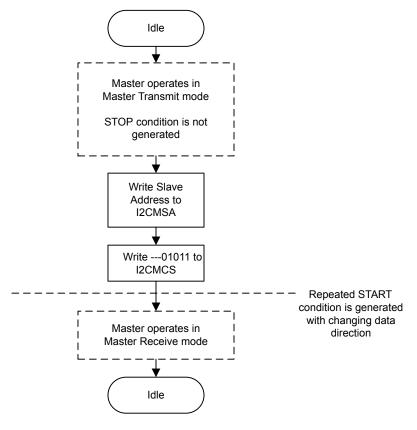


Figure 13-11. Master Burst RECEIVE after Burst SEND

www.bbunntsProduction Data WWW.britsProduction Data

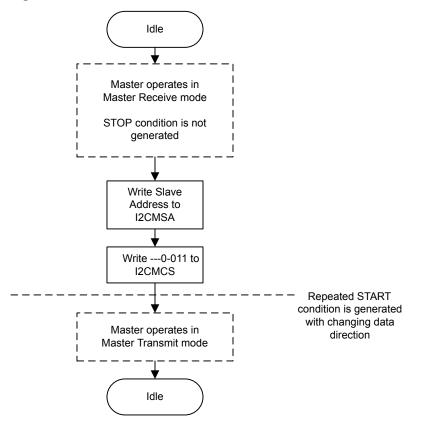
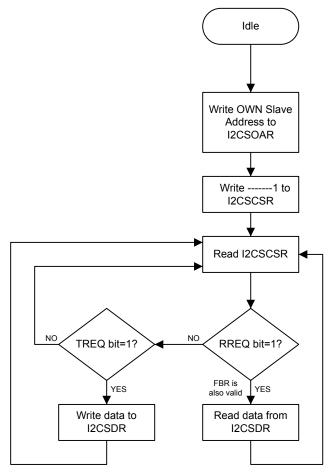



Figure 13-12. Master Burst SEND after Burst RECEIVE

13.2.5.2 I²C Slave Command Sequences

Figure 13-13 on page 442 presents the command sequence available for the I²C slave.

13.3 Initialization and Configuration

The following example shows how to configure the I^2C module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I²C clock by writing a value of 0x0000.1000 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 4. Initialize the I²C Master by writing the I2CMCR register with a value of 0x0000.0020.

T x s ns. rum ints Production Data

5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1; TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1; TPR = 9

Write the **I2CMTPR** register with the value of 0x0000.0009.

- 6. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x0000.0076. This sets the slave address to 0x3B.
- 7. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with a value of 0x0000.0007 (STOP, START, RUN).
- 9. Wait until the transmission completes by polling the I2CMCS register's BUSBSY bit until it has been cleared.

13.4 Register Map

Table 13-2 on page 443 lists the I^2C registers. All addresses given are relative to the I^2C base addresses for the master and slave:

I²C 0: 0x4002.0000

Note that the I^2C module clock must be enabled before the registers can be programmed (see page 191). There must be a delay of 3 system clocks after the I^2C module clock is enabled before any I^2C module registers are accessed.

The hw_i2c.h file in the StellarisWare[®] Driver Library uses a base address of 0x800 for the I²C slave registers. Be aware when using registers with offsets between 0x800 and 0x818 that StellarisWare uses an offset between 0x000 and 0x018 with the slave base address.

Table 13-2. Inter-Integrated Circuit (I²C) Interface Register Map

Offset	Name	Туре	Reset	Description	See page
I ² C Maste	r				
0x000	I2CMSA	R/W	0x0000.0000	I2C Master Slave Address	445
0x004	I2CMCS	R/W	0x0000.0000	I2C Master Control/Status	446
0x008	I2CMDR	R/W	0x0000.0000	I2C Master Data	450
0x00C	I2CMTPR	R/W	0x0000.0001	I2C Master Timer Period	451
0x010	I2CMIMR	R/W	0x0000.0000	I2C Master Interrupt Mask	452
0x014	I2CMRIS	RO	0x0000.0000	I2C Master Raw Interrupt Status	453
0x018	I2CMMIS	RO	0x0000.0000	I2C Master Masked Interrupt Status	454
0x01C	I2CMICR	WO	0x0000.0000	I2C Master Interrupt Clear	455
0x020	I2CMCR	R/W	0x0000.0000	I2C Master Configuration	456

WWW DD T is required to the second se

Offset	Name	Туре	Reset	Description	See page
I ² C Slave	·				
0x800	I2CSOAR	R/W	0x0000.0000	I2C Slave Own Address	458
0x804	I2CSCSR	RO	0x0000.0000	I2C Slave Control/Status	459
0x808	I2CSDR	R/W	0x0000.0000	I2C Slave Data	461
0x80C	I2CSIMR	R/W	0x0000.0000	I2C Slave Interrupt Mask	462
0x810	I2CSRIS	RO	0x0000.0000	I2C Slave Raw Interrupt Status	463
0x814	I2CSMIS	RO	0x0000.0000	I2C Slave Masked Interrupt Status	464
0x818	I2CSICR	WO	0x0000.0000	I2C Slave Interrupt Clear	465

Table 13-2. Inter-Integrated Circuit (I	C) Interface Register Map (continued)
---	---------------------------------------

13.5 Register Descriptions (I²C Master)

The remainder of this section lists and describes the I^2C master registers, in numerical order by address offset. See also "Register Descriptions (I^2C Slave)" on page 457.

Register 1: I²C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C 0 Offse	Master base: 0x t 0x000 R/W, res	4002.000		s (I2CM	SA)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved							SA			I	R/S
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure produ	ucts, the	of a resevence value of operation	a reserv	•	
	7:1		SA	N .	R/	W	0		Slave Ac field sp		ts A6 th	ough AC) of the s	lave add	lress.	
0 R/S R/W 0 Receive The R/S (Low).						R/S bit		if the ne	ext opera	ation is a	Receive	e (High) o	or Send			
								Valu	ue Desc	ription						
								0		•						
								0	OCIIC							

1 Receive.

Register 2: I²C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I²C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the I^2C Master Slave Address (I2CMSA) register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the I2CMDR register. When the I^2C module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the I^2C bus controller to send an acknowledge automatically after each byte. This bit must be reset when the I^2C bus controller requires no further data to be sent from the slave transmitter.

Reads

I2C Master Control/Status (I2CMCS)

I2C 0 base: 0x4002.0000

Offset 0x004 Type RO, reset 0x0000.0000

71	-,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	i		i i		, ,		1 1	rese	rved	1		I	1	1	i	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		reserved		т т		1	BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:7 reserved		ved	R	0	0x00	com	patibilit	ould not i y with futu across a re	ure prod	ucts, the	value of	a reserv			
	6		BUSB	SY	R	0	0 Bus Busy This bit specifies the state of the I ² C otherwise, the bus is idle. The bit cha STOP conditions.									
	5	IDLE RO 0			bit spe	cifies the ne control			ate. If se	t, the cor	ntroller is	idle;				
	4 ARBLST RO 0			Arbitration Lost This bit specifies the result of bus arbitration. If set, the controller lost arbitration; otherwise, the controller won arbitration.												

www.BDTTC.com/T

Bit/Field	Name	Туре	Reset	Description
3	DATACK	RO	0	Acknowledge Data This bit specifies the result of the last data operation. If set, the transmitted data was not acknowledged; otherwise, the data was acknowledged.
2	ADRACK	RO	0	Acknowledge Address This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.
1	ERROR	RO	0	Error This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged or the transmit data not being acknowledged.
0	BUSY	RO	0	I ² C Busy This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.

Writes

I2C Master Control/Status (I2CMCS)

I2C 0 base: 0x4002.0000 Offset 0x004

Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	I	r	I .		т т	rese	rved	1	r	1	r 1	I	1	
Туре	WO	WO	WO	WO	wo	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	1	, , ,	res	erved		1	1	1	1	ACK	STOP	START	RUN
Туре	WO	wo	WO	WO	wo	wo	wo	wo	wo	WO	WO	wo	WO	wo	wo	wo
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field Name			Ту	ре	Reset	Des	cription								
	31:4		reser	ved	W	0	0x00	0x00 Software should compatibility with preserved across			ure prod	ucts, the	value of	a reserv	•	
	3		AC	When se			Data Acknowledge Enable When set, causes received data byte to be acknowledged automatically by the master. See field decoding in Table 13-3 on page 448.									
	2		STC	P	W	0	0	0 Generate STOP When set, causes decoding in Table			•		ne STOF	o conditio	on. See f	ield
1		STA	RT	W	0	0		erate ST		e gener:	ation of a	START	or repea	ated STA	RT	

When set, causes the generation of a START or repeated START condition. See field decoding in Table 13-3 on page 448.

www.BDUTIC.com/TI

Bit/Field	Name	Туре	Reset	Description
0	RUN	WO	0	I ² C Master Enable When set, allows the master to send or receive data. See field decoding in Table 13-3 on page 448.

Table 13-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

Current	I2CMSA[0]		I2CMC	S[3:0]		Description					
State	R/S	ACK	STOP	START	RUN	Description					
	0	X ^a	0	1	1	START condition followed by SEND (master goes to the Master Transmit state).					
	0	Х	1	1	1	START condition followed by a SEND and STOP condition (master remains in Idle state).					
	1	0	0	1	1	START condition followed by RECEIVE operation w negative ACK (master goes to the Master Receive sta					
Idle	1	0	1	1	1	START condition followed by RECEIVE and STOP condition (master remains in Idle state).					
	1	1	0	1	1	START condition followed by RECEIVE (master goes to the Master Receive state).					
	1	1	1	1	1	Illegal.					
	All other co	ombination	s not listed	are non-op	erations.	NOP.					
	Х	Х	0	0	1	SEND operation (master remains in Master Transmit state).					
	Х	Х	1	0	0	STOP condition (master goes to Idle state).					
	Х	х	1	0	1	SEND followed by STOP condition (master goes to Idle state).					
	0	Х	0	1	1	Repeated START condition followed by a SEND (master remains in Master Transmit state).					
Master	0	Х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).					
Transmit	1	0	0	1	1	Repeated START condition followed by a RECEIVE operation with a negative ACK (master goes to Master Receive state).					
	1	0	1	1	1	Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).					
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master goes to Master Receive state).					
	1	1	1	1	1	Illegal.					
	All other co	ombination	s not listed	are non-op	erations.	NOP.					

• an one	I2CMSA[0]		I2CMC	S[3:0]		Description				
State	R/S	ACK	STOP	START	RUN	Description				
	Х	0	0	0	1	RECEIVE operation with negative ACK (master remains in Master Receive state).				
	Х	Х	1	0	0	STOP condition (master goes to Idle state). ^b				
	Х	0	1	0	1	RECEIVE followed by STOP condition (master goes to Idle state).				
	Х	1	0	0	1	RECEIVE operation (master remains in Master Receive state).				
	Х	1	1	0	1	Illegal.				
Master Receive	1	0	0	1	1	Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state).				
	1	0	1	1	1	Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).				
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master remains in Master Receive state).				
	0	х	0	1	1	Repeated START condition followed by SEND (master goes to Master Transmit state).				
	0	Х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).				
	All other co	mbination	s not listed	are non-op	erations.	NOP.				

Table 13-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3) (continued)

a. An X in a table cell indicates the bit can be 0 or 1.

b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.

Register 3: I²C Master Data (I2CMDR), offset 0x008

Important: Use caution when reading this register. Performing a read may change bit status.

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

I2C 0 Offse	base: 0x t 0x008	r Data (x4002.00 set 0x000		R)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Î	1	Î	1	Î	Ì	rese	rved	1	ſ	Ì	î I	ì	Î	Ì
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved									1	1	l D/	ATA	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	Ту	pe	Reset	Des	cription							
	31:8		reserved		RO		0x00	com	oftware should not rely on the value of a reserved bit. To p ompatibility with future products, the value of a reserved bit eserved across a read-modify-write operation.					•		
	7:0		DA	TA	R	W	0x00		a Transf a transfe	erred erred duri	ing tran	saction.				

January 09, 2011

www.BDTIC.com/TI

Register 4: I²C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock.

Caution – Take care not to set bit 7 when accessing this register as unpredictable behavior can occur.

I2C Master Timer Period (I2CMTPR)

I2C 0 base: 0x4002.0000 Offset 0x00C Type R/W, reset 0x0000.0001

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		•		1		rese	erved		•	1	1		J	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		reserved		1 1				1	1	TPR	1	1	\square
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:7		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	6:0		TPF	२	R/	W	0x1		Clock F		ne perioc	l of the S	CL clock	۲.		
								SCL	_PRD =	2*(1	+ TPR)	* (SCL_I	LP + SC	CL_HP)*	CLK_PR	2D

where:

SCL_PRD is the SCL line period (I²C clock). TPR is the Timer Period register value (range of 1 to 127). SCL_LP is the SCL Low period (fixed at 6). SCL_HP is the SCL High period (fixed at 4). I2C Master Interrupt Mask (I2CMIMR)

Register 5: I²C Master Interrupt Mask (I2CMIMR), offset 0x010

This register controls whether a raw interrupt is promoted to a controller interrupt.

Offse	t 0x010	<4002.000		,	,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[I	I	1			r r	rese	rved	I		i i		I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	1	1			1 1	reserved	1 1	I	r	1		1	1	IM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	npatibility	with futu	ure prod	the value lucts, the dify-write	value of	a reserv	•	
	0		IM		R/	W	0	This inte		rols whe et, the ini	errupt is	aw interru s not mas asked.	• •			

January 09, 2011

www.BSDITIC.com/TI

Register 6: I²C Master Raw Interrupt Status (I2CMRIS), offset 0x014

This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)

I2C 0 base: 0x4002.0000 Offset 0x014 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		· ·			rese	rved				ı ı		1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		1		ſ	reserved					I 1	ſ	1	RIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:1		reserv	/ed	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	0		RIS	3	R	0	0	This mas	/ Interrup bit spec ter block pending.	ifies the	raw inte	•			0,	

Register 7: I²C Master Masked Interrupt Status (I2CMMIS), offset 0x018

This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CM	/MIS)
--	-------

I2C 0 base: 0x4002.0000 Offset 0x018

Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	J	1 I			rese	rved				1	1	J	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			T	I	1		ſ	reserved			1		1	1	I	MIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv	•	
	0		MIS	8	R	0	0	This	ked Inter bit speci k. If set,	ifies the	raw inter					

been generated since the bit was last cleared.

January 09, 2011

www.BDTIC.com/TI

Register 8: I²C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

I2C 0 Offse	Master base: 0x et 0x01C WO, rese	4002.00		· (I2CM	ICR)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		i	1	I	1	ſ	1	rese	rved	I	l .	I	r		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1	I	ı	[1 1	reserved		ſ	ſ	I	1	ſ	1	IC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:1		reserv	ved	R	0	0x00	com	patibility	with futu	ure produ	ucts, the		a reserv	t. To prov ved bit sh	
	0		IC		W	0	0	This		rols the o	0				te of 1 cl	

read of this register returns no meaningful data.

January 09, 2011

I2C Master Configuration (I2CMCR)

Register 9: I²C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

Offse) base: 0x4 et 0x020 R/W, rese															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							• •	rese	erved		•	1		• •		•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	1	rese	rved	<u>т т</u>		1		SFE	MFE		reserved		LPBK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
E	Bit/Field		Nan	ne	Ty	ре	Reset	Des	cription							
	31:6		reser	ved	R	0	0x00	com		with fut	ure prod	ucts, the	value of	erved bit. a reserve on.	•	
	5		SF	E	R/	W	0	This		ifies whe	ether the			perate in a mode is c		
	4		MF	E	R/	w	0	This set,	•	ifies whe	ether the enabled	; otherwi		perate in l er mode i		
	3:1		reser	ved	R	0	0x00	com		with fut	ure prod	ucts, the	value of	erved bit. a reserve on.	•	
	0		LPE	ЗK	R/	W	0	This Loo	, pback m	ifies whe	et, the d	evice is	, put in a t	rating nor est mode normally.		

www.bbution Data m/T

13.6 Register Descriptions (I²C Slave)

The remainder of this section lists and describes the l^2C slave registers, in numerical order by address offset. See also "Register Descriptions (l^2C Master)" on page 444.

I2C Slave Own Address (I2CSOAR)

Register 10: I²C Slave Own Address (I2CSOAR), offset 0x800

This register consists of seven address bits that identify the Stellaris I^2C device on the I^2C bus.

Offse) base: 0x et 0x800 R/W, res															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		, , , , , , , , , , , , , , , , , , ,		1 1	rese	erved	I	1	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	I	reserved		1 1		1		I	1	OAR	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:7		reserv	ved	R	C	0x00	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	6:0		OAI	R	R/	W	0x00		Slave Ov s field sp			rough A() of the s	lave add	Iress.	

January 09, 2011

www.Bstumits Production Data Market C.COm/TI

Register 11: I²C Slave Control/Status (I2CSCSR), offset 0x804

This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First Byte Received (FBR) bit is set only after the Stellaris device detects its own slave address and receives the first data byte from the l²C master. The Receive Request (RREQ) bit indicates that the Stellaris l²C device has received a data byte from an l²C master. Read one data byte from the l²C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit indicates that the Stellaris l²C device is addressed as a Slave Transmitter. Write one data byte into the l²C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris I^2C slave operation.

Reads

12C Clave Control/Status (12CSCSD)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	r			1 1	rese	rved	1	1	1	1	1	1	1
Type eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	r			reserved			1	1	1	1	FBR	TREQ	RREQ
Type eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	lit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:3 2		reserv		R		0x00 0	com pres	patibility	with futu cross a r	ure prod	ucts, the		erved bit f a reserv on.		
	۷			`	K	0	U	Indic This	ates tha bit is onl	t the first y valid w	hen the	RREQ bit		own ado id is auto egister.		
								Note	e: Th	nis bit is	not used	for slav	e transm	nit operat	ions.	
	1		TRE	Q	R	0	0	This trans trans beer	smit requ smitter a	tifies the uests. If nd uses to the I2	set, the clock st	I ² C unit I retching	has beer to delay	h regard addres the mas e, there i	sed as a ter until o	slave lata ha

January 09, 2011

www.Bbunnts Production Data MWW.BDUNNTS Production Data

Writes

I2C Slave Control/Status (I2CSCSR)

I2C 0 base: 0x4002.0000 Offset 0x804 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1					rese	rved			•		1	1	•	
Type	RO 0	RO 0	RO	RO 0	RO	RO	RO 0	RO	RO	RO 0	RO 0	RO	RO 0	RO 0	RO	RO	
Reset	U	0	0	0	0	0	U	0	0	0	U	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		•	•		, , , , , , , , , , , , , , , , , , ,			reserved	 I			•			•	DA	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO	
Reset E										0							
31:1 reserved RO 0x00 Software should not rely on the compatibility with future product preserved across a read-modified of the company of									ucts, the	value of	a reserv						
	0		DA	L.	W	0	0	preserved across a read-modify-write operation.Device Active									

Value Description

0 Disables the I²C slave operation.

1 Enables the I²C slave operation.

www.BSDUmits Production Data m/TI

Register 12: I²C Slave Data (I2CSDR), offset 0x808

Important: Use caution when reading this register. Performing a read may change bit status.

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

120	Oluve	Dutu (i	20001()													
Offse	t 0x808	0x4002.00 set 0x000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		r	1 1	rese	rved	i	1	Î		ì	Î	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field	i	Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value o	f a reserv	•	
	7:0		DAT	Ā	R/	W	0x0	This	a for Trai field cor ration.		e data fo	r transfer	during a	a slave re	ceive or	transmit

I2C Slave Data (I2CSDR)

I2C Slave Interrupt Mask (I2CSIMR)

Register 13: I²C Slave Interrupt Mask (I2CSIMR), offset 0x80C

This register controls whether a raw interrupt is promoted to a controller interrupt.

Offse	base: 0x t 0x80C R/W, res															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	, , , , , , , , , , , , , , , , , , ,		1 I	rese	erved		1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	г г		<u>1 1</u>	reserved	1 I	I	1	1	1 1	I	1	DATAIM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	ovide should be
	0		DATA	MM	R/	W	0	This	a Interrup bit contru uested is	rols whe			•			nd data upt is not

masked and the interrupt is promoted; otherwise, the interrupt is masked.

January 09, 2011

www.BDTIC.com/TI

Register 14: I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x810

This register specifies whether an interrupt is pending.

I2C Slave Raw Interrupt Status (I2CSRIS)

I2C 0 base: 0x4002.0000

	t 0x810 RO, rese	t 0x0000	.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1	1		1 I	rese	rved	1	1		1		1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1	1	1		r i	reserved			I	1		ſ	1	DATARIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	ovide should be
	0 DATARIS		RO 0		0	This	Data Raw Interrupt Status This bit specifies the raw interrupt state for data received and data requested (prior to masking) of the I ² C slave block. If set, an interrup									

is pending; otherwise, an interrupt is not pending.

Register 15: I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x814

This register specifies whether an interrupt was signaled.

I2C Slave Masked	Interrupt Status	(I2CSMIS)
12C 0 hass: 0x4002 000	0	

I2C 0 base: 0x4002.0000 Offset 0x814 Type RO, reset 0x0000.0000

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1			rese	erved		1	1				•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	I	1	1		1 1	reserved	1 I		1	1				DATAMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field			Name Type			Reset	Des	cription								
31:1			reserved RO 0x00					com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv	•	vide hould be
0			DATAMIS RO			0	Data Masked Interrupt Status This bit specifies the interrupt state for data received and data reques (after masking) of the I ² C slave block. If set, an interrupt was signal otherwise, an interrupt has not been generated since the bit was la							signaled;		

cleared.

January 09, 2011

www.BDTIC.com/TI

Register 16: I²C Slave Interrupt Clear (I2CSICR), offset 0x818

This register clears the raw interrupt. A read of this register returns no meaningful data.

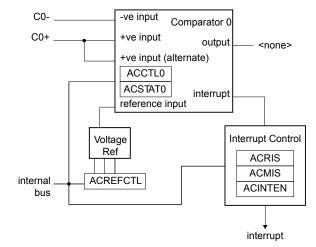
Offse	t 0x818	x4002.00 et 0x000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1	T	, , , , , , , , , , , , , , , , , , ,		1 1		rved	1	1	1	T I	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	1	1		1 1	reserved	1	I	1	1	1	ì	Î	DATAIC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	lit/Field		Nar	me	Ту	ре	Reset	Des	cription							
	31:1		reserved		RO		0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	0 [AIC	W	0	0	This data		rols the ed. Whe	n set, it	clears th	aw interru e DATAR: value.	•		

I2C Slave Interrupt Clear (I2CSICR)

14 Analog Comparator

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

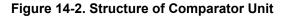
Note: Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables in "Functional Description" on page 467 for more information.

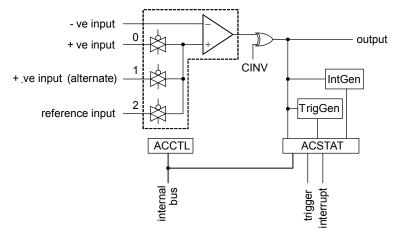

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

The Stellaris[®] Analog Comparators module has the following features:

- One integrated analog comparator
- Configurable for output to drive an output pin, generate an interrupt, or initiate an ADC sample sequence
- Compare external pin input to external pin input or to internal programmable voltage reference
- Compare a test voltage against any one of these voltages
 - An individual external reference voltage
 - A shared single external reference voltage
 - A shared internal reference voltage

14.1 Block Diagram


14.2 Functional Description


Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 14-2 on page 467, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.

Important: The ASRCP bits in the ACCTLn register must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

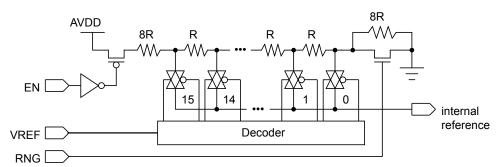

ACCTL0	Comparator 0	Comparator 0							
ASRCP	VIN-	VIN+	Output	Interrupt	ADC Trigger				
00	C0-	C0+	n/a	yes	yes				
01	C0-	C0+	n/a	yes	yes				
10	C0-	Vref	n/a	yes	yes				
11	C0-	reserved	n/a	yes	yes				

Table 14-1. Comparator 0 Operating Modes

T x s is um ints Production Data

14.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 14-3 on page 468. This is controlled by a single configuration register (**ACREFCTL**). Table 14-2 on page 468 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Figure 14-3. Comparator Internal Reference Structure

ACREFCTL Reg	ister	Output Reference Voltage Based on VREF Field Value						
EN Bit Value	RNG Bit Value							
EN=0	RNG=X	0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.						
EN=1	RNG=0	Total resistance in ladder is 31 R. $V_{REF} = AV_{DD} \times \frac{Rv_{REF}}{Rr}$ $V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{31}$ $V_{REF} = 0.85 + 0.106 \times VREF$ The range of internal reference in this mode is 0.85-2.448 V.						
EIN- I	RNG=1	Total resistance in ladder is 23 R. $V_{REF} = AV_{DD} \times \frac{Rv_{REF}}{R_{T}}$ $V_{REF} = AV_{DD} \times \frac{VREF}{23}$ $V_{REF} = 0.143 \times VREF$ The range of internal reference for this mode is 0-2.152 V.						

14.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.

T x s ns. um ints Production Data

- 2. In the GPIO module, enable the GPIO port/pin associated with CO- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- **4.** Configure comparator 0 to use the internal voltage reference and to *not* invert the output by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

14.4 Register Map

Table 14-3 on page 469 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

Note that the analog comparator module clock must be enabled before the registers can be programmed (see page 191). There must be a delay of 3 system clocks after the ADC module clock is enabled before any ADC module registers are accessed.

Table 14-3. Analog Comparators Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	ACMIS	R/W1C	0x0000.0000	Analog Comparator Masked Interrupt Status	470
0x004	ACRIS	RO	0x0000.0000	Analog Comparator Raw Interrupt Status	471
0x008	ACINTEN	R/W	0x0000.0000	Analog Comparator Interrupt Enable	472
0x010	ACREFCTL	R/W	0x0000.0000	Analog Comparator Reference Voltage Control	473
0x020	ACSTAT0	RO	0x0000.0000	Analog Comparator Status 0	474
0x024	ACCTL0	R/W	0x0000.0000	Analog Comparator Control 0	475

14.5 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

WWW.BDU I C.CO

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000

This register provides a summary of the interrupt status (masked) of the comparator.

Analog Comparator Masked Interrupt Status (ACMIS)

Base 0x4003.C000

Offset 0x000 Type R/W1C, reset 0x0000.0000

• •																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1				rese	rved		1	1				1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	1			reserved	1 I		1	1	1		I	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	vide hould be
	0		IN	D	R/W	/1C	0	Give	nparator es the ma ir the per	asked in	terrupt s	•		upt. Write	e 1 to thi	s bit to

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004

This register provides a summary of the interrupt status (raw) of the comparator.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000

Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1	rese	erved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	1	1		T	reserved	1			1		1	1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	0		IN	0	R	0	0		nparator en set, ind		•		as been	generate	ed by con	nparator

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008

21

20

19

18

17

16

This register provides the interrupt enable for the comparator.

Ana	alog Cor	mparato	or Interru	upt Enal	ble (AC	INTEN)				
Offse	e 0x4003.0 et 0x008 e R/W, res		0.0000							
	31	30	29	28	27	26	25	24	23	22
		1							1	

		[1 1				1 1	rese	rved		[1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								reserved	1 I				l I	•	1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:1		reserv	ved	R	С	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	0		INC)	R/	W	0		nparator en set, er		•	le ller interr	upt from	the com	parator () output.

www.BDTIC.com/TI

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010

This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000

Offset 0x010 Type R/W, reset 0x0000.0000

.)po	,															
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[Ĩ		rese	rved			EN	RNG		rese	rved	I		VR	I REF	
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	it/Field 31:10		Nam		Ty R		Reset 0x00	Soft	cription						•	
	9		EN	I	R/	w	0	pres Res The resis	ipatibility served a istor Lac EN bit s stor ladd analog V	cross a r Ider Ena pecifies v er is unp	ead-moo ble whether	dify-write	operation	on. er is pow	ered on.	If 0, the
	8		RNO	G	R/	w	0	amo Res The Iado	s bit is re bunt of p istor Lac RNG bit ler has a stance o	ower if n Ider Ran specifies total res	ot used a ge a the ran	and prog ge of the	rammed resistor	ladder.	lf 0, the i	resistor
	7:4		reserv	ved	R	0	0x00	com	ware sho patibility served a	with futu	ure prod	ucts, the	value of	a reserv		
	3:0		VRE	F	R/	W	0x00	The an a the	istor Lac VREF bit analog m internal i 2 on pag	field spe ultiplexe reference	ecifies th r. The vo e voltage	oltage co e availab	rrespond le for cor	ding to th mparisor	ne tap po n. See Ta	sition is able

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020

This register specifies the current output value of the comparator.

Analog Comparator Status 0 (ACS	STAT0)
Base 0x4003.C000 Offset 0x020	
Type RO, reset 0x0000.0000	

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1		1	rese	erved	ſ	1	ſ	1	ſ	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO
Reset	0	0	U	0	0	0	U	0	U	0	0	0	0	U	U	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ				· ·	I	rese	rved			1	1	1	1	OVAL	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	8it/Field 31:2		Nam		Tyj R(Reset 0x00	Soft			rely on ti				•	vide hould be
	1		OVA	L	R	0	0	pres Con	served a	cross a r Output \	ead-moo /alue	lify-write	operatio	on.		
	0		reserv	/ed	R	0	0	Soft com	ware sho patibility	ould not with fut	es the cu rely on th ure produ ead-mod	ne value ucts, the	of a resolution	erved bi a reserv	t. To prov	

January 09, 2011

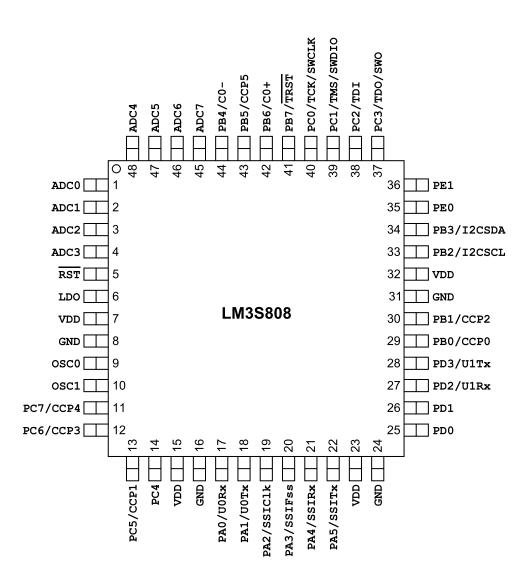
Register 6: Analog Comparator Control 0 (ACCTL0), offset 0x024

This register configures the comparator's input and output.

Analog Comparator Control 0 (ACCTL0)

Offse	0x4003.0 t 0x024 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1	1				rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ľ	rese	l erved	r	TOEN	AS	I RCP	reserved	TSLVAL	TS	EN	ISLVAL	IS	EN	CINV	reserved
І Туре	RO	RO	RO	RO	R/W	R/W	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:12		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		
	11		TOE	N	R/	W	0	The eve		enables	s the AD and not	C event t sent to th				
	10:9		ASR	CP	R/	W	0x00	The		eld spec	ifies the	source of dings for				terminal
								Val	ue Func	tion						
								0x0	Pin v	alue						
								0x1	Pin v	alue of C	C0+					
								0x2	Interr	nal volta	ge refere	ence				
								0x3	Rese	rved						
	8		reserv	ved	R	0	0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7		TSLV	ΆL	R/	W	0	The an A	ADC ever	bit spec nt if in Le	ifies the evel Sen	sense va se mode w. Other	. If 0, an	ADC ev	ent is ge	enerated

if the comparator output is High.


Bit/Field	Name	Туре	Reset	Description
6:5	TSEN	R/W	0x0	Trigger Sense The TSEN field specifies the sense of the comparator output that generates an ADC event. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see TSLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
4	ISLVAL	R/W	0	Interrupt Sense Level Value The ISLVAL bit specifies the sense value of the input that generates an interrupt if in Level Sense mode. If 0, an interrupt is generated if the comparator output is Low. Otherwise, an interrupt is generated if the comparator output is High.
3:2	ISEN	R/W	0x0	Interrupt Sense The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see ISLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
1	CINV	R/W	0	Comparator Output Invert The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

www.BSD Tic.com/TI

15 Pin Diagram

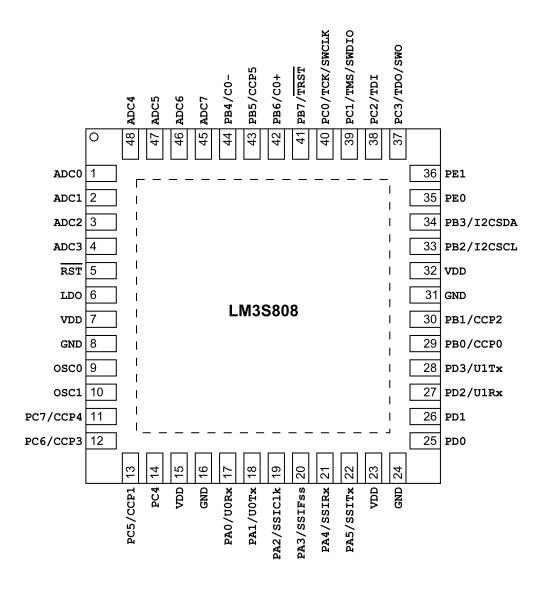

The LM3S808 microcontroller pin diagrams are shown below.

Figure 15-1. 48-Pin QFP Package Pin Diagram

www.BDTPC.com/TI

Figure 15-2. 48-Pin QFN Package Pin Diagram¹

¹The thermal pad must be connected to GND.

16 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 16-1 on page 479 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 16-2 on page 481 lists the signals in alphabetical order by signal name.

Table 16-3 on page 483 groups the signals by functionality, except for GPIOs. Table 16-4 on page 484 lists the GPIO pins and their alternate functionality.

Note: All digital inputs are Schmitt triggered.

Table 16-1. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
1	ADC0	I	Analog	Analog-to-digital converter input 0.
2	ADC1	I	Analog	Analog-to-digital converter input 1.
3	ADC2	I	Analog	Analog-to-digital converter input 2.
4	ADC3	I	Analog	Analog-to-digital converter input 3.
5	RST	I	TTL	System reset input.
6	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μF or greater.
7	VDD	-	Power	Positive supply for I/O and some logic.
8	GND	-	Power	Ground reference for logic and I/O pins.
9	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
10	OSC1	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
11	PC7	I/O	TTL	GPIO port C bit 7.
11	CCP4	I/O	TTL	Capture/Compare/PWM 4.
12	PC6	I/O	TTL	GPIO port C bit 6.
12	CCP3	I/O	TTL	Capture/Compare/PWM 3.
13	PC5	I/O	TTL	GPIO port C bit 5.
15	CCP1	I/O	TTL	Capture/Compare/PWM 1.
14	PC4	I/O	TTL	GPIO port C bit 4.
15	VDD	-	Power	Positive supply for I/O and some logic.
16	GND	-	Power	Ground reference for logic and I/O pins.
17	PA0	I/O	TTL	GPIO port A bit 0.
17	UORx	I	TTL	UART module 0 receive.
18	PA1	I/O	TTL	GPIO port A bit 1.
10	UOTx	0	TTL	UART module 0 transmit.
19	PA2	I/O	TTL	GPIO port A bit 2.
19	SSIClk	I/O	TTL	SSI clock.
20	PA3	I/O	TTL	GPIO port A bit 3.
20	SSIFss	I/O	TTL	SSI frame.

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
04	PA4	I/O	TTL	GPIO port A bit 4.
21 –	SSIRx	I	TTL	SSI receive.
22	PA5	I/O	TTL	GPIO port A bit 5.
22 –	SSITx	0	TTL	SSI transmit.
23	VDD	-	Power	Positive supply for I/O and some logic.
24	GND	-	Power	Ground reference for logic and I/O pins.
25	PDO	I/O	TTL	GPIO port D bit 0.
26	PD1	I/O	TTL	GPIO port D bit 1.
07	PD2	I/O	TTL	GPIO port D bit 2.
27 —	UlRx	I	TTL	UART module 1 receive.
	PD3	I/O	TTL	GPIO port D bit 3.
28 –	UlTx	0	TTL	UART module 1 transmit.
00	PB0	I/O	TTL	GPIO port B bit 0.
29 —	CCP0	I/O	TTL	Capture/Compare/PWM 0.
	PB1	I/O	TTL	GPIO port B bit 1.
30 —	CCP2	I/O	TTL	Capture/Compare/PWM 2.
31	GND	-	Power	Ground reference for logic and I/O pins.
32	VDD	-	Power	Positive supply for I/O and some logic.
	PB2	I/O	TTL	GPIO port B bit 2.
33 —	I2CSCL	I/O	OD	l ² C clock.
	PB3	I/O	TTL	GPIO port B bit 3.
34 —	I2CSDA	I/O	OD	l ² C data.
35	PE0	I/O	TTL	GPIO port E bit 0.
36	PE1	I/O	TTL	GPIO port E bit 1.
	PC3	I/O	TTL	GPIO port C bit 3.
37	SWO	0	TTL	JTAG TDO and SWO.
_	TDO	0	TTL	JTAG TDO and SWO.
	PC2	I/O	TTL	GPIO port C bit 2.
38 —	TDI	1	TTL	JTAG TDI.
	PC1	I/O	TTL	GPIO port C bit 1.
39	SWDIO	I/O	TTL	JTAG TMS and SWDIO.
	TMS	I/O	TTL	JTAG TMS and SWDIO.
	PC0	I/O	TTL	GPIO port C bit 0.
40	SWCLK	1	TTL	JTAG/SWD CLK.
	TCK		TTL	JTAG/SWD CLK.
44	PB7	I/O	TTL	GPIO port B bit 7.
41 –	TRST		TTL	JTAG TRST.
10	PB6	I/O	TTL	GPIO port B bit 6.
42 –	C0+		Analog	Analog comparator 0 positive input.
	PB5	I/O	TTL	GPIO port B bit 5.
43 —	CCP5	I/O	TTL	Capture/Compare/PWM 5.

Table 16-1. Signals by Pin Number (continued)

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
44	PB4	I/O	TTL	GPIO port B bit 4.
	C0-	I	Analog	Analog comparator 0 negative input.
45	ADC7	I	Analog	Analog-to-digital converter input 7.
46	ADC6	I	Analog	Analog-to-digital converter input 6.
47	ADC5	I	Analog	Analog-to-digital converter input 5.
48	ADC4	I	Analog	Analog-to-digital converter input 4.

Table 16-1. Signals by Pin Number (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-2. Signals by Signal Name

		Pin Type	Buffer Type ^a	Description	
ADC0	1	I	Analog	Analog-to-digital converter input 0.	
ADC1	2	I	Analog	Analog-to-digital converter input 1.	
ADC2	3	I	Analog	Analog-to-digital converter input 2.	
ADC3	4	I	Analog	Analog-to-digital converter input 3.	
ADC4	48	I	Analog	Analog-to-digital converter input 4.	
ADC5	47	I	Analog	Analog-to-digital converter input 5.	
ADC6	46	I	Analog	Analog-to-digital converter input 6.	
ADC7	45	I	Analog	Analog-to-digital converter input 7.	
C0+	42	I	Analog	Analog comparator 0 positive input.	
C0-	44	I	Analog	Analog comparator 0 negative input.	
CCP0	29	I/O	TTL	Capture/Compare/PWM 0.	
CCP1	13	I/O	TTL	Capture/Compare/PWM 1.	
CCP2	30	I/O	TTL	Capture/Compare/PWM 2.	
CCP3	12	I/O	TTL	Capture/Compare/PWM 3.	
CCP4	11	I/O	TTL	Capture/Compare/PWM 4.	
CCP5	43	I/O	TTL	Capture/Compare/PWM 5.	
GND	8 16 24 31	-	Power	Ground reference for logic and I/O pins.	
I2CSCL	33	I/O	OD	I ² C clock.	
I2CSDA	34	I/O	OD	I ² C data.	
LDO	6	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μF or greater.	
OSC0	9	I	Analog	Main oscillator crystal input or an external clock reference input.	
OSC1	10	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.	
PAO	17	I/O	TTL	GPIO port A bit 0.	
PA1	18	I/O	TTL	GPIO port A bit 1.	
PA2	19	I/O	TTL	GPIO port A bit 2.	
PA3	20	I/O	TTL	GPIO port A bit 3.	

January 09, 2011

www.BDJUmints Production Data MODEL COM/TI

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description	
PA4	21	I/O	TTL	GPIO port A bit 4.	
PA5	22	I/O	TTL	GPIO port A bit 5.	
PB0	29	I/O	TTL	GPIO port B bit 0.	
PB1	30	I/O	TTL	GPIO port B bit 1.	
PB2	33	I/O	TTL	GPIO port B bit 2.	
PB3	34	I/O	TTL	GPIO port B bit 3.	
PB4	44	I/O	TTL	GPIO port B bit 4.	
PB5	43	I/O	TTL	GPIO port B bit 5.	
PB6	42	I/O	TTL	GPIO port B bit 6.	
PB7	41	I/O	TTL	GPIO port B bit 7.	
PC0	40	I/O	TTL	GPIO port C bit 0.	
PC1	39	I/O	TTL	GPIO port C bit 1.	
PC2	38	I/O	TTL	GPIO port C bit 2.	
PC3	37	I/O	TTL	GPIO port C bit 3.	
PC4	14	I/O	TTL	GPIO port C bit 4.	
PC5	13	I/O	TTL	GPIO port C bit 5.	
PC6	12	I/O	TTL	GPIO port C bit 6.	
PC7	11	I/O	TTL	GPIO port C bit 7.	
PDO	25	I/O	TTL	GPIO port D bit 0.	
PD1	26	I/O	TTL	GPIO port D bit 1.	
PD2	27	I/O	TTL	GPIO port D bit 2.	
PD3	28	I/O	TTL	GPIO port D bit 3.	
PE0	35	I/O	TTL	GPIO port E bit 0.	
PE1	36	I/O	TTL	GPIO port E bit 1.	
RST	5	I	TTL	System reset input.	
SSIClk	19	I/O	TTL	SSI clock.	
SSIFss	20	I/O	TTL	SSI frame.	
SSIRx	21	I	TTL	SSI receive.	
SSITx	22	0	TTL	SSI transmit.	
SWCLK	40	Ι	TTL	JTAG/SWD CLK.	
SWDIO	39	I/O	TTL	JTAG TMS and SWDIO.	
SWO	37	0	TTL	JTAG TDO and SWO.	
TCK	40	I	TTL	JTAG/SWD CLK.	
TDI	38	I	TTL	JTAG TDI.	
TDO	37	0	TTL	JTAG TDO and SWO.	
TMS	39	I/O	TTL	JTAG TMS and SWDIO.	
TRST	41	I	TTL	JTAG TRST.	
UORx	17	I	TTL	UART module 0 receive.	
UOTx	18	0	TTL	UART module 0 transmit.	
UlRx	27	I	TTL	UART module 1 receive.	
UlTx	28	0	TTL	UART module 1 transmit.	

Table 16-2. Signals by Signal Name (continued)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
VDD	7 15 23 32	-	Power	Positive supply for I/O and some logic.

Table 16-2. Signals by Signal Name (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-3. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description	
	ADC0	1	I	Analog	Analog-to-digital converter input 0.	
	ADC1	2	Ι	Analog	Analog-to-digital converter input 1.	
	ADC2	3	Ι	Analog	Analog-to-digital converter input 2.	
ADC	ADC3	4	Ι	Analog	Analog-to-digital converter input 3.	
ADC	ADC4	48	Ι	Analog	Analog-to-digital converter input 4.	
	ADC5	47	I	Analog	Analog-to-digital converter input 5.	
	ADC6	46	I	Analog	Analog-to-digital converter input 6.	
	ADC7	45	I	Analog	Analog-to-digital converter input 7.	
Analog Comparators		42	I	Analog	Analog comparator 0 positive input.	
	C0-	44	Ι	Analog	Analog comparator 0 negative input.	
	CCP0	29	I/O	TTL	Capture/Compare/PWM 0.	
	CCP1	13	I/O	TTL	Capture/Compare/PWM 1.	
General-Purpose	CCP2	30	I/O	TTL	Capture/Compare/PWM 2.	
Timers	CCP3	12	I/O	TTL	Capture/Compare/PWM 3.	
	CCP4	11	I/O	TTL	Capture/Compare/PWM 4.	
	CCP5	43	I/O	TTL	Capture/Compare/PWM 5.	
12C	I2CSCL	33	I/O	OD	I ² C clock.	
	I2CSDA	34	I/O	OD	I ² C data.	
	SWCLK	40	I	TTL	JTAG/SWD CLK.	
	SWDIO	39	I/O	TTL	JTAG TMS and SWDIO.	
	SWO	37	0	TTL	JTAG TDO and SWO.	
JTAG/SWD/SWO	TCK	40	Ι	TTL	JTAG/SWD CLK.	
JIAG/SVD/SVO	TDI	38	Ι	TTL	JTAG TDI.	
	TDO	37	0	TTL	JTAG TDO and SWO.	
	TMS	39	I/O	TTL	JTAG TMS and SWDIO.	
	TRST	41	Ι	TTL	JTAG TRST.	
	GND	8 16 24 31	-	Power	Ground reference for logic and I/O pins.	
Power	LDO	6	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater.	
	VDD	7 15 23 32	-	Power	Positive supply for I/O and some logic.	

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
	SSIClk	19	I/O	TTL	SSI clock.
SSI	SSIFss	20	I/O	TTL	SSI frame.
331	SSIRx	21	I	TTL	SSI receive.
	SSITx	22	0	TTL	SSI transmit.
	OSC0	9	I	Analog	Main oscillator crystal input or an external clock reference input.
System Control & Clocks	OSC1	10	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
	RST	5	I	TTL	System reset input.
	UORx	17	I	TTL	UART module 0 receive.
UART	UOTx	18	0	TTL	UART module 0 transmit.
	UlRx	27	I	TTL	UART module 1 receive.
	UlTx	28	0	TTL	UART module 1 transmit.

Table 16-3. Signals by Function, Except for GPIO (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-4. GPIO Pins and Alternate Functions

10	Pin Number	Multiplexed Function	Multiplexed Function
PAO	17	UORx	
PA1	18	UOTx	
PA2	19	SSIClk	
PA3	20	SSIFss	
PA4	21	SSIRx	
PA5	22	SSITx	
PB0	29	CCP0	
PB1	30	CCP2	
PB2	33	I2CSCL	
PB3	34	I2CSDA	
PB4	44	C0-	
PB5	43	CCP5	
PB6	42	C0+	
PB7	41	TRST	
PC0	40	TCK	SWCLK
PC1	39	TMS	SWDIO
PC2	38	TDI	
PC3	37	TDO	SWO
PC4	14		
PC5	13	CCP1	
PC6	12	CCP3	
PC7	11	CCP4	
PDO	25		
PD1	26		
PD2	27	UlRx	

www.BSDUmits Production Data m/TI

10	Pin Number	Multiplexed Function	Multiplexed Function
PD3	28	UlTx	
PEO	35		
PE1	36		

Table 16-4. GPIO Pins and Alternate Functions (continued)

16.1 Connections for Unused Signals

Table 16-5 on page 485 show how to handle signals for functions that are not used in a particular system implementation. Two options are shown in the table: an acceptable practice and a preferred practice for reduced power consumption and improved EMC characteristics.

Function	Signal Name	Pin Number	Acceptable Practice	Preferred Practice
GPIO	All unused GPIOs	-	NC	GND
	OSC0	L11	NC	GND
System	OSC1	M11	NC	NC
Control	RST	H11	Pull up as shown in Figure 5-1 on page 151	Connect through a capacitor to GND as close to pin as possible

Table 16-5. Connections for Unused Signals

17 Operating Characteristics

Table 17-1. Temperature Characteristics

Characteristic	Symbol	Value	Unit
Industrial operating temperature range	T _A	-40 to +85	°C
Extended operating temperature range	T _A	-40 to +105	°C
Unpowered storage temperature range	T _S	-65 to +150	°C

Table 17-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	Θ _{JA}	50 (48-pin QFP) 26 (48-pin QFN)	°C/W
Junction temperature ^b	TJ	$T_A + (P \bullet \Theta_{JA})$	°C
Maximum junction temperature	T _{JMAX}	115 c	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

c. T_{JMAX} calculation is based on power consumption values and conditions as specified in "Power Specifications" on page 383 of the data sheet.

Table 17-3. ESD Absolute Maximum Ratings^a

Parameter Name	Min	Nom	Мах	Unit
V _{ESDHBM}	-	-	2.0	kV
V _{ESDCDM}	-	-	1.0	kV
V _{ESDMM}	-	-	100	V

a. All Stellaris parts are ESD tested following the JEDEC standard.

18 Electrical Characteristics

18.1 DC Characteristics

18.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Table 18-1. Maximum Ratings

Characteristic ^a	Symbol	Value	Unit
Supply voltage range (V _{DD})	V _{DD}	0.0 to +3.6	V
Input voltage	V _{IN}	-0.3 to 5.5	V
Maximum current for pins, excluding pins operating as GPIOs	I	100	mA
Maximum current for GPIO pins	I	100	mA
Maximum input voltage on a non-power pin when the microcontroller is unpowered	V _{NON}	300	mV

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

18.1.2 Recommended DC Operating Conditions

Table 18-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Мах	Unit			
V _{DD}	Supply voltage	3.0	3.3	3.6	V			
V _{IH}	High-level input voltage	2.0	-	5.0	V			
V _{IL}	Low-level input voltage	-0.3	-	1.3	V			
V _{OH}	High-level output voltage	2.4	-	-	V			
V _{OL}	Low-level output voltage	-	-	0.4	V			
	High-level source current, V _{OH} =2.4 V							
I	2-mA Drive	2.0	-	-	mA			
I _{ОН}	4-mA Drive	4.0	-	-	mA			
	8-mA Drive	8.0	-	-	mA			
	Low-level sink current, V_{OL} =0.4 V							
L.	2-mA Drive	2.0	-	-	mA			
I _{OL}	4-mA Drive	4.0	-	-	mA			
	8-mA Drive	8.0	-	-	mA			

18.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Table 18-3. LDO Regulator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value	2.25	-	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	DFF Time off		-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO} External filter capacitor size for internal power supply		1.0	-	3.0	μF

18.1.4 GPIO Module Characteristics

Table 18-4. GPIO Module DC Characteristics

Parameter	ameter Parameter Name		Nom	Max	Unit
R _{GPIOPU}	GPIO internal pull-up resistor	50	-	110	kΩ
R _{GPIOPD}	GPIO internal pull-down resistor	55	-	180	kΩ
I _{LKG}	GPIO input leakage current ^a	-	-	2	μA

a. The leakage current is measured with GND or V_{DD} applied to the corresponding pin(s). The leakage of digital port pins is measured individually. The port pin is configured as an input and the pullup/pulldown resistor is disabled.

18.1.5 Power Specifications

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V_{DD} = 3.3 V
- Temperature = 25°C

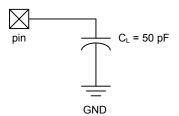
www.BDTIC.com/TI

Parameter	Parameter Name	Conditions	Nom	Max	Unit
	Run mode 1 (Flash loop)	LDO = 2.50 V Code = while(1){} executed in Flash Peripherals = All clock-gated ON System Clock = 50 MHz (with PLL)	95	110	mA
	Run mode 2 (Flash loop)	LDO = 2.50 V Code = while(1){} executed in Flash Peripherals = All clock-gated OFF System Clock = 50 MHz (with PLL)	60	75	mA
^I DD_RUN	Run mode 1 (SRAM loop)	LDO = 2.50 V Code = while(1){} executed in SRAM Peripherals = All clock-gated ON System Clock = 50 MHz (with PLL)	85	95	mA
	Run mode 2 (SRAM loop)	LDO = 2.50 V Code = while(1){} executed in SRAM Peripherals = All clock-gated OFF System Clock = 50 MHz (with PLL)	50	60	mA
I _{DD_SLEEP}	Sleep mode	LDO = 2.50 V Peripherals = All clock-gated OFF System Clock = 50 MHz (with PLL)	19	22	mA
I _{DD_DEEPSLEEP}	Deep-Sleep mode	LDO = 2.25 V Peripherals = All OFF System Clock = MOSC/16	950	1150	μA

Table 18-5. Detailed Power Specification	S
--	---

18.1.6 Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles before failure ^a	10,000	100,000	-	cycles
T _{RET}	Data retention at average operating temperature of 85°C (industrial) or 105°C (extended)	10	-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms
T _{ME}	Mass erase time	-	-	250	ms


a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

18.2 AC Characteristics

18.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

18.2.2 Clocks

Table 18-7. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Parameter Name		Nom	Max	Unit
f _{ref_crystal}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{ref_ext}	External clock reference ^a	3.579545	-	8.192	MHz
f _{pll}	PLL frequency ^b	-	200	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Table 18-8. Clock Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{IOSC}	Internal oscillator frequency	7	12	22	MHz
f _{MOSC}	OSC Main oscillator frequency		-	8	MHz
t _{MOSC_per}	Main oscillator period	125	-	1000	ns
f _{ref_crystal_bypass}	Crystal reference using the main oscillator (PLL in BYPASS mode) ^a	1	-	8	MHz
f _{ref_ext_bypass}	External clock reference (PLL in BYPASS mode) ^a	0	-	50	MHz
f _{system_clock}	System clock	0	-	50	MHz

a. The ADC must be clocked from the PLL or directly from a 16.667-MHz clock source to operate properly.

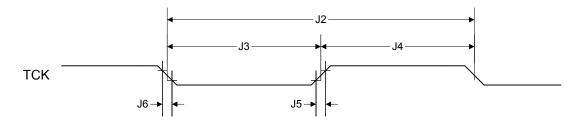
18.2.2.1 System Clock Specifications with ADC Operation

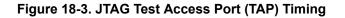
Table 18-9. System Clock Characteristics with ADC Operation

Parameter	Parameter Name	Min	Nom	Мах	Unit
f _{sysadc}	System clock frequency when the ADC module is operating (when PLL is bypassed)	16	-	-	MHz

18.2.3 JTAG and Boundary Scan

Table 18-10. JTAG Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
J1	f _{тск}	TCK operational clock frequency	0	-	10	MHz
J2	t _{тск}	TCK operational clock period	100	-	-	ns


WWW.BDT IC.COm/

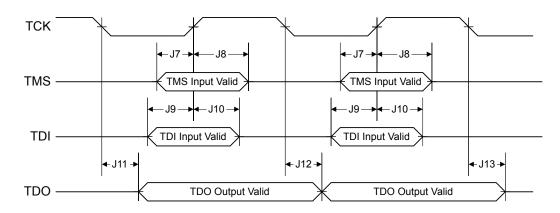

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
J3	t _{TCK_LOW}	TCK clock Low time	-	t _{TCK}	-	ns
J4	t _{TCK_HIGH}	TCK clock High time	-	t _{TCK}	-	ns
J5	t _{TCK_R}	TCK rise time	0	-	10	ns
J6	t _{TCK_F}	TCK fall time	0	-	10	ns
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
		2-mA drive		23	35	ns
J11	TCK fall to Data	4-mA drive	1	15	26	ns
t _{TDO_ZDV}	Valid from High-Z	8-mA drive	1 -	14	25	ns
		8-mA drive with slew rate control		18	29	ns
		2-mA drive		21	35	ns
J12	TCK fall to Data	4-mA drive		14	25	ns
t _{TDO_DV}	Valid Irom Data	8-mA drive] -	13	24	ns
		8-mA drive with slew rate control		18	28	ns
		2-mA drive		9	11	ns
J13	TCK fall to High-Z	4-mA drive		7	9	ns
t _{TDO_DVZ}	from Data Valid	8-mA drive] -	6	8	ns
		8-mA drive with slew rate control		7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

Table 18-10. JTAG Characteristics (continued)

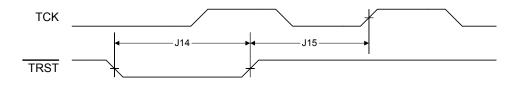
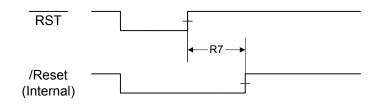
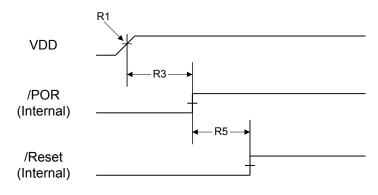

Figure 18-2. JTAG Test Clock Input Timing

Figure 18-4. JTAG TRST Timing

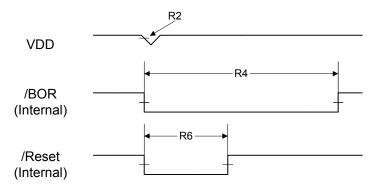
18.2.4 Reset

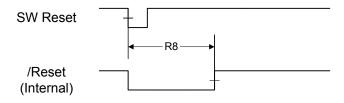

Table 18-11. Reset Characteristics

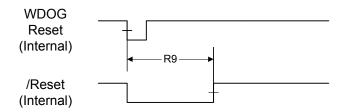
Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
R1	V _{TH}	Reset threshold	-	2.0	-	V
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	15	-	30	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	2.5	-	20	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset (RST pin)	15	-	30	ms
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset ^a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{IRLDOR}	Internal reset timeout after LDO reset ^a	2.5	-	20	μs
R11	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0 V-3.3 V)	-	-	100	ms


a. 20 * t _{MOSC_per}

January 09, 2011


Figure 18-5. External Reset Timing (RST)


Figure 18-6. Power-On Reset Timing


Figure 18-7. Brown-Out Reset Timing

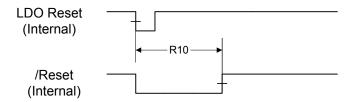

Figure 18-8. Software Reset Timing

Figure 18-9. Watchdog Reset Timing

Figure 18-10. LDO Reset Timing

18.2.5 Sleep Modes

Table 18-12. Sleep Modes AC Characteristics^a

Parameter No	Parameter	Parameter Name	Min	Nom	Max	Unit
D1	t _{WAKE_S}	Time to wake from interrupt in sleep or deep-sleep mode, not using the PLL	-	-	7	system clocks
D2	t _{WAKE_PLL_S}	Time to wake from interrupt in sleep or deep-sleep mode when using the PLL	-	-	T _{READY}	ms

a. Values in this table assume the IOSC is the clock source during sleep or deep-sleep mode.

18.2.6 General-Purpose I/O (GPIO)

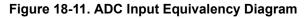
Note: All GPIOs are 5 V-tolerant.

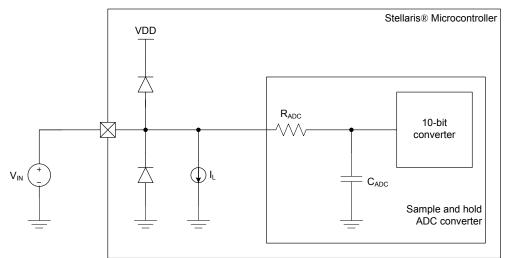
Parameter	Parameter Name	Condition	Min	Nom	Max	Unit
		2-mA drive		17	26	ns
+	GPIO Rise Time (from 20% to 80%	4-mA drive		9	13	ns
t _{GPIOR}	of V _{DD})	8-mA drive	-	6	9	ns
		8-mA drive with slew rate control		10	12	ns
		2-mA drive		17	25	ns
+	GPIO Fall Time (from 80% to 20%	4-mA drive		8	12	ns
GFIOI	of V _{DD})	8-mA drive	-	6	10	ns
		8-mA drive with slew rate control	1	11	13	ns

Table 18-13. GPIO Characteristics

18.2.7 Analog-to-Digital Converter

Table 18-14. ADC Characteristics^a


Parameter	Parameter Name	Min	Nom	Max	Unit
	Maximum single-ended, full-scale analog input voltage	-	-	3.0	V
V _{ADCIN}	Minimum single-ended, full-scale analog input voltage		-	-	V
	Maximum differential, full-scale analog input voltage	-	-	1.5	V
	Minimum differential, full-scale analog input voltage	0.0	-	-	V
Ν	Resolution		10		bits
f _{ADC}	ADC internal clock frequency ^b	14	16.667	18	MHz
t _{ADCCONV}	Conversion time ^c				μs
f ADCCONV	Conversion rate ^c				k samples/s
t _{LT}	Latency from trigger to start of conversion	-	2	-	system clocks
١ _L	ADC input leakage	-	-	±3.0	μΑ
R _{ADC}	ADC equivalent resistance	-	-	10	kΩ
C _{ADC}	ADC equivalent capacitance	0.9	1.0	1.1	pF
EL	Integral nonlinearity error	-	-	±3	LSB
ED	Differential nonlinearity error	-	-	±2	LSB
Eo	Offset error	-	-	+6 ^d	LSB
E _G	Full-scale gain error	-	-	±3	LSB
E _{TS}	Temperature sensor accuracy	-	-	±5	°C


a. The ADC reference voltage is 3.0 V. This reference voltage is internally generated from the 3.3 VDDA supply by a band gap circuit.

b. The ADC must be clocked from the PLL or directly from an external clock source to operate properly.

c. The conversion time and rate scale from the specified number if the ADC internal clock frequency is any value other than 16.667 MHz.

d. The offset error listed above is the conversion result with 0 V applied to the ADC input.

Table 18-15. ADC Module Internal Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{REFI}	Internal voltage reference for ADC	-	3.0	-	V
E _{IR}	Internal voltage reference error	-	-	±2.5	%

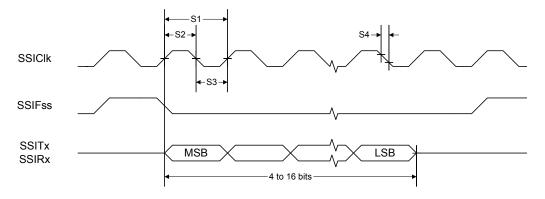
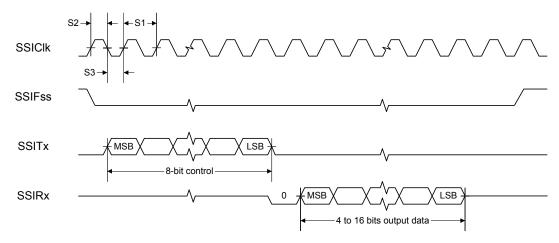

18.2.8 Synchronous Serial Interface (SSI)

Table 18-16. SSI Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
S1	t _{clk_per}	SSIClk cycle time	2	-	65024	system clocks
S2	t _{clk_high}	SSIClk high time	-	0.5	-	t clk_per
S3	t _{clk_low}	SSIClk low time	-	0.5	-	t clk_per
S4	t _{clkrf}	SSIClk rise/fall time ^a	-	6	10	ns
S5	t _{DMd}	Data from master valid delay time	0	-	1	system clocks
S6	t _{DMs}	Data from master setup time	1	-	-	system clocks
S7	t _{DMh}	Data from master hold time	2	-	-	system clocks
S8	t _{DSs}	Data from slave setup time	1	-	-	system clocks
S9	t _{DSh}	Data from slave hold time	2	-	-	system clocks

a. Note that the delays shown are using 8-mA drive strength.

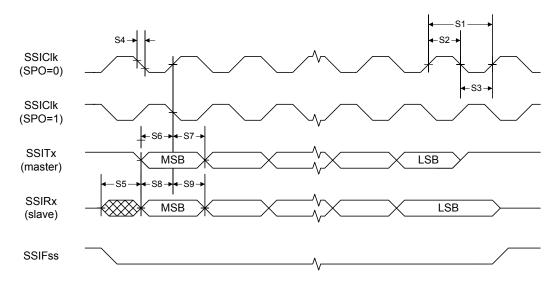
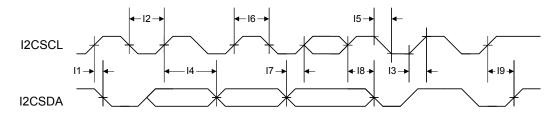


Figure 18-14. SSI Timing for SPI Frame Format (FRF=00), with SPH=1

18.2.9 Inter-Integrated Circuit (I²C) Interface

Table 18-17. I²C Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
l1 ^a	t _{SCH}	Start condition hold time	36	-	-	system clocks
l2 ^a	t _{LP}	Clock Low period	36	-	-	system clocks
I3 ^b	t _{SRT}	I2CSCL/I2CSDA rise time (V _{IL} =0.5 V to V $_{\rm IH}$ =2.4 V)	-	-	(see note b)	ns
l4 ^a	t _{DH}	Data hold time	2	-	-	system clocks
I5 ^c	t _{SFT}	I2CSCL/I2CSDA fall time (V _{IH} =2.4 V to V $_{\rm IL}$ =0.5 V)	-	9	10	ns
l6 ^a	t _{HT}	Clock High time	24	-	-	system clocks
I7 ^a	t _{DS}	Data setup time	18	-	-	system clocks
l8 ^a	t _{SCSR}	Start condition setup time (for repeated start condition only)	36	-	-	system clocks
19 ^a	t _{scs}	Stop condition setup time	24	-	-	system clocks

a. Values depend on the value programmed into the TPR bit in the I²C Master Timer Period (I2CMTPR) register; a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

c. Specified at a nominal 50 pF load.

Figure 18-15. I²C Timing

18.2.10 Analog Comparator

Table 18-18. Analog Comparator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{OS}	Input offset voltage	-	±10	±25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

Table 18-19. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{HR}	Resolution high range	-	V _{DD} /31	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /23	-	LSB
A _{HR}	Absolute accuracy high range	-	-	±1/2	LSB
A _{LR}	Absolute accuracy low range	-	-	±1/4	LSB

A Serial Flash Loader

A.1 Serial Flash Loader

The Stellaris[®] serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris device which is calculated as follows:

```
Max Baud Rate = System Clock Frequency / 16
```

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See "Frame Formats" on page 395 in the SSI chapter for more information on formats for this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running

WWW DD Is summits Production Data

the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
Data
                               This is the raw data intended for the device, which is formatted in
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the section that describes the serial flash loader command, COMMAND_SEND_DATA (see "COMMAND_SEND_DATA (0x24)" on page 503).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet were valid, just that the packet was received correctly.

A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the

WWW BD Is um ints Production Data

flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

Byte[0] = 0x03; Byte[1] = checksum(Byte[2]); Byte[2] = COMMAND_PING;

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.4.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS

A.4.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

WWW.BDUINts Production Data

The format of the packet to send this command is a follows:

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
```

```
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
```

A.4.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.4.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.4.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

WWW.BDUInts Production Data

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

www.Bstumits Production Data Market C.COm/TI

B Register Quick Reference

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rtex-M3			1				1				1			
	R/W, , reset														
, .,,	,,	(,				D	ATA							
							D	ATA							
R1, type F	R/W, , reset	- (see page	e 46)												
								ATA							
							D/	ATA							
R2, type F	R/W, , reset	- (see page	e 46)					ATA							
								ATA							
R3, type F	R/W, , reset	- (see page	e 46)												
							D	ATA							
							D/	ATA							
R4, type F	R/W, , reset	- (see page	e 46)												
P5 type F	R/W, , reset	(600 020)	2 46)				D	ATA							
ito, type r	. w, , reset	- (see page	- 1 0)				יח	ATA							
								ATA							
R6, type F	R/W, , reset	- (see page	e 46)												
							D	ATA							
							D	ATA							
R7, type F	R/W, , reset	- (see page	e 46)												
								ATA ATA							
R8. type F	R/W, , reset	- (see page	e 46)												
., .,	,,	(111)	,				D	ATA							
							D	ATA							
R9, type F	R/W, , reset	- (see page	e 46)												
								ATA							
D40 to ma	DA4						D/	ATA							
к то, туре	R/W, , rese	n - (see pa	ye 40)				יח	ATA							
								ATA							
R11, type	R/W, , rese	et - (see pag	ge 46)												
							D/	ATA							
							D	ATA							
R12, type	R/W, , rese	et - (see pa	ge 46)												
								ATA ATA							
SP. type F	R/W, , reset	- (see page	e 47)				0	117							
	,,	() page	,				S	8P							
								8P							
LR, type F	R/W, , reset	0xFFFF.FF	FF (see pa	ge 48)											
								NK							
							LI	NK							
PC, type I	R/W, , reset	t - (see pag	e 49)												
								20 20							
							r	~							

January 09, 2011

www.BDJIC.com/TI

31															
	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			0000 (see pa		101	(IT	THUMP								
Ν	Z	C	V I / IT	Q	ICI	/ IT	THUMB						NUM		
DDIMAGK			0000.0000 (500 D200 5	1)							101			
	, цре 1011,	, 16361 070		see page 5	+)										
															PRIMASK
FAULTMA	SK. type R	/Wreset	0x0000.000	 0 (see pag	e 55)										
	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,													
															FAULTMASK
BASEPRI	, type R/W,	, reset 0x0	000.0000 (s	see page 56	6)										
									BASEPRI						
CONTRO	L, type R/W	, , reset 0x	0000.0000 ((see page 5	57)										
														ASP	TMPL
Cortex-	-M3 Perij	oherals													
) Registe	ers											
-	E000.E000	-													
STCTRL,	type R/W, c	ffset 0x01	0, reset 0x0	000.0000											
															COUNT
													CLK_SRC	INTEN	ENABLE
STRELOA	AD, type R/\	V, offset 0	x014, reset	0x0000.00	00										
											REL	OAD			
							RELO	DAD							
STCURRE	NT. type R	MAC ARA													
	, •, •, •, •, • • • •	wc, onse	t 0x018, res	set 0x0000.	0000										
		wc, onse	t 0x018, res	set 0x0000.	0000						CUR	RENT			
			t 0x018, res	set 0x0000.	0000		CURF	RENT			CUR	RENT			
	-M3 Perij	oherals					CURF	RENT			CUR	RENT			
Nested	-M3 Perij Vectore	oherals d Interru	t 0x018, res upt Cont			gisters	CURF	RENT			CUR	RENT			
Nested Base 0xE	-M3 Perij Vectore E000.E000	oherals d Interru	upt Cont	roller (N		gisters	CURF	RENT			CUR	RENT			
Nested Base 0xE	-M3 Perij Vectore E000.E000	oherals d Interru		roller (N		gisters	CURF				CUR	RENT			
Nested Base 0xE	-M3 Perij Vectore E000.E000	oherals d Interru	upt Cont	roller (N		gisters			NT		CUR	RENT			
Nested Base 0xE EN0, type	-M3 Perij Vectore E000.E000 R/W, offse	oherals d Interru) t 0x100, re	upt Contr set 0x0000.	roller (N .0000		gisters	CURF		NT		CUR	RENT			
Nested Base 0xE EN0, type	-M3 Perij Vectore E000.E000 R/W, offse	oherals d Interru) t 0x100, re	upt Cont	roller (N .0000		gisters		I T			CUR	RENT			
Nested Base 0xE EN0, type	-M3 Perij Vectore E000.E000 R/W, offse	oherals d Interru) t 0x100, re	upt Contr set 0x0000.	roller (N .0000		gisters	IN	1 T I	NT		CUR	RENT			
Nested Base 0xE EN0, type DIS0, type	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherals d Interru) t 0x100, re ot 0x180, re	upt Contr set 0x0000. eset 0x0000	roller (N .0000		yisters		1 T I			CUR	RENT			
Nested Base 0xE EN0, type DIS0, type	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherals d Interru) t 0x100, re ot 0x180, re	upt Contr set 0x0000.	roller (N .0000		gisters	IN	T T T	NT		CUR	RENT			
Nested Base 0xE EN0, type DIS0, type	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherals d Interru) t 0x100, re ot 0x180, re	upt Contr set 0x0000. eset 0x0000	roller (N .0000		gisters	IN	т Т Т			CUR	RENT			
Nested Base 0xE EN0, type DIS0, type PEND0, ty	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherals d Interru) t 0x100, re ot 0x180, re	upt Contr set 0x0000. eset 0x0000	roller (N .0000	VIC) Reg	gisters	IN	т Т Т	NT		CUR	RENT			
Nested Base 0xE EN0, type DIS0, type PEND0, ty	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherals d Interru) t 0x100, re ot 0x180, re	upt Contr set 0x0000. eset 0x0000	roller (N .0000	VIC) Reg	gisters	IN	т Т Т Т	NT		CUR	RENT			
Nested Base 0xE EN0, type DIS0, type PEND0, ty	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse	oherals d Interru) t 0x100, re ot 0x180, re	upt Contr set 0x0000. eset 0x0000	roller (N .0000	VIC) Reg	gisters	IN IN	т Т Т Т Т	NT		CUR	RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty UNPEND0	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse e R/W, offse	oherals d Interru) t 0x100, re t 0x180, re fset 0x200, offset 0x2	upt Contr set 0x0000. eset 0x0000 , reset 0x000	roller (N .0000 .0000	VIC) Reg	yisters	IN	т Т Т Т Т	NT		CUR	RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty UNPEND0	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse e R/W, offse	oherals d Interru) t 0x100, re t 0x180, re fset 0x200, offset 0x2	upt Contr set 0x0000. eset 0x0000	roller (N .0000 .0000	VIC) Reg	gisters	IN IN	т Т Т Т Т Т	NT		CUR	RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty UNPEND0	-M3 Perij Vectore E000.E000 R/W, offse e R/W, offse e R/W, offse	oherals d Interru) t 0x100, re t 0x180, re fset 0x200, offset 0x2	upt Contr set 0x0000. eset 0x0000 , reset 0x000	roller (N .0000 .0000	VIC) Reg	gisters	IN IN	T T T T T	NT NT			RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0,	M3 Perij Vectore E000.E000 R/W, offse e R/W, offse e R/W, offse p R/W, offse ype R/W, of 0, type R/W, of	oherals d Interru) t 0x100, re offset 0x200, offset 0x200, fiset 0x200,	upt Conti set 0x0000. eset 0x0000 , reset 0x00 280, reset 0x0 0, reset 0x0	roller (N .0000 .0000 .0000 .0000 .0000 .0000	VIC) Reg	gisters	IN	T T T T T	NT NT			RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0,	M3 Perij Vectore E000.E000 R/W, offse e R/W, offse e R/W, offse p R/W, offse ype R/W, of 0, type R/W, of	oherals d Interru) t 0x100, re offset 0x200, offset 0x200, fiset 0x200,	upt Contr set 0x0000. eset 0x0000 , reset 0x000	roller (N .0000 .0000 .0000 .0000 .0000 .0000	VIC) Reg	gisters	IN	T T T T T	NT NT			RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0,	M3 Perij Vectore E000.E000 R/W, offse e R/W, offse ype R/W, of 0, type R/W, type RO, o	oherals d Interru) t 0x100, re offset 0x200, offset 0x200, fiset 0x200,	upt Conti set 0x0000. eset 0x0000 , reset 0x00 280, reset 0x0 0, reset 0x0	roller (N .0000 .0000 .0000 .0000 .0000 .0000	VIC) Reg	gisters	IN	T T T T T	NT NT NT			RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty PEND0, type ACTIVE0, PRI0, type	M3 Perij Vectore E000.E000 R/W, offse e R/W, offse e R/W, offse b, type R/W, b, type R/W, c type RO, o e R/W, offse iNTD iNTB	oherais d Interru) t 0x100, re nt 0x180, re fiset 0x200, offset 0x200, ffset 0x200, nt 0x400, re	upt Conti set 0x0000. eset 0x0000 , reset 0x000 280, reset 0x00 0, reset 0x0000	roller (N .0000 .0000 .0000 .0000 .0000	VIC) Reg	gisters	IN	T T T T T	NT NT NT INTC			RENT			
Nested Base 0xf EN0, type DIS0, type PEND0, ty UNPEND0 ACTIVE0, PRI0, type	M3 Perij Vectore E000.E000 R/W, offse e R/W, offse e R/W, offse b, type R/W, b, type R/W, c type RO, o e R/W, offse iNTD iNTB	oherais d Interru) t 0x100, re nt 0x180, re fiset 0x200, offset 0x200, ffset 0x200, nt 0x400, re	upt Conti set 0x0000. eset 0x0000 , reset 0x00 280, reset 0x0 0, reset 0x0	roller (N .0000 .0000 .0000 .0000 .0000	VIC) Reg	gisters	IN	T T T T T	NT NT NT INTC			RENT			

www.BSD Tic.com/TI

31	30			27					22						16
15	14	29 13	28 12	11	26 10	25 9	24 8	23	6	21 5	20 4	19 3	18 2	17 1	0
-	e R/W, offse	-			10	3	0	,	0	5	-	5	2		0
r Riz, type	INTD	1 07400, 16	Sel 0x0000	.0000					INTC						
	INTB								INTA						
DDI2 tune		+ 0×400 ==	aat 0x0000	0000											
FRIS, type	e R/W, offse INTD	1 02400, 16	Sel 0x0000					1	INTC						
	INTD														
									INTA						
PRI4, type	e R/W, offse	t 0x410, re	Set UXUUUU	.0000											
	INTD								INTC						
	INTB								INTA						
PRI5, type	e R/W, offse	t 0x414, re	set 0x0000	.0000											
	INTD								INTC						
	INTB								INTA						
PRI6, type	e R/W, offse	t 0x418, re	set 0x0000	.0000											
	INTD								INTC						
	INTB								INTA						
PRI7, type	e R/W, offse	t 0x41C, re	eset 0x0000	.0000											
	INTD								INTC						
	INTB								INTA						
SWTRIG,	type WO, of	ffset 0xF00), reset 0x0	000.0000											
													INTID		
System Base 0xE	-M3 Perip Control E000.E000	Block (1						
System Base 0xE	n Control	Block (reset 0x410	F.C231					VA	R					
System Base 0xE	Control	Block (F.C231	PAR	TNO			VA	R				ON EV	
System Base 0xE CPUID, ty	Di Control E000.E000 pe RO, offs	Block (et 0xD00, i	reset 0x410 IM	I F.C231 IP		TNO			VA	R				DN EV	
System Base 0xE CPUID, ty INTCTRL,	Control	Block (et 0xD00, i	reset 0x410 IM 04, reset 0x	IF.C231				ISRPRE		R				EV	PEND
System Base 0xE CPUID, ty	n Control E000.E000 pe RO, offs type R/W, c	Block (et 0xD00, f	reset 0x410 IM 04, reset 0x	F.C231 IP 0000.0000 UNPENDSV	PENDSTSET			ISRPRE	VA	R		VEC	RI	EV	PEND
System Base 0xE CPUID, ty INTCTRL, NMISET	type R/W, c	Block (et 0xD00, i offset 0xD0	reset 0x410 IM 04, reset 0x PENDSV	F.C231 IP 0000.0000 UNPENDSV RETBASE	PENDSTSET			ISRPRE		R		VEC		EV	PEND
System Base 0xE CPUID, ty INTCTRL, NMISET	n Control E000.E000 pe RO, offs type R/W, c	Block (et 0xD00, n offset 0xD0 PEND ffset 0xD0	reset 0x410 IM 04, reset 0x PENDSV	F.C231 IP 0000.0000 UNPENDSV RETBASE	PENDSTSET			ISRPRE	ISRPEND	R		VEC	RI	EV	PEND
System Base 0xE CPUID, ty INTCTRL, NMISET	type R/W, c	Block (et 0xD00, i offset 0xD0	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0	F.C231 1P 0000.0000 UNPENDSV RETBASE 0000.0000	PENDSTSET			ISRPRE		R		VEC	RI	EV	PEND
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1	type R/W, of	Block (et 0xD00, i offset 0xD0 PEND BASE	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0 OFF	F.C231 IP UNPENDSV RETBASE 0000.0000 SET	PENDSTSET			ISRPRE	ISRPEND	R		VEC	RI	EV	PEND
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1	type R/W, c	Block (et 0xD00, i offset 0xD0 PEND BASE	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0 OFF	F.C231 IP UNPENDSV RETBASE 0000.0000 SET	PENDSTSET				ISRPEND	R		VEC	RI	EV	PEND
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 APINT, typ	type R/W, offse pe R/W, offse	Block (et 0xD00, i offset 0xD0 PEND BASE	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0 OFF	F.C231 IP UNPENDSV RETBASE 0000.0000 SET	PENDSTSET	PENDSTCLR		ISRPRE	ISRPEND	R		VEC	RI	EV VECF	
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 APINT, ty ENDIANESS	type R/W, offs pe R/W, offs	Block (offset 0xD00, i offset 0xD00 BASE iet 0xD0C,	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA	F.C231 IP 0000.0000 UNPENDSV RETBASE 000.0000 SET 05.0000	PENDSTSET				ISRPEND	R		VEC	RI	EV	
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 APINT, ty ENDIANESS	type R/W, offse pe R/W, offse	Block (offset 0xD00, i offset 0xD00 BASE iet 0xD0C,	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA	F.C231 IP 0000.0000 UNPENDSV RETBASE 000.0000 SET 05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R		VEC	RI	EV VECF	
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 APINT, ty ENDIANESS	type R/W, offs pe R/W, offs	Block (offset 0xD00, i offset 0xD00 BASE iet 0xD0C,	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA	F.C231 IP 0000.0000 UNPENDSV RETBASE 000.0000 SET 05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R		VEC	RI CACT SYSRESREQ	EV VECF	
System Base 0x6 CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 ENDIANESS SYSCTRL	type R/W, offs , type R/W, offs , type R/W, offs	Block (offset 0xD00, 1 PEND ffset 0xD00 BASE set 0xD0C, offset 0xD0C	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R	SEVONPEND	VEC	RI CACT SYSRESREQ	EV VECF	
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 ENDIANESS SYSCTRL	type R/W, offs pe R/W, offs	Block (offset 0xD00, 1 PEND ffset 0xD00 BASE set 0xD0C, offset 0xD0C	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R	SEVONPEND	VEC	RI CACT SYSRESREQ	EV VECF	
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 ENDIANESS SYSCTRL	type R/W, offs , type R/W, offs , type R/W, offs	Block (offset 0xD00, 1 PEND ffset 0xD00 BASE set 0xD0C, offset 0xD0C	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000	PENDSTSET	PENDSTCLR			ISRPEND	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 ENDIANESS SYSCTRL CFGCTRL	type R/W, offs ver R/W, offs , type R/W, offs , type R/W, offs	Block (et 0xD00, i offset 0xD0 BASE et 0xD0C, offset 0xD offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0 014, reset 0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000	PENDSTSET	PENDSTCLR			ISRPEND	R	SEVONPEND DIV0	VEC	RI CACT SYSRESREQ	EV VECF	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 ENDIANESS SYSCTRL CFGCTRL	type R/W, offs , type R/W, offs , type R/W, offs	Block (et 0xD00, i offset 0xD0 BASE et 0xD0C, offset 0xD offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0 014, reset 0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000	PENDSTSET	PENDSTCLR			ISRPEND OFFSET	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 APINT, typ ENDIANESS SYSCTRL CFGCTRL	A Control E000.E000 pe RO, offso type R/W, of type R/W, offso pe R/W, offso , type R/W, , type R/W,	Block (et 0xD00, i offset 0xD0 BASE et 0xD0C, offset 0xD offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0 014, reset 0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 VTABLE, 1 CFGCTRL SYSPRI1,	type R/W, offs , type R/W, offs	Block (offset 0xD00, i PEND Free 0xD00 BASE iet 0xD00C, offset 0xD offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA 10, reset 0 014, reset 0x 18, reset 0x0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 (x0000.0000 (x0000.0000	PENDSTSET	PENDSTCLR			ISRPEND OFFSET	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 VTABLE, 1 CFGCTRL SYSPRI1,	n Control E000.E000 rpe RO, offse type R/W, of type R/W, offse , type R/W, , type R/W, type R/W, of BUS type R/W, offse type R	Block (offset 0xD00, i PEND Free 0xD00 BASE iet 0xD00C, offset 0xD offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA 10, reset 0 014, reset 0x 18, reset 0x0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 (x0000.0000 (x0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 VTABLE, 1 CFGCTRL SYSPRI1,	type R/W, offs , type R/W, offs	Block (offset 0xD00, i PEND Free 0xD00 BASE iet 0xD00C, offset 0xD offset 0xD	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 0FF reset 0xFA 10, reset 0 014, reset 0x 18, reset 0x0	F.C231 IP 0000.0000 UNPENDSV RETBASE 0000.0000 SET 05.0000 (x0000.0000 (x0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 APINT, ty ENDIANESS SYSCTRL CFGCTRL SYSPRI1, SYSPRI2,	a Control 000.E000 pe RO, offsu vecP type R/W, offsu pe R/W, offsu , type R/W, offsu , type R/W, offsu type R/W, offsu support R/W, offsu type R/W, offsu support R/W, offsu bus	Block (offset 0xD0, i PEND ffset 0xD0 BASE et 0xD0C, offset 0xD offset 0xD1 offset 0xD1	reset 0x410 IM 04, reset 0x0 PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0x 110, reset 0x 114, reset 0x 118, reset 0x	F.C231 IP 0000.0000 RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000 0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 APINT, ty ENDIANESS SYSCTRL CFGCTRL SYSPRI1, SYSPRI2,	a Control 000.E000 pe RO, offsu vecP type R/W, of pe R/W, offsu , type R/W, of bus type R/W, of SVC SVC type R/W, of type R/W, of	Block (offset 0xD0, i PEND ffset 0xD0 BASE et 0xD0C, offset 0xD offset 0xD1 offset 0xD1	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0x 110, reset 0x 114, reset 0x	F.C231 IP 0000.0000 RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000 0000.0000	PENDSTSET	PENDSTCLR			ISRPEND OFFSET	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE
System Base 0xE CPUID, ty INTCTRL, NMISET VTABLE, 1 VTABLE, 1 APINT, ty ENDIANESS SYSCTRL CFGCTRL SYSPRI1, SYSPRI2,	a Control 000.E000 pe RO, offsu vecP type R/W, offsu pe R/W, offsu , type R/W, offsu , type R/W, offsu type R/W, offsu support R/W, offsu type R/W, offsu support R/W, offsu bus	Block (offset 0xD0, i PEND ffset 0xD0 BASE et 0xD0C, offset 0xD offset 0xD1 offset 0xD1	reset 0x410 IM 04, reset 0x PENDSV 8, reset 0x0 OFF reset 0xFA 10, reset 0x 110, reset 0x 114, reset 0x	F.C231 IP 0000.0000 RETBASE 0000.0000 SET 05.0000 x0000.0000 x0000.0000 0000.0000	PENDSTSET	PENDSTCLR			USAGE	R			RI CACT SYSRESREQ	EV VECF VECTCLRACT SLEEPEXIT	VECTRESE

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CTRL, type I	-			-	-			-				_		-
	7.91*	,											USAGE	BUS	MEM
SVC	BUSP	MEMP	USAGEP	ТІСК	PNDSV		MON	SVCA				USGA		BUSA	MEMA
FAULTST	TAT, type R/V	V1C, offse	t 0xD28, res	set 0x0000.	0000							1			
						DIV0	UNALIGN					NOCP	INVPC	INVSTAT	UNDEF
BFARV			BSTKE	BUSTKE	IMPRE	PRECISE	IBUS	MMARV			MSTKE	MUSTKE		DERR	IERR
HFAULTS	STAT, type R	/W1C, offs	set 0xD2C, r	reset 0x000	0.0000										
DBG	FORCED														
														VECT	
MMADDF	R, type R/W,	offset 0xD)34, reset -												
							AD								
		W offerst (NVD38	.+			AD	אוט							
AULIAL	DDR, type R/	w, unset t	JAD 30, rese				AD	DP							
							AD AD								
Conter	M2 Dan	horela					AD								
	-M3 Perip			Desiste											
	ry Protect E000.E000		it (IVIPU)	Register	5										
MPUTYP	E, type RO,	offset 0xD	90, reset 0>	×0000.0800											
											IREG	GION			
			DRE	GION											SEPARAT
MPUCTR	L, type R/W,	offset 0xI	D94, reset 0	x0000.0000)										
													PRIVDEFEN	HFNMIENA	ENABL
MPUNUN	IBER, type F	R/W, offset	t 0xD98, res	set 0x0000.0	0000						-				
														NUMBER	
MPUBAS	E, type R/W	, offset 0xl	D9C, reset	0x0000.000	0										
							AD	DR							
					ADDR						VALID			REGION	
MPUBAS	E1, type R/V	V, offset 0	xDA4, reset	t 0x0000.00	00										
MPUBAS	E1, type R/V	V, offset 0	xDA4, reset	t 0x0000.00			AD	DR							
					ADDR		AD	DR			VALID			REGION	
	E1, type R/V E2, type R/V				ADDR						VALID			REGION	
					ADDR 00		AD AD				1				
MPUBAS	E2, type R/V	V, offset 0	xDAC, rese	t 0x0000.00	ADDR 00 ADDR						VALID			REGION	
MPUBAS		V, offset 0	xDAC, rese	t 0x0000.00	ADDR 00 ADDR		AD	DR			1				
MPUBAS	E2, type R/V	V, offset 0	xDAC, rese	t 0x0000.00	ADDR 00 ADDR 00			DR			VALID			REGION	
MPUBAS MPUBAS	E2, type R/V E3, type R/V	V, offset 0: V, offset 0:	xDAC, rese xDB4, reset	t 0x0000.00 t 0x0000.00	ADDR 00 ADDR 00 ADDR		AD	DR			1				
MPUBAS MPUBAS	E2, type R/V	V, offset 0: V, offset 0:	xDAC, rese xDB4, reset DA0, reset 0	t 0x0000.00 t 0x0000.00	ADDR 00 ADDR 00 ADDR	ΑΡ	AD	DR			VALID		S	REGION	В
MPUBAS MPUBAS	E2, type R/V E3, type R/V	V, offset 0: V, offset 0:	xDAC, rese xDB4, reset DA0, reset (XN	t 0x0000.00 t 0x0000.00	ADDR 00 ADDR 00 ADDR	AP	AD	DR			VALID	SIZE	S	REGION	B ENABLI
MPUBAS MPUBAS MPUATTI	E2, type R/V E3, type R/V	V, offset 0; V, offset 0; offset 0xE	xDAC, rese xDB4, reset DA0, reset 0 XN Sf	t 0x0000.00 t 0x0000.00 Dx0000.0004	ADDR 00 ADDR 00 ADDR	AP	AD	DR			VALID	SIZE	S	REGION	
MPUBAS MPUBAS MPUATTI	E2, type R/V E3, type R/V R, type R/W,	V, offset 0; V, offset 0; offset 0xE	xDAC, rese xDB4, reset DA0, reset 0 XN Sf	t 0x0000.00 t 0x0000.00 Dx0000.0004	ADDR 00 ADDR 00 ADDR	AP	AD	DR			VALID	SIZE	S	REGION	
MPUBAS MPUBAS MPUATTI	E2, type R/V E3, type R/V R, type R/W,	V, offset 0; V, offset 0; offset 0xE	xDAC, reset xDB4, reset DA0, reset 0 XN Sf xDA8, reset XN	t 0x0000.00 t 0x0000.00 Dx0000.0004	ADDR 00 ADDR 00 ADDR		AD	DR			VALID VALID TEX	SIZE		REGION REGION C	ENABL
MPUBAS MPUBAS MPUATTI	E2, type R/V E3, type R/V R, type R/W,	V, offset 0; V, offset 0; offset 0xL	xDAC, reset xDB4, reset DA0, reset (XN Sf xDA8, reset XN Sf	t 0x0000.00 t 0x0000.000 Dx0000.000 RD 0x0000.000 RD RD	ADDR 00 ADDR 00 ADDR 00		AD	DR			VALID VALID TEX			REGION REGION C	ENABL B
MPUBAS MPUBAS MPUATTI	E2, type R/V E3, type R/V R, type R/W, R1, type R/M	V, offset 0; V, offset 0; offset 0xL	xDAC, reset xDB4, reset DA0, reset (XN Sf xDA8, reset XN Sf	t 0x0000.00 t 0x0000.000 Dx0000.000 RD 0x0000.000 RD RD	ADDR 00 ADDR 00 ADDR 00		AD	DR			VALID VALID TEX			REGION REGION C	ENABL
MPUBAS MPUBAS MPUATTI	E2, type R/V E3, type R/V R, type R/W, R1, type R/M	V, offset 0; V, offset 0; offset 0xL	xDAC, reset xDB4, reset DA0, reset 0 XN SF xDA8, reset XN SF xDB0, reset XN	t 0x0000.00 t 0x0000.000 Dx0000.000 RD 0x0000.000 RD RD	ADDR 00 ADDR 00 ADDR 00	AP	AD	DR			VALID VALID TEX TEX		S	REGION REGION C	ENABLI B ENABLI
MPUBAS MPUBAS MPUATTI MPUATTI	E2, type R/V E3, type R/V R, type R/W, R1, type R/M	V, offset 0; V, offset 0; offset 0xL V, offset 0xL V, offset 0x	xDAC, reset xDB4, reset DA0, reset 0 XN Sf xDA8, reset XN Sf xDB0, reset XN Sf	t 0x0000.00 t 0x0000.000 Dx0000.0000 RD 0x0000.000 RD 0x0000.000 RD 0x0000.000	ADDR 00 ADDR 00 ADDR 0 0 0 0 0	AP	AD	DR			VALID VALID TEX TEX	SIZE	S	REGION REGION C	ENABL B ENABL B
MPUBAS MPUBAS MPUATTI MPUATTI	E2, type R/V E3, type R/V R, type R/W, R1, type R/W R2, type R/W	V, offset 0; V, offset 0; offset 0xL V, offset 0xL V, offset 0x	xDAC, reset xDB4, reset DA0, reset 0 XN Sf xDA8, reset XN Sf xDB0, reset XN Sf	t 0x0000.00 t 0x0000.000 Dx0000.0000 RD 0x0000.000 RD 0x0000.000 RD 0x0000.000	ADDR 00 ADDR 00 ADDR 0 0 0 0 0	AP	AD	DR			VALID VALID TEX TEX	SIZE	S	REGION REGION C	ENABL B ENABL B

				1 .	-					-		1 .			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Base 0x4	Control 400F.E000														
DID0, type	e RO, offset		et - (see pa	age 161)											
		VER		100											
	6			JOR		100)					MI	NOR			
PBORCIL	., type R/W,	onset uxu.	30, reset u	X0000.7FFL) (see page	163)									
						BO	RTIM							BORIOR	BORWI
LDOPCTL	, type R/W,	offset 0x03	4. reset 0	x0000.0000	(see page										
			,		(- /									
												VA	۰DJ		
RIS, type	RO, offset 0	x050, reset	t 0x0000.0	000 (see pa	ige 165)										
									PLLLRIS	CLRIS	IOFRIS	MOFRIS	LDORIS	BORRIS	PLLFRIS
IMC, type	R/W, offset	0x054, res	et 0x0000.	0000 (see p	age 166)										
									PLLLIM	CLIM	IOFIM	MOFIM	LDOIM	BORIM	PLLFIM
MISC, typ	e R/W1C, of	fset 0x058,	, reset 0x0	000.0000 (s	see page 16	67)									
											10-1		1.8.71		
									PLLLMIS	CLMIS	IOFMIS	MOFMIS	LDOMIS	BORMIS	
RESC, typ	oe R/W, offs	et 0x05C, r	eset - (see	e page 168)											
										100	014/	MDT	DOD	DOD	EVT
DCC from	DAM offer	- 0×000	-+ 0+0700		none 160)					LDO	SW	WDT	BOR	POR	EXT
ксс, туре	e R/W, offse	t 0x060, res	set 0x0780	ACG	page 169)		SDIV		USESYSDIV						
		PWRDN	OEN	BYPASS	PLLVER	31		TAL	USEST SDIV	050	SRC	IOSCVER	MOSCVER	IOSCDIS	MOSCO
PLLCFG.	type RO, of			1								10001211		1000010	
- ,	31 • • • • •				,										
0	D			1		F		1				1	R		
DSLPCLK	CFG, type I	R/W, offset	0x144, res	set 0x0780.	0000 (see p	age 173)									
															IOSC
CLKVCLR	R, type R/W,	offset 0x15	50, reset 0:	x0000.0000	(see page	174)		-			-		-		
															VERCLF
LDOARST	Г, type R/W,	offset 0x16	60, reset 0	x0000.0000	(see page	175)									
	DO -#- 1	0+004	at 10	170											LDOARS
רטוט, type	e RO, offset		et - (see pa	age 176)		NM									
	VE	.1X			F/	۹M			TEMP			RTNO KG	ROHS	0	JAL
DC0, type	RO, offset	0x008. rese	et 0x001F (001F (see n	age 178)						с I			Q	
	, 0.1001			(000 p	3		SRA	MSZ							
								SHSZ							
DC1, type	RO, offset	0x010, rese	et 0x0001.3	32BF (see p	age 179)										
															ADC
	MINSY	SDIV				MAXA	DCSPD	MPU		TEMPSNS	PLL	WDT	SWO	SWD	JTAG
			4 0-0407	1013 (see p	age 181)										
DC2, type	RO, offset	0x014, rese	at 0x0107.	· · · · · (· · · · P								1	THEFT	THATPA	TIMER0
DC2, type	RO, offset	0x014, rese	e 0x0107.				COMP0						TIMER2	TIMER1	
DC2, type	RO, offset	0x014, rese	I2C0				COMP0				SSI0		TIMER2	UART1	
	RO, offset RO, offset		I2C0		page 183)		COMP0				SSI0		TIMER2		UART0
			I2C0		bage 183) CCP2	CCP1	COMP0 CCP0	ADC7	ADC6	ADC5	SSI0 ADC4	ADC3	ADC2		

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC4, type	e RO, offset	0x01C, res	set 0x0000.	001F (see p	bage 185)							1			
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
RCGC0, t	type R/W, of	fset 0x100	, reset 0x00	0000040 (se	ee page 186	5)									
															ADC
						MAXA	DCSPD					WDT			
SCGC0, t	ype R/W, off	fset 0x110	, reset 0x00	000040 (se	e page 188)									
															ADC
						MAXA	DCSPD					WDT			
DCGC0, t	type R/W, of	fset 0x120	, reset 0x00	0000040 (se	ee page 190))									-
															ADC
												WDT			
RCGC1, t	ype R/W, of	fset 0x104	, reset 0x00	000000 (se	ee page 191)									
							COMP0						TIMER2	TIMER1	TIMERO
			12C0								SSI0			UART1	UART0
SCGC1, t	ype R/W, off	fset 0x114	, reset 0x00	0000000 (se	e page 193)									
			10.55				COMP0				0.615		TIMER2	TIMER1	TIMERO
			12C0								SSI0			UART1	UART0
DCGC1, t	type R/W, of	rset 0x124	, reset 0x00	000000 (se	ee page 195)									
			1000				COMP0				0.010		TIMER2	TIMER1	TIMERO
			12C0								SSI0			UART1	UART0
RCGC2, t	type R/W, of	rset 0x108	, reset uxul	1000000 (se	e page 197	')									
											GPIOE	GPIOD	GPIOC	CDIOD	GPIOA
	DAM of					\					GPIOE	GPIOD	GPIOC	GPIOB	GPIUA
SUGU2, t	ype R/W, off	ISET UX118	, reset uxuu	1000000 (se	e page 198)									
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
	type R/W, of	feat Av128	reset 0x00	000000 (94		a)					OFICE		01100	GLIOD	OFICA
00002,1		ISEL UX 120	, 16561 07.01		e page 199	') 						1			
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SRCR0. t	ype R/W, off	iset 0x040	reset 0x00	 000000 (se	e page 200)					0.102	01105	0.100	0.105	01.1071
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,		lo page 200	,									ADC
												WDT			7100
SRCR1. t	ype R/W, off	set 0x044	, reset 0x00	1 1000000 (se	e page 201)						1			
, •	,						COMP0						TIMER2	TIMER1	TIMER0
			12C0								SSI0			UART1	UART0
SRCR2, t	ype R/W, off	set 0x048	, reset 0x00	0000000 (se	e page 203)									1
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Interna	I Memory	/		•								•			
	Memory C		Register	s (Flash	Control	Offset)									
	400F.D000					,									
FMA, typ	e R/W, offse	t 0x000, re	eset 0x0000	.0000											
							OFF	SET							
FMD, typ	e R/W, offse	t 0x004, re	eset 0x0000	.0000											
							DA	TA							
							DA	TA							
MC, typ	e R/W, offse	t 0x008, re	eset 0x0000	.0000											
							WRł	ΚEY							
												COMT	MERASE	ERASE	WRITE

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FCRIS, typ	oe RO, offse	et 0x00C, r	eset 0x000	0.0000								1			
														PRIS	ARIS
FCIM, type	e R/W, offse	et 0x010, re	set 0x0000	0.0000							-	-1	-		
														PMASK	AMAS
FCMISC, t	ype R/W1C	, offset 0x0)14, reset 0	x0000.000	0										
														PMISC	AMIS
Internal	Memory	/													
	lemory P	rotectio	on Regist	ters (Sy	stem Co	ntrol Of	fset)								
Base 0x4	00F.E000														
USECRL, 1	type R/W, o	ffset 0x140), reset 0x3	81								1			
											U	SEC			
-	/pe R/W, off	set 0x130,	reset 0xBF	FF.FFFF				0545							
DE	56						BEVD	READ_ ENABLE	ENABLE						
	/pe R/W, off	Set Av124	reset AvEE	FFFFF			NEAD_								
iwirr⊆, ty	Pe 17.44, 011	381 UX 134,	18361 UXPP				PROC	ENABLE							
GPIO Poi GPIO Poi	rt B base: rt C base:	0x4000.6	000 000												
GPIO Poi GPIO Poi GPIO Poi	rt B base:	0x4000.50 0x4000.60 0x4000.70	000 000 000 000												
GPIO Pol GPIO Pol GPIO Pol GPIO Pol	rt B base: rt C base: rt D base:	0x4000.5 0x4000.6 0x4000.7 0x4002.4	000 000 000 000 000			228)									
GPIO Pol GPIO Pol GPIO Pol GPIO Pol	rt B base: rt C base: rt D base: rt E base:	0x4000.5 0x4000.6 0x4000.7 0x4002.4	000 000 000 000 000			228)									
GPIO Poi GPIO Poi GPIO Poi GPIO Poi	rt B base: rt C base: rt D base: rt E base: A, type R/W	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x0	000 000 000 000 000 000, reset 0	x0000.000(0 (see page							 ATA			
GPIO Poi GPIO Poi GPIO Poi GPIO Poi	rt B base: rt C base: rt D base: rt E base:	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x0	000 000 000 000 000 000, reset 0	x0000.000(0 (see page							 ATA			
GPIO Poi GPIO Poi GPIO Poi GPIO Poi	rt B base: rt C base: rt D base: rt E base: A, type R/W	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x0	000 000 000 000 000 000, reset 0	x0000.000(0 (see page										
GPIO Pol GPIO Pol GPIO Pol GPIO Pol GPIODATA	rt B base: rt C base: rt D base: rt E base: A, type R/W type R/W, c	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x0	000 000 000 000 000, reset 0 0, reset 0x0	x0000.0000	0 (see page see page 2	29)						ATA			
GPIO Pol GPIO Pol GPIO Pol GPIO Pol GPIODATA	rt B base: rt C base: rt D base: rt E base: A, type R/W	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x0	000 000 000 000 000, reset 0 0, reset 0x0	x0000.0000	0 (see page see page 2	29)									
GPIO Pol GPIO Pol GPIO Pol GPIO Pol GPIODATA	rt B base: rt C base: rt D base: rt E base: A, type R/W type R/W, c	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x0	000 000 000 000 000, reset 0 0, reset 0x0	x0000.0000	0 (see page see page 2	29)									
GPIO Pol GPIO Pol GPIO Pol GPIODAT/ GPIODAT/ GPIODIR,	rt B base: rt C base: rt D base: rt E base: A, type R/W type R/W, c	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x00 ffset 0x400 set 0x404,	000 000 000 000 000, reset 0 0, reset 0x00 reset 0x00	x0000.0004	0 (see page see page 2 see page 230	29)						DIR			
GPIO Poi GPIO Poi GPIO Poi GPIODAT/ GPIODAT/ GPIODIR,	rt B base: rt C base: rt D base: rt E base: A, type R/W type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x00 ffset 0x400 set 0x404,	000 000 000 000 000, reset 0 0, reset 0x00 reset 0x00	x0000.0004	0 (see page see page 2 see page 230	29)						DIR			
GPIO Poi GPIO Poi GPIO Poi GPIODAT/ GPIODAT/ GPIODIR,	rt B base: rt C base: rt D base: rt E base: A, type R/W type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.40 , offset 0x00 ffset 0x400 set 0x404,	000 000 000 000 000, reset 0 0, reset 0x00 reset 0x00	x0000.0004	0 (see page see page 2 see page 230	29)						DIR			
GPIO Poi GPIO Poi GPIO Poi GPIODATA GPIODATA GPIODIR, GPIOIS, ty	rt B base: rt C base: rt D base: rt E base: A, type R/W type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.41 , offset 0x00 iffset 0x400 iset 0x404,	000 000 000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x0	x0000.0000	0 (see page see page 23) see page 230 see page 2	29)						DIR DIR IS			
GPIO Poi GPIO Poi GPIO Poi GPIODATA GPIODATA GPIODIR, GPIOIS, ty	rt B base: rt C base: rt D base: rt E base: A, type R/W, off type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.41 , offset 0x00 iffset 0x400 iset 0x404,	000 000 000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x0	x0000.0000	0 (see page see page 23) see page 230 see page 2	29)						DIR DIR IS			
GPIO Poi GPIO Poi GPIO Poi GPIODATA GPIODATA GPIODIR, GPIOIS, ty	rt B base: rt C base: rt D base: rt E base: A, type R/W, off type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.41 , offset 0x00 iffset 0x400 iset 0x404,	000 000 000 000 000 000, reset 0 0, reset 0x00 reset 0x00 8, reset 0x0	x0000.0000	0 (see page see page 23) see page 230 see page 2	29)						DIR DIR IS			
GPIO Poi GPIO Poi GPIO Poi GPIO Poi GPIODATA GPIODATA GPIOIS, ty GPIOIS, ty	rt B base: rt C base: rt D base: rt E base: A, type R/W, off type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.40 (set 0x400 (ffset 0x404 (ffset 0x404, (ffset 0x404) (ffset 0x404)	000 000 000 000 000 000 00, reset 0x0 0, reset 0x00 3, reset 0x00 2, reset 0x0	x0000.0000 0000.0000 (se 0000.0000 (se 0000.0000 (0 (see page see page 2 see page 230 see page 2	29) 29) 31) 32)						DIR DIR IS BE			
GPIO Pol GPIO Pol GPIO Pol GPIO Pol GPIODATA GPIODATA GPIOIS, ty GPIOIS, ty	rt B base: rt C base: rt D base: rt E base: type R/W, off type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.40 (set 0x400 (ffset 0x404 (ffset 0x404, (ffset 0x404) (ffset 0x404)	000 000 000 000 000 000 00, reset 0x0 0, reset 0x00 3, reset 0x00 2, reset 0x0	x0000.0000 0000.0000 (se 0000.0000 (se 0000.0000 (0 (see page see page 2 see page 230 see page 2	29) 29) 31) 32)						DIR DIR IS BE EV			
GPIO Poi GPIO Poi GPIO Poi GPIODAT/ GPIODAT/ GPIOIR, GPIOIR, ty GPIOIEV, 1 GPIOIEV, 1	rt B base: rt C base: rt D base: rt E base: type R/W, off type R/W, off type R/W, of	0x4000.50 0x4000.6 0x4000.7 0x4002.4u offset 0x00 ffset 0x400 set 0x404, ffset 0x404, ffset 0x404 ffset 0x404	000 000 000 000 000 000 00, reset 0x0 0, reset 0x00 3, reset 0x0 2, reset 0x00	x0000.0000 (0000.0000 (000.0000 (0000.0000 (0000.00000 (0000.0000000000	0 (see page see page 23) see page 23(see page 23) see page 23 see page 23	29) 29) 31) 32) 33) 33)						DIR DIR IS BE			
GPIO Poi GPIO Poi GPIO Poi GPIODAT/ GPIODAT/ GPIOIR, GPIOIR, ty GPIOIEV, 1 GPIOIEV, 1	rt B base: rt C base: rt D base: rt E base: type R/W, off type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.4u offset 0x00 offset 0x400 set 0x404, ffset 0x404, ffset 0x404 ffset 0x400 ffset 0x400	000 000 000 000 000 000 00, reset 0x0 0, reset 0x00 3, reset 0x0 2, reset 0x00	x0000.0000 (0000.0000 (000.0000 (0000.0000 (0000.00000 (0000.0000000000	0 (see page see page 23) see page 23(see page 23) see page 23 see page 23	29) 29) 31) 32) 33) 33)						DIR DIR IS BE EV			
GPIO Poi GPIO Poi GPIO Poi GPIODAT/ GPIODAT/ GPIOIR, GPIOIR, ty GPIOIEV, 1 GPIOIEV, 1	rt B base: rt C base: rt D base: rt E base: type R/W, off type R/W, off type R/W, of	0x4000.50 0x4000.6 0x4000.7 0x4002.4u offset 0x00 offset 0x400 set 0x404, ffset 0x404, ffset 0x404 ffset 0x400 ffset 0x400	000 000 000 000 000 000 00, reset 0x0 0, reset 0x00 3, reset 0x0 2, reset 0x00	x0000.0000 (0000.0000 (000.0000 (0000.0000 (0000.00000 (0000.0000000000	0 (see page see page 2 2 see page 2 2 see page 2 2 see page 2 2 see page 2 2	29) 29) 31) 32) 33) 33)						DIR IS BE EV ME			
GPIO Poi GPIO Poi GPIO Poi GPIODATA GPIODATA GPIOIR, GPIOIS, ty GPIOIE, GPIOIE, GPIOIE, GPIOIE,	rt B base: rt C base: rt D base: rt E base: A, type R/W, of type R/W, of type R/W, of type R/W, of type R/W, of	0x4000.50 0x4000.6 0x4000.7 0x4002.40 iffset 0x400 iffset 0x404 iffset 0x404, iffset 0x404, iffset 0x404, iffset 0x404 iffset 0x410, ifset 0x411,	000 000 000 000 000 000 00, reset 0x0 reset 0x00 3, reset 0x00 , reset 0x00 , reset 0x00	x0000.0000 (st	0 (see page 2 see page 2 3 see page 2 3	29) 29) 31) 32) 33) 4)						DIR DIR IS BE EV			
GPIO Poi GPIO Poi GPIO Poi GPIODATA GPIODATA GPIOIR, GPIOIS, ty GPIOIE, GPIOIE, GPIOIE, GPIOIE,	rt B base: rt C base: rt D base: rt E base: type R/W, off type R/W, off type R/W, of	0x4000.50 0x4000.6 0x4000.7 0x4002.40 iffset 0x400 iffset 0x404 iffset 0x404, iffset 0x404, iffset 0x404, iffset 0x404 iffset 0x410, ifset 0x411,	000 000 000 000 000 000 00, reset 0x0 reset 0x00 3, reset 0x00 , reset 0x00 , reset 0x00	x0000.0000 (st	0 (see page 2 see page 2 3 see page 2 3	29) 29) 31) 32) 33) 4)						DIR IS BE EV ME			
GPIO Pol GPIO Pol GPIO Pol GPIODATA GPIODATA GPIOIS, ty GPIOIE, t GPIOIE, t GPIOIE, t GPIOIE, t	rt B base: rt C base: rt D base: rt E base: A, type R/W, of type R/W, of type R/W, of type R/W, of type R/W, of	0x4000.50 0x4000.6 0x4000.7 0x4002.40 iffset 0x400 iffset 0x404 iffset 0x404, iffset 0x404, iffset 0x404, iffset 0x404 iffset 0x410, ifset 0x411,	000 000 000 000 000 000 00, reset 0x0 reset 0x00 3, reset 0x00 , reset 0x00 , reset 0x00	x0000.0000 (st	0 (see page 2 see page 2 3 see page 2 3	29) 29) 31) 32) 33) 4)									
GPIO Pol GPIO Pol GPIO Pol GPIO Pol GPIODATA GPIODATA GPIOIR, ty GPIOIBE, GPIOIBE, GPIOIBE, GPIOIRS, GPIOIRS,	rt B base: rt C base: rt D base: rt E base: type R/W, off type R/W, off type R/W, off type R/W, off type R/W, off type R/W, off	0x4000.50 0x4000.6 0x4000.7 0x4002.40 iffset 0x400 iffset 0x400 iffset 0x404 iffset 0x404 iffset 0x404 iffset 0x404 iffset 0x410, ifset 0x4114 ifset 0x418	000 000 000 000 000 000 000 000 reset 0x00 reset 0x00 0, r	x0000.0000 (se	0 (see page 2) see page 230 see page 230 see page 230 see page 23 see page 23 see page 23 see page 23	29) 29) 31) 31) 32) 33) 44) 45)						DIR IS BE EV ME			
GPIO Pol GPIO Pol GPIO Pol GPIO Pol GPIODATA GPIODATA GPIOIR, ty GPIOIBE, GPIOIBE, GPIOIBE, GPIOIRS, GPIOIRS,	rt B base: rt C base: rt D base: rt E base: A, type R/W, of type R/W, of type R/W, of type R/W, of type R/W, of	0x4000.50 0x4000.6 0x4000.7 0x4002.40 iffset 0x400 iffset 0x400 iffset 0x404 iffset 0x404 iffset 0x404 iffset 0x404 iffset 0x410, ifset 0x4114 ifset 0x418	000 000 000 000 000 000 000 000 reset 0x00 reset 0x00 0, r	x0000.0000 (se	0 (see page 2) see page 230 see page 230 see page 230 see page 23 see page 23 see page 23 see page 23	29) 29) 31) 31) 32) 33) 44) 45)									

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOAFSI	EL, type R/	W, offset 0	x420, rese	t - (see page	e 237)	I		1				1			
											AF	SEL	1	1	
GPIODR2	R, type R/W	l, offset 0x	500, reset	0x0000.00F	F (see pag	e 239)									
											DF	RV2			
GPIODR4	R, type R/W	l, offset 0x	504, reset	0x0000.000	0 (see pag	e 240)									
											DF	RV4			
GPIODR8	R, type R/W	l, offset 0x	508, reset	0x0000.000	0 (see pag	e 241)									
											DF	RV8			
GPIOODR	, type R/W,	offset 0x5	50C, reset 0	x0000.000) (see page	242)									
											0	DE			
SPIOPUR	, type R/W,	offset 0x5	10, reset 0	x0000.00FF	(see page	243)									
											PI	UE			
GPIOPDR,	, type R/W,	offset 0x5	14, reset 0	x0000.0000	(see page	244)									
											PI	DE			
GPIOSLR,	, type R/W,	offset 0x5	18, reset 0:	×0000.0000	(see page	245)									
											S	RL			
GPIODEN	, type R/W,	offset 0x5	1C, reset 0	x0000.00FF	(see page	246)									
											DI	EN			
GPIOPerip	ohID4, type	RO, offse	t 0xFD0, re	set 0x0000	.0000 (see	page 247)									
											PI	D4			
GPIOPerip	ohID5, type	RO, offse	t 0xFD4, re	set 0x0000	.0000 (see	page 248)									
											PI	D5			
GPIOPerip	ohID6, type	RO, offse	t 0xFD8, re	set 0x0000	.0000 (see	page 249)									
											PI	D6			
GPIOPerip	ohlD7, type	RO, offse	t 0xFDC, re	set 0x0000	.0000 (see	page 250)									
											PI	D7			
GPIOPerip	ohlD0, type	RO, offse	t 0xFE0, re	set 0x0000.	0061 (see	page 251)	-								
											PI	D0			
GPIOPerip	ohID1, type	RO, offse	t 0xFE4, re	set 0x0000.	.0000 (see	page 252)									
											PI	D1			
GPIOPerin	ohID2, type	RO, offse	t 0xFE8, re	set 0x0000.	.0018 (see	page 253)		1							
•				-		- ,									
											PI	l D2			
GPIOPerin	ohlD3, type	RO, offse	t 0xFEC. re	set 0x0000	.0001 (see	page 254)		1							
		, 61106	0,10												
											DI	D3			
											r I				

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOPCell	ID0, type R	O, offset 0	xFF0, rese	t 0x0000.00	00D (see pa	age 255)									
											CI	D0			
GPIOPCell	ID1, type R	O, offset 0	xFF4, rese	t 0x0000.00	0F0 (see pa	age 256)									
											CI	D1			
GPIOPCell	ID2. type R	O. offset 0)xFF8, rese	t 0x0000.00	005 (see pa	ae 257)		1							
		-,			(.9= ==: /									
											CI	 D2			
CRIORCAI	ID2 tune B	O offeet ()xFFC, rese	+ 0	0 P1 (000 p	259)						02			
GFIOFCell	прэ, туре к	to, onset t	AFFC, lese		UDI (see p	aye 200)									
											CI	D3			
Timer0 ba Timer1 ba	-Purpos ase: 0x400 ase: 0x400 ase: 0x400)3.0000)3.1000	5												
GPTMCFG	, type R/W,	offset 0x0	000, reset 0	x0000.0000	(see page	271)									
														GPTMCFG	
GPTMTAM	R, type R/V	N, offset 0x	(004, reset	0x0000.000	00 (see pag	je 272)									
						-									
												TAAMS	TACMR	TAI	MR
GPTMTRM	IR type R/	N offset 0	x008, reset	0×0000 00	00 (see nac	1e 274)									
	in, type in	, onoer 0/		0,0000.00	00 (000 pag	,0 21 4)									
												TRAME	TROMP	тр	MD
												TBAMS	TBCMR	TBI	MR
GPTMCTL,	, type R/W,	offset 0x0	0C, reset 0	×0000.0000) (see page	276)						TBAMS	TBCMR	TBI	MR
			0C, reset 0				TOFAL				DTOEN				
	TBPWML	TBOTE		TBE	/ENT	TBSTALL	TBEN		TAPWML	ТАОТЕ	RTCEN		TBCMR /ENT	TBI	
	TBPWML	TBOTE	0C, reset 0: 18, reset 0x	TBE	/ENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN				
	TBPWML	TBOTE		TBE	/ENT (see page	TBSTALL 279)			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
	TBPWML	TBOTE		TBE	/ENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN				TAEN
GPTMIMR,	TBPWML	TBOTE offset 0x0		TBE\ <0000.0000	/ENT (see page CBEIM	TBSTALL 279) CBMIM			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMR,	TBPWML	TBOTE offset 0x0	18, reset 0x	TBE\ <0000.0000	/ENT (see page CBEIM	TBSTALL 279) CBMIM			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMR,	TBPWML	TBOTE offset 0x0	18, reset 0x	TBE\ <0000.0000	/ENT (see page CBEIM	TBSTALL 279) CBMIM 281)			TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMR, GPTMRIS,	TBPWML type R/W, type RO, o	TBOTE offset 0x0	18, reset 0x	TBE\ <0000.0000 0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS	TBSTALL 279) CBMIM 281) CBMRIS	ТВТОІМ		TAPWML	TAOTE	RTCEN	TAE	/ENT CAEIM	TASTALL	TAEN
GPTMIMR, GPTMRIS,	TBPWML type R/W, type RO, o	TBOTE offset 0x0	18, reset 0x C, reset 0x0	TBE\ <0000.0000 0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS	TBSTALL 279) CBMIM 281) CBMRIS	ТВТОІМ		TAPWML	TAOTE	RTCEN	TAE	/ENT CAEIM	TASTALL	TAEN
GPTMIMR, GPTMRIS,	TBPWML type R/W, type RO, o	TBOTE offset 0x0	18, reset 0x C, reset 0x0	TBE\ <0000.0000 0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS (see page 2	TBSTALL 279) CBMIM 881) CBMRIS 82)	ТВТОІМ		TAPWML	TAOTE	RTCEN	RTCIM	ZAEIM CAEIS	TASTALL	TAEN
GPTMIMR, GPTMRIS, GPTMMIS,	TBPWML type R/W, type RO, o	TBOTE offset 0x0 iffset 0x010	18, reset 0x C, reset 0xC 0, reset 0xC	TBE\ (0000.0000 0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS	TBSTALL 279) CBMIM 881) CBMRIS 82) CBMMIS	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	ZAEIM CAEIS	CAMIN	TAEN
GPTMIMR, GPTMRIS, GPTMMIS,	TBPWML type R/W, type RO, o	TBOTE offset 0x0 iffset 0x010	18, reset 0x C, reset 0x0	TBE\ (0000.0000 0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS	TBSTALL 279) CBMIM 881) CBMRIS 82) CBMMIS	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	ZAEIM CAEIS	CAMIN	TAEN
GPTMIMR, GPTMRIS, GPTMMIS,	TBPWML type R/W, type RO, o	TBOTE offset 0x0 iffset 0x010	18, reset 0x C, reset 0xC 0, reset 0xC	TBE\ (0000.0000 0000.0000 (0000.0000 (/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page	TBSTALL 279) CBMIM 881) CBMRIS 82) CBMMIS 283)	TBTOIM		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOII TATOR TATOR
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR,	TBPWML type R/W, type RO, o type RO, o	TBOTE offset 0x0 offset 0x011 offset 0x02 offset 0x02	18, reset 0x C, reset 0x(0, reset 0x(24, reset 0)	TBE\ <0000.0000 0000.0000 (0000.0000 (0000.00000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS (see page (CBECINT	CBMMIS 283) CBMCINT	TBTOIM		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOII TATOR TATOR
GPTMIMR, GPTMRIS, GPTMMIS, GPTMICR,	TBPWML type R/W, type RO, o type RO, o	TBOTE offset 0x0 offset 0x011 offset 0x02 offset 0x02	18, reset 0x C, reset 0xC 0, reset 0xC	TBE\ <0000.0000 0000.0000 (0000.0000 (0000.00000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS (see page (CBECINT	CBMMIS 283) CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOMIS		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOII TATOR TATOR
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR,	TBPWML type R/W, type RO, o type RO, o	TBOTE offset 0x0 offset 0x011 offset 0x02 offset 0x02	18, reset 0x C, reset 0x(0, reset 0x(24, reset 0)	TBE\ <0000.0000 0000.0000 (0000.0000 (0000.00000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS (see page (CBECINT	CBMMIS 283) CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TATOR
GPTMINR, GPTMRIS, GPTMIIS, GPTMICR, GPTMICR,	TBPWML type R/W, type RO, o type RO, c type W1C, R, type R/M	TBOTE offset 0x01 offset 0x01 offset 0x02 offset 0x02	18, reset 0x C, reset 0xC 0, reset 0xC 24, reset 0x 24, reset 0x	TBE\ (0000.0000) 0000.0000 () 0000.0000 () x0000.0000 () x0000.0000	/ENT (see page CBEIM (see page 2 CBERIS (see page CBEMIS) (see page CBECINT FF (see pa	TBSTALL 279) CBMIM 281) CBMRIS 282) CBMRIS 283) CBMCINT ge 285)	TBTOIM TBTORIS TBTOMIS TBTOCINT		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TATOR
GPTMINR, GPTMRIS, GPTMIIS, GPTMICR, GPTMICR,	TBPWML type R/W, type RO, o type RO, c type W1C, R, type R/M	TBOTE offset 0x01 offset 0x01 offset 0x02 offset 0x02	18, reset 0x C, reset 0x(0, reset 0x(24, reset 0)	TBE\ (0000.0000) 0000.0000 () 0000.0000 () x0000.0000 () x0000.0000	/ENT (see page CBEIM (see page 2 CBERIS (see page CBEMIS) (see page CBECINT FF (see pa	TBSTALL 279) CBMIM 281) CBMRIS 282) CBMRIS 283) CBMCINT ge 285)	TBTOIM TBTORIS TBTOMIS TBTOCINT		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOII TATOR TATOR
GPTMINR, GPTMRIS, GPTMICR, GPTMICR,	TBPWML type R/W, type RO, o type RO, c type W1C, R, type R/M	TBOTE offset 0x01 offset 0x01 offset 0x02 offset 0x02	18, reset 0x C, reset 0xC 0, reset 0xC 24, reset 0x 24, reset 0x	TBE\ (0000.0000) 0000.0000 () 0000.0000 () x0000.0000 () x0000.0000	/ENT (see page CBEIM (see page 2 CBERIS (see page CBEMIS) (see page CBECINT FF (see pa	TBSTALL 279) CBMIM 281) CBMRIS 282) CBMRIS 283) CBMCINT ge 285)	TBTOIM TBTORIS TBTOMIS TBTOCINT TAII TAII		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOII TATOR TATOR
GPTMINR, GPTMRIS, GPTMIIS, GPTMICR, GPTMICR,	TBPWML type R/W, type RO, o type RO, c type W1C, R, type R/M	TBOTE offset 0x01 offset 0x01 offset 0x02 offset 0x02	18, reset 0x C, reset 0xC 0, reset 0xC 24, reset 0x 24, reset 0x	TBE\ (0000.0000) 0000.0000 () 0000.0000 () x0000.0000 () x0000.0000	/ENT (see page CBEIM (see page 2 CBERIS (see page CBEMIS) (see page CBECINT FF (see pa	TBSTALL 279) CBMIM 281) CBMRIS 282) CBMRIS 283) CBMCINT ge 285)	TBTOIM TBTORIS TBTOMIS TBTOCINT TAII TAII		TAPWML	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOII TATOR TATOR
GPTMINR, GPTMRIS, GPTMICR, GPTMICR, GPTMTAIL	TBPWML type R/W, type R/O, c type RO, c type W1C, R, type R/A R, type R/A	TBOTE offset 0x0 iffset 0x011 offset 0x02 offset 0x02 N, offset 0x0	18, reset 0x C, reset 0xC 0, reset 0xC 24, reset 0x 24, reset 0x	TBE\ (0000.0000 0000.0000 (0000.0000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page CBECINT FF (see pa	TBSTALL 279) CBMIM 881) CBMRIS 82) CBMRIS 283) CBMCINT ge 285) ge 286)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAIL TAIL TAIL		Image: Control of the second	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TATOR
GPTMINR, GPTMRIS, GPTMICR, GPTMICR, GPTMTAIL	TBPWML type R/W, type R/O, c type RO, c type W1C, R, type R/A R, type R/A	TBOTE offset 0x0 iffset 0x011 offset 0x02 offset 0x02 N, offset 0x0	18, reset 0x C, reset 0xC 0, reset 0xC 24, reset 0x x028, reset x02C, reset	TBE\ (0000.0000 0000.0000 (0000.0000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page CBECINT FF (see pa	TBSTALL 279) CBMIM 881) CBMRIS 82) CBMRIS 283) CBMCINT ge 285) ge 286)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAII TAII TAII		TAPWML I <td>TAOTE</td> <td>RTCEN</td> <td>TAEN RTCIM RTCRIS RTCMIS</td> <td>CAEIM CAEIM CAERIS CAEMIS</td> <td>CAMIN</td> <td>TAEN TATOII TATOR TATOR</td>	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOII TATOR TATOR
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR, GPTMTAIL	TBPWML type R/W, type R/O, c type RO, c type W1C, R, type R/A R, type R/A	TBOTE offset 0x0 iffset 0x011 offset 0x02 offset 0x02 N, offset 0x0	18, reset 0x C, reset 0xC 0, reset 0xC 24, reset 0x x028, reset x02C, reset	TBE\ (0000.0000 0000.0000 (0000.0000 (0000.0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS) (see page CBECINT FF (see pa	TBSTALL 279) CBMIM 881) CBMRIS 82) CBMRIS 283) CBMCINT ge 285) ge 286)	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAII TAII TBI	LRL LRL	Image: Control of the section of the sectio	TAOTE	RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TATOR
GPTMINR, GPTMRIS, GPTMIS, GPTMICR, GPTMTAIL GPTMTBIL	TBPWML type R/W, type R/, o type RO, o type RO, c type W1C, R, type R/L R, type R/L R, type R/L	TBOTE offset 0x01 offset 0x011 offset 0x02 offset 0x02 N, offset 0x0 N, offset 0x0	18, reset 0x C, reset 0xC 0, reset 0xC 24, reset 0x x028, reset x02C, reset	TBE\ (0000.0000) 0000.0000 () 0000.0000 () 00000 () 00000 () 00000 () 000000 () 0000 () 00000 () 000000 () 0000 () 00000 () 0000 () 0000 () 0000 () 0000 () 00000 () 0000 () 0000 () 00000 () 0000 () 00000 () 0000000 ()0000 ()0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS 0 (see page CBECINT FF (see pa FF (see pa	CBMMIS 283) CBMCINT 283) CBMCINT ge 285) ge 286) cee page 28	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAII TAII TAII TAII TAI	LRL LRL	Image: Control of the sector of the		RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TATOR
GPTMINR, GPTMRIS, GPTMIS, GPTMICR, GPTMTAIL GPTMTBIL	TBPWML type R/W, type R/, o type RO, o type RO, c type W1C, R, type R/L R, type R/L R, type R/L	TBOTE offset 0x01 offset 0x011 offset 0x02 offset 0x02 N, offset 0x0 N, offset 0x0	18, reset 0x 18, reset 0x C, reset 0x 0, reset 0x 24, reset 0x 24, reset 0x x022C, reset x022C, reset fset 0x030,	TBE\ (0000.0000) 0000.0000 () 0000.0000 () 00000 () 00000 () 00000 () 000000 () 0000 () 00000 () 000000 () 0000 () 00000 () 0000 () 0000 () 0000 () 0000 () 00000 () 0000 () 0000 () 00000 () 0000 () 00000 () 0000000 ()0000 ()0000000000	/ENT (see page CBEIM (see page 2 CBERIS see page 2 CBEMIS 0 (see page CBECINT FF (see pa FF (see pa	CBMMIS 283) CBMCINT 283) CBMCINT ge 285) ge 286) cee page 28	TBTOIM TBTORIS TBTOMIS TBTOCINT TBTOCINT TAII TAII TAII TAII TAI	LRL LRL	TAPWML I <td></td> <td>RTCEN</td> <td>TAEN RTCIM RTCRIS RTCMIS</td> <td>CAEIM CAEIM CAERIS CAEMIS</td> <td>CAMIN</td> <td>TAEN TATOIN TATOR TATOR</td>		RTCEN	TAEN RTCIM RTCRIS RTCMIS	CAEIM CAEIM CAERIS CAEMIS	CAMIN	TAEN TATOIN TATOR TATOR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPTMTA	PR, type R/\	N offset 0	x038 reset	0x0000 000)0 (see nac	e 289)			1					1	
•••••••					(000 pag	0 200)									
											TAF	PSR			
GPTMTB	PR, type R/	W, offset 0	x03C, reset	t 0x0000.00	00 (see pag	ge 290)									
				1											
											IBH	PSR			
GPTMTA	PMR, type F	R/W, offset	0x040, res	et 0x0000.0	000 (see pa	age 291)									
				1											
											TAD	l SMR			
											IAP	SMR			
GPTMTB	PMR, type F	R/W, offset	0x044, res	et 0x0000.0	000 (see p	age 292)									
											TRP	SMR			
											101				
GPTMTA	R, type RO,	offset 0x04	48, reset 0)	xFFFF.FFFF	(see page	293)									
							TA	RH							
							TA	RL							
OPTATO	D from DC	offer-1 0-0	10		(000	204)									
GPINIB	R, type RO,	Unset 0x0	40, reset 0		 (see page 	294)									
							TB	RL							
Matek															
	dog Time														
Base 0x	4000.0000														
WDTLOA	D, type R/M	l, offset 0x	000, reset (0xFFFF.FFF	F (see pag	e 299)									
							דחש	Load							
							WDT	Load							
WDTVAL	UE, type RC), offset 0x	004, reset	0xFFFF.FFF	F (see pag	e 300)									
							WDT	Value							
							WDI	Value							
WDTCTL	, type R/W,	offset 0x00)8, reset 0x	0000.0000 ((see page 3	801)									
														RESEN	INTEN
														REOLIN	
WDTICR,	type WO, o	offset 0x000	C, reset - (s	see page 30	2)										
							WDT	IntClr							
							WDT	IntClr							
WDTDIO	t			000 0000 /-		2									
WDTRIS,	type RO, of	rtset 0x010	, reset 0x0	000.0000 (s	ee page 30	3)									
															WDTRIS
WDTMIE	, type RO, o	ffset 0v014	reent for	000 0000 /0	ee page 20)4)									
110 1 1013,	, ype (0, 0		, 16361 020		ice page st	· · ·)									
															WDTMIS
WDTTES	T, type R/W,	offset 0x4	18, reset 0	x0000.0000	(see page	305)									
	,		.,			,									
							STALL								
WDTLOC	K, type R/W	l, offset 0x	C00, reset	0x0000.000	0 (see pag	e 306)									
							۲ח/۸/	Lock							
							WD1	Lock							
WDTPeri	phID4, type	RO, offset	0xFD0, res	set 0x0000.	0000 (see p	age 307)									
											D 1				
											PI	D4			
WDTPeri	phID5, type	RO, offset	0xFD4, res	set 0x0000.	0000 (see p	age 308)									
											ים	D5			
											PI	D5			
WDTPeri	phID6, type	RO, offset	0xFD8, res	set 0x0000.	0000 (see p	age 309)									
											PI	I D6			
								1			PI	50			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WDTPerip	hID7, type	RO, offset	0xFDC, res	set 0x0000.	. 0000 (see p	age 310)									
											PI	D7			
WDTPerip	hID0, type	RO, offset	0xFE0, res	et 0x0000.	0005 (see p	age 311)									
			0		0040 (PI	D0			
WDTPeripi	niD1, type	RO, offset	0xFE4, res	et 0x0000.0	0018 (see p	age 312)									
											PI	 D1			
WDTPeript	hID2, type	RO, offset	0xFE8, res	et 0x0000.0	0018 (see p	age 313)									
		,				g,									
											PI	D2			
WDTPerip	hID3, type	RO, offset	0xFEC, res	et 0x0000.	0001 (see p	age 314)		1							
											PI	D3			
WDTPCelll	ID0, type R	O, offset ()xFF0, reset	t 0x0000.00	DOD (see pa	ge 315)									
											CI	D0			
WDTPCell	ID1, type R	O, offset (0xFF4, reset	t 0x0000.00	0F0 (see pa	ge 316)									
											~	D1			
WDTDCall		0				217)					CI	D1			
VUTFCell	iDz, type k	o, onset t	0xFF8, reset		JUS (see pa	Je 317)									
											CI	D2			
WDTPCell	ID3. type R	O. offset ()xFFC, rese	t 0x0000.0	0B1 (see pa	ae 318)		1							
	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,				.9									
											CI	D3			
		al Conv	erter (AD)C)											
Base 0x40															
ADCACIS	S, type R/V	V, offset U	x000, reset	0x0000.000	uu (see page	e 328)									
												ASEN3	ASEN2	ASEN1	ASEN0
	vne RO. off		, reset 0x00	00 0000 (s	ee nage 320	3)						AGENG	AGENZ	AGEIT	AGEINO
, . <u></u> ee,	, po 110, oli		,		oo pago oza	- ,									
												INR3	INR2	INR1	INR0
ADCIM, typ	pe R/W, off	set 0x008,	, reset 0x00	00.0000 (se	ee page 330)									
												MASK3	MASK2	MASK1	MASK0
ADCISC, ty	ype R/W1C	, offset 0x	00C, reset (0x0000.000	0 (see page	e 331)									
												IN3	IN2	IN1	IN0
ADCOSTA	T, type R/W	1C, offset	t 0x010, res	et 0x0000.(0000 (see pa	age 332)									
												01/2	01/0	01/1	01/0
	tune D/M	offeret Co	014 #0554 2	×0000 000	0 (000 705-	222)						OV3	OV2	OV1	OV0
	, type R/W	, onset ux	014, reset 0	.0000.000	v (see page	333)									
	EN	13			EN	<i>л</i> 2			FI	V1			FI	M0	
ADCUSTAT			0x018, rese	et 0x0000.0										-	
	, -, -, -, -, -, -, -, -, -, -, -, -, -,	-,			(666 pe	3- 000)									
												UV3	UV2	UV1	UV0
ADCSSPRI	I, type R/W	, offset 0x	.020, reset 0)x0000.321	0 (see page	337)		1					1	1	
		S	S3			S	S2			S	51			s	S0

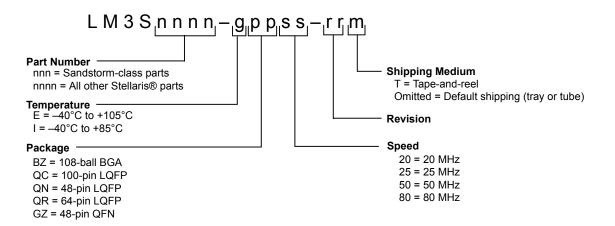
www.Bburnts Production Data m/TI

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCPSSI	I, type WO, o	offset 0x02	8, reset - (s	see page 33	9)										
					·										
												SS3	SS2	SS1	SS0
ADCSAC,	, type R/W,	offset 0x03	0, reset 0x	0000.0000 (see page (340)				-					
														AVG	
ADCSSM	IUX0, type R	/W, offset	0x040, rese	et 0x0000.00	000 (see pa	age 341)									
		MUX7				MUX6				MUX5				MUX4	
		MUX3				MUX2				MUX1				MUX0	
	TL0, type R						50	705	155	ENDE	55		154		54
TS7 TS3	IE7 IE3	END7 END3	D7 D3	TS6 TS2	IE6 IE2	END6 END2	D6 D2	TS5 TS1	IE5 IE1	END5 END1	D5 D1	TS4 TS0	IE4 IE0	END4 END0	D4 D0
	IFO0, type R					ENDZ	DZ	131	IEI	ENDT	DI	130	IEU	ENDO	DU
4003311	n oo, type r	o, onser o	x040, 1656	i - (see page	; 540)										
										DA	TA				
ADCSSFI	IFO1, type R	O, offset 0	x068, reset	t - (see page	e 346)										
										DA	TA				
ADCSSFI	IFO2, type R	O, offset 0	x088, reset	t - (see page	e 346)										
										DA	TA				
ADCSSFI	IFO3, type R	O, offset 0	x0A8, rese	t - (see pag	e 346)										
										DA	TA				
ADCSSF	STAT0, type	RO, offset	0x04C, res	set 0x0000.(0100 (see	page 347)									
			E (1),1				EMDTY						TE		
400000	CTATA fuma	DO offect	FULL		100 (000	247)	EMPTY			PTR			16	Ϋ́R	
ADCSSF	STAT1, type	RO, offset	0X06C, res	set uxuuuu.	J100 (see	page 347)									
			FULL				EMPTY		HE	PTR			TE	۲R	
ADCSSE	STAT2, type	RO, offset		set 0x0000.0	0100 (see)	page 347)	2.001 1 1								
	• <u>_</u> , tjpe					page e,									
			FULL				EMPTY		HF	PTR			TF	νTR	
ADCSSF	STAT3, type	RO, offset	0x0AC, re	set 0x0000.	0100 (see	page 347)									
			FULL				EMPTY		HF	PTR			TF	۲R	
ADCSSM	IUX1, type R	/W, offset	0x060, rese	et 0x0000.00	000 (see pa	age 348)									
		MUX3				MUX2				MUX1				MUX0	
ADCSSM	IUX2, type R	/W, offset	0x080, rese	et 0x0000.00	000 (see pa	age 348)									
		MUX3				MUX2				MUX1				MUX0	
ADCSSC	TL1, type R	W, offset 0	x064, rese	t 0x0000.00	00 (see pa	ige 349)									
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END4	D1	Teo	IEO	ENDO	DO
							UZ	191	IE1	END1	D1	TS0	IE0	END0	D0
ADC 550	TL2, type R	vv, onset u	1,004, rese	. 0.0000.00	uu (see pa	iye 349)									
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
	IUX3, type R						01	.01	121		D1	1.00			50
		,				- 30 001)									
ADCOOM															

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCSSCT	L3. type R/	W. offset ()x0A4. reset	t 0x0000.0002	2 (see pa	ae 352)									
	, ., .	,	,		- (.g,									
												TS0	IE0	END0	DO
												150	IEU	ENDU	D0
ADCTMLB	, type R/W	, offset 0x'	100, reset 0:	x0000.0000 (s	see page	353)									
															LB
Univers	al Asyn	chronou	us Receiv	vers/Trans	smitter	s (UAR	ſs)								
UART0 ba															
UART1 b	ase: 0x40	00.D000													
UARTDR, 1	type R/W, o	offset 0x00	0, reset 0x0	0000.0000 (se	e page 3	61)									
				OE	BE	PE	FE				DA	ATA			
UARTRSR	UARTECF	. type RO.	offset 0x00	04, reset 0x00	000.000	(Reads) (s	ee page 36	3)							
		-, - , -,				(-,							
												05	DE	DE	
												OE	BE	PE	FE
UARTRSR	UARTECF	k, type WO	, offset 0x0	04, reset 0x0	000.0000) (Writes) (see page 36	53)							
											DA	ATA			
UARTFR, t	type RO, of	ffset 0x018	3, reset 0x00	000.0090 (see	page 36	65)									
								TXFE	RXFF	TXFF	RXFE	BUSY			
UARTIBRE), type R/W	/. offset 0x	024. reset 0	x0000.0000 (see page	e 367)		1							
	.,.,,	,													
							יוט	/INT							
UARTFBR	D, type R/V	V, offset 0	x028, reset	0x0000.0000	(see pag	e 368)									
												DIVE	RAC		
UARTLCR	H, type R/V	V, offset 0	x02C, reset	0x0000.0000	(see pag	ge 369)									
								SPS	WI	.EN	FEN	STP2	EPS	PEN	BRK
UARTCTI	type R/W	offset 0x0	30. reset 0x	. .0000.0300 (s	ee nage	371)									
UAILI UIL,	, type ram,	onset oxo		(3	ee page	011)									
						DVE		1.55							LIADTEN
						RXE	TXE	LBE							UARTEN
UARTIFLS	, type R/W	, offset 0x0	034, reset 0:	x0000.0012 (s	see page	373)									
											RXIFLSEL			TXIFLSEL	
UARTIM, t	ype R/W, o	ffset 0x03	8, reset 0x0	000.0000 (see	e page 37	75)									
					OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM				
	type RO	ffset 0v02	C reset for	0000.000F (se				1							
5711113,	type KO, C		5, 16361 UXL		ic page a										
					05515										
					OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS				
UARTMIS,	type RO, o	offset 0x04	0, reset 0x0	0000.0000 (se	e page 3	78)									
					OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS				
UARTICR,	type W1C,	offset 0x0)44, reset 0)	x0000.0000 (s	ee page	379)		•							
					OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC				
	abiD4 to a	PO -#		0.01 0.0000 0.0			I LIU		KIIO	1710	INNIO				
UARIPERI	phiD4, type	RU, Offse	a uxrdu, re	set 0x0000.00	JUU (See	page 381)									
											PI	D4			
															-

04			00	07	00	05	04	00	00	04	00	10	40	47	40
31 15	30 14	29 13	28 12	27	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0
	phID5, type						U	'	v		-		-	•	0
	. , cype	, 51136				- 230 002)									
											P	I ID5			
UARTPeri	phID6, type	RO, offse	et 0xFD8, re	set 0x0000).0000 (see	page 383)		1							
											P	ID6			
UARTPeri	phID7, type	RO, offse	et 0xFDC, re	eset 0x000	0.0000 (see	page 384)									
											P	ID7			
UARTPeri	phID0, type	RO, offse	et 0xFE0, re	set 0x0000	0.0011 (see	page 385)						1			
	nhiD4 tuna	DO offer		0.0000	0000 (222	206)					P	ID0			
UARTPeri	phID1, type	RU, OTISE	n uxr⊑4, ľe	Set 0X0000	.JUUU (SEE	рауе 386)									
											P	ID1			
UARTPeri	phID2, type	RO, offse	et 0xFE8, re	set 0x0000	.0018 (see	page 387)		I							
			.,		(
											P	ID2			
UARTPeri	phID3, type	RO, offse	et 0xFEC, re	eset 0x000	0.0001 (see	page 388)									
											P	ID3			
UARTPCe	IIID0, type I	RO, offset	0xFF0, res	et 0x0000.	000D (see p	age 389)									
											C	ID0			
UARTPCe	IIID1, type I	RO, offset	0xFF4, res	et 0x0000.0	00F0 (see p	age 390)									
											0				
	IIID2, type I	PO offect	OvEE8 ros		005 (see p	200 301)					C	ID1			
UANTECE	indz, type i	NO, UISEL	UXI I 0, IES		1003 (see p	age 591)		1							
											С	I ID2			
UARTPCe	IIID3, type I	RO, offset	0xFFC, res	iet 0x0000.	00B1 (see p	age 392)		I							
						<u> </u>									
											С	ID3			
Synchro	onous S	erial Inte	erface (S	SSI)											
-	e: 0x4000		•	,											
SSICR0, ty	ype R/W, of	fset 0x000	, reset 0x0	000.0000 (s	ee page 40	5)									
				CR				SPH	SPO	FF	RF		D	SS	
SSICR1, ty	ype R/W, of	fset 0x004	, reset 0x0	000.0000 (s	see page 40	7)									
												0.000		005	1.514
00100	D/14/ /	at 0-000				\						SOD	MS	SSE	LBM
ວວເມR, typ	pe R/W, offs	set UXUO8,	reset ux00	uu.uuu0 (se	e page 409)									
							D4	 ATA							
SSISR. tvr	pe RO, offs	et 0x00C. I	reset 0x000	0.0003 (se	e page 410)		Ur.								
	,,														
											BSY	RFF	RNE	TNF	TFE
SSICPSR,	type R/W, o	offset 0x01	10, reset 0x	0000.0000	(see page 4	12)		1			1	1	1	I	
					-										
											CPS	DVSR			
SSIIM, typ	e R/W, offs	et 0x014, r	reset 0x000	0.0000 (se	e page 413)										
												TXIM	RXIM	RTIM	RORIM

www.BDJ Internets Production Data


31	30	29	20	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	28 12	27 11	26 10	9	8	7	6	21 5	4	3	2	17	0
							0	1	0	5	4	5	2		0
551K15, typ	be RO, ons	et 0x016, 1	reset 0x000	0.0006 (See	e page 415)			1				1			
												TYPIO	DVDIO	DTDIO	DODDI
												TXRIS	RXRIS	RTRIS	RORRIS
SSIMIS, typ	be RO, offs	set 0x01C,	reset 0x000	00.0000 (se	e page 416)						1			
												TXMIS	RXMIS	RTMIS	RORMIS
SSIICR, typ	be W1C, of	fset 0x020	, reset 0x00	000.0000 (s	ee page 41	7)									
														RTIC	RORIC
SSIPeriphli	D4, type R	O, offset 0	xFD0, reset	t 0x0000.00)00 (see pa	ge 418)									
											P	ID4			
SSIPeriphli	D5, type R	O, offset 0	xFD4, reset	t 0x0000.00	000 (see pa	ge 419)									
											Р	ID5			
SSIPeriphli	D6, type R	O, offset 0	xFD8, reset	t 0x0000.00	000 (see pa	ge 420)									
											Р	ID6			
SSIPeriphli	D7, type R	O, offset 0	xFDC, rese	t 0x0000.0	000 (see pa	ge 421)		1							
			,												
											Р	I ID7			
SSIPeriphil	D0. type R	O. offset 0	xFE0, reset	0x0000.00	122 (see na	ne 422)		1							
	20 , 1) P 0 11	0,0			(000 pa;	jo . <u></u>)									
											P	I ID0			
SSIPorinhil	D1 type P		xFE4, reset		00 (500 02)	123)									
Sorenpill	от, туре к	o, onser o	AI L4, IESE		ioo (see pa	ye 423)									
												ID1			
	D0 6	0 - # + 0		0	40 (404)					F				
SSIPeriphi	D2, type R	O, offset u	xFE8, reset	UXUUUU.UU	18 (see pa	ge 424)		1				1			
											Р	ID2			
SSIPeriphli	D3, type R	O, offset 0	xFEC, rese	t 0x0000.00	001 (see pa	ge 425)						1			
											P	ID3			
SSIPCelIID	0, type RO	, offset 0x	FF0, reset (0x0000.000	D (see pag	e 426)									
											С	ID0			
SSIPCeIIID	1, type RO	, offset 0x	FF4, reset (x0000.00F	0 (see page	e 427)									
											С	ID1			
SSIPCellID	2, type RO	, offset 0x	FF8, reset (0x0000.000	5 (see page	e 428)									
											С	ID2			
SSIPCellID	3, type RO	, offset 0x	FFC, reset	0x0000.00E	31 (see pag	e 429)									
											С	ID3			
Inter_Int	ourstad	Circuit	(I ² C) Inte	orfaco				1							
		Sircuit	(10) Inte	liace											
I ² C Mast		0000													
I2C 0 base															
I2CMSA, ty	vpe R/W, of	tset 0x000	, reset 0x00	000.0000											
											SA				R/S

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	type RO, off			1						-					
-,	- 3 , , -			_											
									BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
2CMCS,	type WO, of	fset 0x004	, reset 0x0	000.0000 (V	Vrites)										
												ACK	STOP	START	RUN
2CMDR,	type R/W, of	ffset 0x008	3, reset 0x0	0000.0000											
											DA	TA			
2CMTPR	R, type R/W, o	offset 0x00	OC, reset 0	x0000.0001		-	-								
												TPR			
2CMIMR	, type R/W, o	offset 0x01	0, reset 0x	0000.0000											
															IM
2CMRIS,	, type RO, of	fset 0x014	, reset 0x0	000.000											
															RIS
2CMMIS	, type RO, of	fset 0x018	8, reset 0x0	000.0000											
															MIS
2CMICR	, type WO, o	ffset 0x01	C, reset 0x	0000.0000											
															10
															IC
IZCINICR,	type R/W, of	nset uxu2t), reset uxu												
										SFE	MFE				LPBK
Intor Ir	ntegrated	Circuit	(l^2C) Int	orfaco											
l ² C Sla				enace											
I-C SIA		Circuit	(1 C) III												
120 0 ha			(1 0) III												
	ase: 0x4002	2.0000													
		2.0000													
	ase: 0x4002	2.0000										OAR			
I2CSOAR	ase: 0x4002 R, type R/W, o	2.0000 offset 0x80	00, reset 0x	<0000.0000								OAR			
I2CSOAR	ase: 0x4002	2.0000 offset 0x80	00, reset 0x	<0000.0000								OAR			
2CSOAR	ase: 0x4002 R, type R/W, o	2.0000 offset 0x80	00, reset 0x	<0000.0000								OAR	FBR	TREQ	RREQ
I2CSOAR	ase: 0x4002 R, type R/W, o R, type RO, o	2.0000 offset 0x80	00, reset 0x 4, reset 0x(<0000.0000	Reads)							OAR	FBR	TREQ	RREQ
I2CSOAR	ase: 0x4002 R, type R/W, o	2.0000 offset 0x80	00, reset 0x 4, reset 0x(<0000.0000	Reads)							OAR	FBR	TREQ	RREQ
2CSOAR	ase: 0x4002 R, type R/W, o R, type RO, o	2.0000 offset 0x80	00, reset 0x 4, reset 0x(<0000.0000	Reads)							OAR	FBR	TREQ	RREQ
I2CSOAR	ase: 0x4002 R, type R/W, o R, type RO, o	2.0000 offset 0x80 ffset 0x80 ffset 0x80	00, reset 0x 4, reset 0x(4, reset 0x	<pre><0000.0000 </pre>	Reads)							OAR	FBR	TREQ	
I2CSOAR	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o	2.0000 offset 0x80 ffset 0x80 ffset 0x80	00, reset 0x 4, reset 0x(4, reset 0x	<pre><0000.0000 </pre>	Reads)							OAR	FBR	TREQ	
I2CSOAR	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o	2.0000 offset 0x80 ffset 0x80 ffset 0x80	00, reset 0x 4, reset 0x(4, reset 0x	<pre><0000.0000 </pre>	Reads)								FBR	TREQ	
2CSOAF 2CSCSR 2CSCSR 2CSDR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o	2.0000 offset 0x80 ffset 0x804 ffset 0x808	00, reset 0x 4, reset 0x(4, reset 0x0 , reset 0x0	<pre></pre>	Reads)						DA		FBR	TREQ	
I2CSOAR I2CSCSR I2CSCSR I2CSDR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o type R/W, of	2.0000 offset 0x80 ffset 0x804 ffset 0x808	00, reset 0x 4, reset 0x(4, reset 0x0 , reset 0x0	<pre></pre>	Reads)								FBR	TREQ	
2CSOAF 2CSCSR 2CSCSR 2CSDR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o type R/W, of	2.0000 offset 0x80 ffset 0x804 ffset 0x808	00, reset 0x 4, reset 0x(4, reset 0x0 , reset 0x0	<pre></pre>	Reads)						DA		FBR	TREQ	
I2CSOAR I2CSCSR I2CSCSR I2CSDR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o type R/W, of	2.0000 offset 0x80 ffset 0x80 ffset 0x80 fset 0x808	00, reset 0x 4, reset 0x 4, reset 0x 7, reset 0x C, reset 0x	<pre></pre>	Reads)						DA		FBR	TREQ	DA
I2CSOAR I2CSCSR I2CSCSR I2CSDR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o type R/W, of	2.0000 offset 0x80 ffset 0x80 ffset 0x80 fset 0x808	00, reset 0x 4, reset 0x 4, reset 0x 7, reset 0x C, reset 0x	<pre></pre>	Reads)								FBR	TREQ	DA
2CSOAR 2CSCSR 2CSCSR 2CSDR, 2CSIMR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o type R/W, of	2.0000 offset 0x80 ffset 0x80 ffset 0x80 fset 0x808	00, reset 0x 4, reset 0x 4, reset 0x 7, reset 0x C, reset 0x	<pre></pre>	Reads)								FBR	TREQ	DA
2CSOAR 2CSCSR 2CSCSR 2CSDR, 2CSIMR, 2CSIMR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o type R/W, of	2.0000 offset 0x80 ffset 0x804 ffset 0x808 ffset 0x808 ffset 0x808	00, reset 0x 4, reset 0x0 4, reset 0x0 7, reset 0x0 7, reset 0x0	<pre></pre>	Reads)								FBR	TREQ	DA
2CSOAR 2CSCSR 2CSCSR 2CSDR, 2CSIMR, 2CSIMR,	ase: 0x4002 R, type R/W, o R, type RO, o R, type WO, o type R/W, o type R/W, o type RO, off	2.0000 offset 0x80 ffset 0x804 ffset 0x808 ffset 0x808 ffset 0x808	00, reset 0x 4, reset 0x0 4, reset 0x0 7, reset 0x0 7, reset 0x0	<pre></pre>	Reads)								FBR	TREQ	DA

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					10	9	0	1	0	5	4	3	2	1	0
I2CSICR,	type WO, o	ffset 0x818	, reset 0x0	000.0000				1							
															DATAIC
Analog) Compai	ator													
	4003.C000														
ACMIS, ty	pe R/W1C,	offset 0x00	0, reset 0>	<0000.0000	(see page 4	470)									
															INO
ACRIS. tv	/pe RO, offs	et 0x004. re	eset 0x000	1 0.0000 (see	e page 471)			1							
,, ., .,	,po, o				page)										
															INO
	6	- # 4 000	0		((70)									INU
ACINIEN	, type R/W,	offset uxuu	8, reset ux		(see page 4	+72)									
															IN0
ACREFC	TL, type R/V	V, offset 0x	010, reset	0x0000.000	0 (see page	e 473)	_							_	
						EN	RNG						VF	REF	
ACSTATO	, type RO, o	offset 0x020), reset 0x(0000.0000 (see page 4	74)									
														OVAL	
ACCTL0.	type R/W, c	ffset 0x024	. reset 0x0	0000.0000 (see page 4	75)		1							
	.,, e		,			- /									
				TOEN	194	RCP		TSLVAL	тс	EN	ISLVAL	19	EN	CINV	
					ASI	\UF		ISLVAL	18		ISLVAL	15		CIINV	

C Ordering and Contact Information

C.1 Ordering Information

Table C-1. Part Ordering Information

Orderable Part Number	Description
LM3S808-IQN50-C2	Stellaris [®] LM3S808 Microcontroller Industrial Temperature 48-pin LQFP
LM3S808-IQN50-C2T	Stellaris LM3S808 Microcontroller Industrial Temperature 48-pin LQFP Tape-and-reel
LM3S808-EQN50-C2	Stellaris LM3S808 Microcontroller Extended Temperature 48-pin LQFP
LM3S808-EQN50-C2T	Stellaris LM3S808 Microcontroller Extended Temperature 48-pin LQFP Tape-and-reel
LM3S808-IGZ50-C2	Stellaris LM3S808 Microcontroller Industrial Temperature 48-pin QFN
LM3S808-IGZ50-C2T	Stellaris LM3S808 Microcontroller Industrial Temperature 48-pin QFN Tape-and-reel
LM3S808-EGZ50-C2	Stellaris LM3S808 Microcontroller Extended Temperature 48-pin QFN
LM3S808-EGZ50-C2T	Stellaris LM3S808 Microcontroller Extended Temperature 48-pin QFN Tape-and-reel

C.2 Part Markings

The Stellaris microcontrollers are marked with an identifying number. This code contains the following information:

- The first line indicates the part number. In the example figure below, this is the LM3S6965.
- In the second line, the first seven characters indicate the temperature, package, speed, and revision. In the example below, this is an Industrial temperature (I), 100-pin LQFP package (QC), 50-MHz (50), revision A2 (A2) device.
- The remaining characters contain internal tracking numbers.

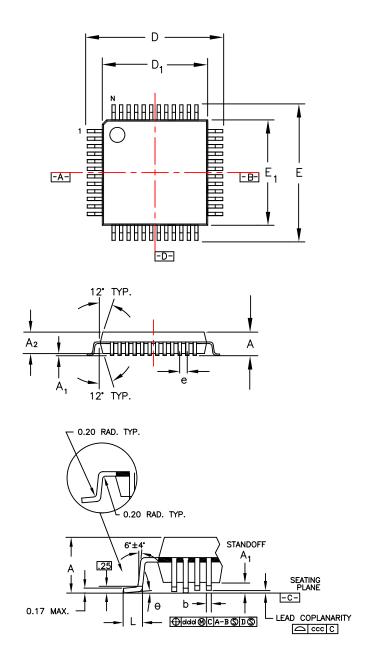
C.3 Kits

The Stellaris Family provides the hardware and software tools that engineers need to begin development quickly.

- Reference Design Kits accelerate product development by providing ready-to-run hardware and comprehensive documentation including hardware design files
- Evaluation Kits provide a low-cost and effective means of evaluating Stellaris microcontrollers before purchase
- Development Kits provide you with all the tools you need to develop and prototype embedded applications right out of the box

See the website at www.ti.com/stellaris for the latest tools available, or ask your distributor.

C.4 Support Information


For support on Stellaris products, contact the TI Worldwide Product Information Center nearest you: http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm.

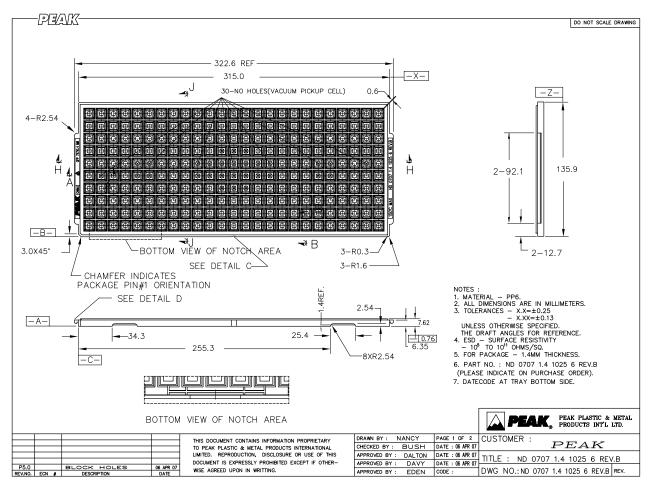
D Package Information

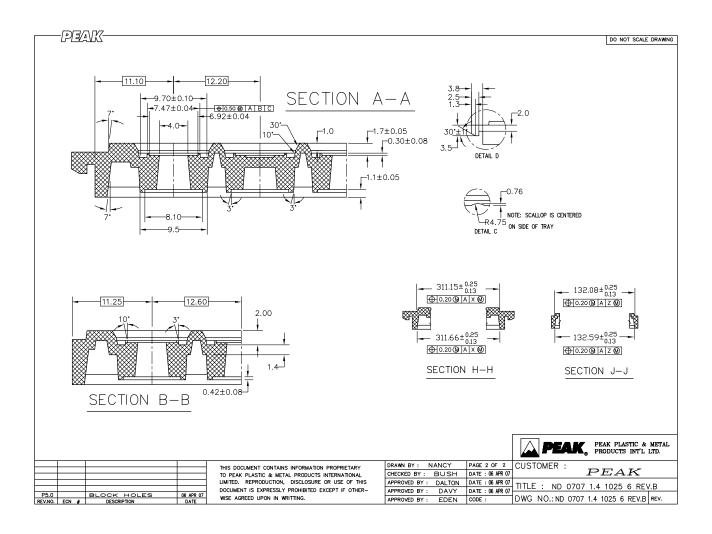
D.1 48-Pin LQFP Package

D.1.1 Package Dimensions

Figure D-1. 48-Pin LQFP Package

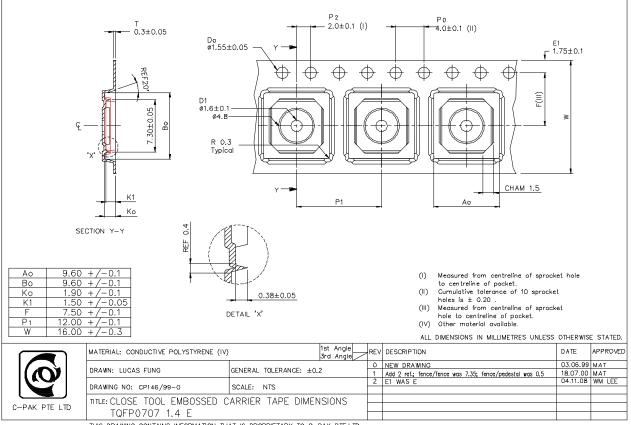
Note: The following notes apply to the package drawing.


WWW.BDIIC.COm/

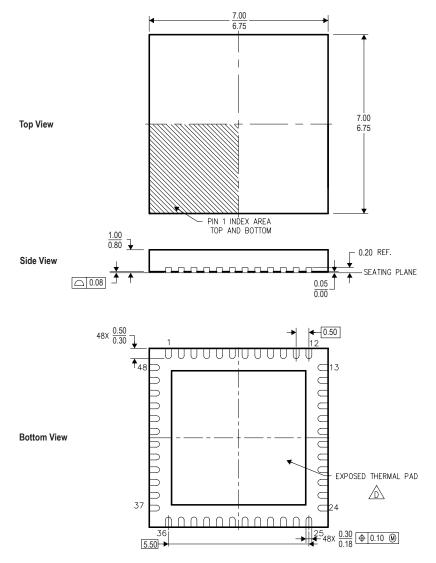

- **1.** All dimensions are in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length "L" is measured at gage plane 0.25 mm above seating plane.
- 4. L/F: Eftec 64T Cu or equivalent, 0.127 mm (0.005") thick.

	Packa					
Symbol	48LD	LQFP	Note			
	MIN	MAX				
A	-	1.60				
A ₁	0.05	0.15				
A ₂	-					
D	9					
D ₁	7					
E	9					
E ₁	7					
L	0	.60				
е	0					
b	0	.22				
theta	0°					
ddd	0					
ccc	0					
1	JEDEC Reference Drawing		MS-026			
	Variation Designator					

D.1.2 Tray Dimensions



Tape and Reel Dimensions D.1.3



THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO C-PAK PTE.LTD.

D.2 48-Pin QFN Package

D.2.1 **Package Dimensions**

Figure D-4. 48-Pin QFN Package

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
C. The package thermal pad must be soldered to the board for thermal and mechanical performance. In addition, the pad must be connected to GND.
E. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated