SN65LVCP22
SLLS553B-NOVEMBER 2002-REVISED JUNE 2003

2x2 LVDS CROSSPOINT SWITCH

FEATURES

- High Speed ($>1000 \mathrm{Mbps}$) Upgrade for DS90CP22 2x2 LVDS Crosspoint Switch
- LVPECL Crosspoint Switch Available in SN65LVCP23
- Low-Jitter Fully Differential Data Path
- 50 ps (Typ), of Peak-to-Peak Jitter With PRBS $=2^{23}-1$ Pattern
- Less Than 200 mW (Typ), 300 mW (Max) Total Power Dissipation
- Output (Channel-to-Channel) Skew Is 10 ps (Typ), 50 ps (Max)
- Configurable as 2:1 Mux, 1:2 Demux, Repeater or 1:2 Signal Splitter
- Inputs Accept LVDS, LVPECL, and CML Signals
- Fast Switch Time of 1.7 ns (Typ)
- Fast Propagation Delay of 0.65 ns (Typ)
- 16 Lead SOIC and TSSOP Packages
- Inter-Operates With TIA/EIA-644-A LVDS Standard
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

- Base Stations
- Add/Drop Muxes
- Protection Switching for Serial Backplanes
- Network Switches/Routers
- Optical Networking Line Cards/Switches
- Clock Distribution

DESCRIPTION

The SN65LVCP22 is a 2×2 crosspoint switch providing greater than 1000 Mbps operation for each path. The dual channels incorporate wide common-mode (0 V to 4 V) receivers, allowing for the receipt of LVDS, LVPECL, and CML signals. The dual outputs are LVDS drivers to provide low-power, low-EMI, high-speed operation. The SN65LVCP22 provides a single device supporting 2:2 buffering (repeating), 1:2 splitting, 2:1 multiplexing, 2×2 switching, and LVPECL/CML to LVDS level translation on each channel. The flexible operation of the SN65LVCP22 provides a single device to support the redundant serial bus transmission needs (working and protection switching cards) of fault-tolerant switch systems found in optical networking, wireless infrastructure, and data commu- nications systems. TI offers additional gigibit repeater/ translator and crosspoint products in the SN65LVDS100 and SN65LVDS122.
The SN65LVCP22 uses a fully differential data path to ensure low-noise generation, fast switching times, low pulse width distortion, and low jitter. Output channel-to- channel skew is less than 10 ps (typ) and 50 ps (max) to ensure accurate alignment of outputs in all applications. Both SOIC and TSSOP package options are available to allow easy upgrade for existing solutions, and board area savings where space is critical.

2q 00E = 9lso己 Istnosioh

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

PACKAGE DESIGNATOR	PART NUMBER $^{(1)}$	SYMBOLIZATION
SOIC	SN65LVCP22D	LVCP22
TSSOP	SN65LVCP22PW	LVCP22

(1) Add the suffix R for taped and reeled carrier

PACKAGE DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$	DERATING FACTOR ${ }^{(1)}$ ABOVE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$
SOIC (D)	High-K ${ }^{(2)}$	1361 mW	$13.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	544 mW
TSSOP (PW)	High-K ${ }^{(2)}$	1074 mW	$10.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	430 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
(2) In accordance with the High-K thermal metric definitions of EIA/JESD51-7.

THERMAL CHARACTERISTICS

PARAMETER		TEST CONDITIONS	VALUE	UNITS	
θ_{JB}	Junction-to-board thermal resistance	D		11.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		PW		18.4	
θ_{JC}	Junction-to-case thermal resistance	D		23.7	
		PW		16.0	
$\mathrm{P}_{\mathrm{D}} \mathrm{C} / \mathrm{W}$					
	Device power dissipation	Typical	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1 \mathrm{Gbps}$	198	
		Maximum	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, 1 \mathrm{Gbps}$	c	

FUNCTION TABLE

SELO	SEL1	OUT0	OUT1	FUNCTION
0	0	IN0	IN0	$1: 2$ Splitter
0	1	IN0	IN1	Repeater
1	0	IN1	IN0	Switch
1	1	IN1	IN1	$1: 2$ Splitter

FUNCTIONAL BLOCK DIAGRAM
\exists
\exists

иI

INSTRUMENTS
www.ti.com

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

2TUqTUO

ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

	UNITS	
Supply voltage ${ }^{(2)}$ range, V_{CC}	-0.5 V to 4 V	
CMOS/TTL input voltage (ENO, EN1, SEL0, SEL1)	-0.5 V to 4 V	
LVDS receiver input voltage (IN+, IN-)	-0.7 V to 4.3 V	
LVDS driver output voltage (OUT+, OUT-)	-0.5 V to 4 V	
LVDS output short circuit current	Continuous	
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	$235^{\circ} \mathrm{C}$	
Continuous power dissipation	See Dissipation Rating Table	
Electrostatic discharge	Human body model ${ }^{(3)}$	All pins
	Charged-device mode ${ }^{(4)}$	All pins

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminals.
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX
UNIT			
Supply voltage, V_{CC}	3	3.3	3.6
Receiver input voltage	0	V	
Junction temperature		V	
Operating free-air temperature, $\mathrm{T}_{\mathrm{A}}{ }^{(1)}$	-40	125	${ }^{\circ} \mathrm{C}$
Magnitude of differential input voltage $\left\|\mathrm{V}_{\text {ID }}\right\|$	0.1	85	${ }^{\circ} \mathrm{C}$

(1) Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

INPUT ELECTRICAL CHARACTERISTICS

over recommended operatingconditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{(1)}$	MAX	UNIT	
CMOS/TTL DC SPECIFICATIONS (EN0, EN1, SELO, SEL1)							
V_{IH}	High-level input voltage		2		V_{CC}	V	
V_{IL}	Low-level input voltage		GND		0.8	V	
I_{H}	High-level input current	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ or $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		± 3	± 20	$\mu \mathrm{A}$	
	Low-level input current	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$ or $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		± 1	± 10	$\mu \mathrm{A}$	
V_{CL}	Input clamp voltage	$\mathrm{I}_{\mathrm{CL}}=-18 \mathrm{~mA}$		-0.8	-1.5	V	
LVDS OUTPUT SPECIFICATIONS (OUT0, OUT1)							
\|VOD		Differential output voltage	$\mathrm{R}_{\mathrm{L}}=75 \Omega$, See Figure ${ }^{\text {d }}$	270	365	475	mV
		$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, See }$ Figure 2	285	365	440		
$\Delta\left\|\mathrm{V}_{\text {OD }}\right\|$	Change in differential output voltage magnitude between logic states	$\mathrm{V}_{\mathrm{ID}}= \pm 100 \mathrm{mV}$, See Figure 2	-25		25	mV	
$\mathrm{V}_{\text {OS }}$	Steady-state offset voltage	See Figure3	1	1.2	1.45	V	
$\Delta \mathrm{V}_{\text {OS }}$	Change in steady-state offset voltage between logic states	See Figure 3	-25		25	mV	
$\mathrm{V}_{\text {OC(PP) }}$	Peak-to-peak common-mode output voltage	See Figure3		50	150	mV	
l_{Oz}	High-impedance output current	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$ or V_{CC}			± 10	$\mu \mathrm{A}$	
IofF	Power-off leakage current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, 1.5 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$ or GND			± 10	$\mu \mathrm{A}$	
l_{OS}	Output short-circuit current	$\mathrm{V}_{\text {OUT+ }}$ or $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-24	mA	
$\mathrm{I}_{\text {OSB }}$	Both outputs short-circuit current	$\mathrm{V}_{\text {OUT }+}$ and $\mathrm{V}_{\text {OUT }-}=0 \mathrm{~V}$	-12		12	mA	
C_{0}	Differential output capacitance	$\mathrm{V}_{1}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}$		3		pF	
LVDS RECEIVER DC SPECIFICATIONS (IN0, IN1)							
$\mathrm{V}_{\text {TH }}$	Positive-going differential input voltage threshold	See Figure 1 and Table 1			100	mV	
$\mathrm{V}_{\text {TL }}$	Negative-going differential input voltage threshold	See Figure 1] and Table 1	-100			mV	
$\mathrm{V}_{\text {ID(HYS })}$	Differential input voltage hysteresis			25		mV	
$\mathrm{V}_{\text {CMR }}$	Common-mode voltage range	$\mathrm{V}_{\text {ID }}=100 \mathrm{mV}, \mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V	0.05		3.95	V	
I_{N}	Input current	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ or 0.0		± 1	± 10	$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ or 0.0		± 1	± 10		
$\mathrm{C}_{\text {IN }}$	Differential input capacitance	$\mathrm{V}_{1}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}$		3		pF	
SUPPLY CURRENT							
$\mathrm{I}_{\text {CCD }}$	Total supply current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 500 \mathrm{MHz}(1000 \\ & \text { Mbps), EN0=EN1=High } \end{aligned}$		60	87	mA	
$\mathrm{I}_{\text {CCz }}$	3 -state supply current	EN0 = EN1 = Low		25	35	mA	

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.

INSTRUMENTS
www．ti．com

SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	parameter	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {SET }}$	Input to SEL setup time	See Figure 6	1	0.5		ns
$\mathrm{t}_{\text {HOLD }}$	Input to SEL hold time	See Figure 6	1.1	0.5		ns
$\mathrm{t}_{\text {SWITCH }}$	SEL to switched output	See Figure 6		1.7	2.5	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Disable time，high－level－to－high－impedance	See Figure 5		2	4	ns
$\mathrm{t}_{\mathrm{PLZ}}$	Disable time，low－level－to－high－impedance	See Figure 5		2	4	ns
$\mathrm{t}_{\text {PZH }}$	Enable time，high－impedance－to－high－level output	See Figure 5		2	4	ns
$\mathrm{t}_{\text {PZL }}$	Enable time，high－impedance－to－low－level output	See Figure 5		2	4	ns
$\mathrm{t}_{\text {LHT }}$	Differential output signal rise time（20\％－80\％）${ }^{(1)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ ，See Figure 4	150	280	450	ps
$\mathrm{t}_{\mathrm{HLT}}$	Differential output signal fall time（20\％－80\％）${ }^{(1)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ ，See Figure 4	150	280	450	ps
$\mathrm{t}_{\text {JIT }}$	Added peak－to－peak jitter	$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}, 50 \%$ duty cycle， $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, 500 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	40	ps
		$\mathrm{V}_{\text {ID }}=200 \mathrm{mV}$ ， $\mathrm{PRBS}=2^{23}-1$ data pattern， $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}$ at $1000 \mathrm{Mbps}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		50	105	ps
$\mathrm{t}_{\mathrm{Jrms}}$	Added random jitter（rms）	$\mathrm{V}_{\text {ID }}=200 \mathrm{mV}, 50 \%$ duty cycle， $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}$ at $500 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		1.1	1.8	$\mathrm{ps}_{\text {RMS }}$
$\mathrm{t}_{\text {PLHD }}$	Propagation delay time，low－to－high－level output ${ }^{(1)}$		400	650	1000	ps
$\mathrm{t}_{\text {PHLD }}$	Propagation delay time，high－to－low－level output ${ }^{(1)}$		400	650	1000	ps
$\mathrm{t}_{\text {skew }}$	Pulse skew（｜t PLHD $\left.^{-} \mathrm{t}_{\text {PHLD }}\right)^{(2)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ ，See Figure 4		20	100	ps
$\mathrm{t}_{\text {CCS }}$	Output channel－to－channel skew，splitter mode	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ ，See Figure 4		10	50	ps
$\mathrm{f}_{\text {MAX }}$	Maximum operating frequency ${ }^{(3)}$		1			GHz

（1）Input： $\mathrm{V}_{I C}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{ID}}=200 \mathrm{mV}, 50 \%$ duty cycle， $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}=500 \mathrm{ps}$
（2）$t_{\text {skew }}$ is the magnitude of the time difference between the $t_{\text {PLHD }}$ and $t_{\text {PHLD }}$ of any output of a single device．
（3）Signal generator conditions： 50% duty cycle， t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 100 \mathrm{ps}$（ 10% to 90% ），transmitter output criteria：duty cycle $=45 \%$ to $55 \% \mathrm{~V}_{\mathrm{OD}} \geq$ 300 mV ．

PIN ASSIGNMENTS
१ Wq 1o व ヨอАメગA
（WヨIVT9，
ar

1

PARAMETER MEASUREMENT INFORMATION

Figure 1. Voltage and Current Definitions

Figure 2. Differential Output Voltage (V_{OD}) Test Circuit

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 1 \mathrm{~ns}$, pulse-repetition rate (PRR) $=0.5$ Mpps, pulse width $=500 \pm 10 \mathrm{~ns} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \mathrm{C}_{\mathrm{L}}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the D.U.T.; the measurement of $\mathrm{V}_{\mathrm{OC}(\mathrm{PP})}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz .

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

PARAMETER MEASUREMENT INFORMATION (continued)

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f} \leq .25$ ns, pulse-repetition rate $(P R R)=0.5 \mathrm{Mpps}$, pulse width $=500 \pm 10 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the D.U.T.

Figure 4. Timing Test Circuit and Waveforms

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f} \leq 1$ ns, pulse-repetition rate $(P R R)=0.5 \mathrm{Mpps}$, pulse width $=500 \pm 10 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the D.U.T.

Figure 5. Enable and Disable Time Circuit and Definitions

Table 1. Receiver Input Voltage Threshold Test

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	OUTPUT ${ }^{(1)}$
$\mathbf{V}_{\mathbf{I A}}$	$\mathbf{V}_{\mathbf{I B}}$	$\mathbf{V}_{\mathbf{I D}}$	100 mV	
1.25 V	1.15 V	-100 mV	H	
1.15 V	1.25 V	100 mV	3.95 V	L
4.0 V	3.9 V	-100 mV	3.95 V	H
3.9 V	4.0 V	100 mV	0.05 V	H
0.1 V	0.0 V	-100 mV	0.05 V	L
0.0 V	0.1 V	1000 mV	1.2 V	H
1.7 V	0.7 V	-1000 mV	1.2 V	L
0.7 V	1.7 V	1000 mV	3.5 V	H
4.0 V	3.0 V	-1000 mV	3.5 V	L
3.0 V	4.0 V	1000 mV	0.5 V	H
1.0 V	0.0 V	-1000 mV	0.5 V	L
0.0 V	1.0 V			

(1) $\mathrm{H}=$ high level, $\mathrm{L}=$ low level

NOTE: $t_{S E T}$ and $t_{\text {HOLD }}$ times specify that data must be in a stable state before and after mux control switches.
Figure 6. Input to Select for Both Rising and Falling Edge Setup and Hold Times

TYPICAL CHARACTERISTICS

Figure 7.

Figure 10.

PEAK-TO-PEAK JITTER

Figure 13.

Figure 8.

Figure 11.

PEAK-TO-PEAK JITTER
vs
FREQUENCY

Figure 14.

PROPAGATION DELAY TIME
VS
FREE-AIR TEMPERATURE

Figure 9.
PEAK-TO-PEAK JITTER FREQUENCY

Figure 12.

PEAK-TO-PEAK JITTER
VAT

Figure 15.

TYPICAL CHARACTERISTICS (continued)

Figure 16.

Figure 17.
PEAK-TO-PEAK JITTER
DATA RATE

Figure 19.

APPLICATION INFORMATION

TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, etc.)
. ε

Figure 20. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

Figure 21. Current-Mode Logic (CML)

Figure 22. Single-Ended (LVPECL)

Figure 23. Low-Voltage Differential Signaling (LVDS)

APPLICATION INFORMATION (continued)

Figure 24. 2×2 Crosspoint

Figure 25. 1:2 Spitter

Figure 26. Dual Repeater

Figure 27. 2:1 MUX
www.ti.com

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN65LVCP22D | ACTIVE | SOIC | D | 16 | 40 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LVCP22DG4 | ACTIVE | SOIC | D | 16 | 40 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LVCP22DR | ACTIVE | SOIC | D | 16 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LVCP22DRG4 | ACTIVE | SOIC | D | 16 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LVCP22PW | ACTIVE | TSSOP | PW | 16 | 90 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LVCP22PWG4 | ACTIVE | TSSOP | PW | 16 | 90 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LVCP22PWR | ACTIVE | TSSOP | PW | 16 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LVCP22PWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

$*$ All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
SN65LVCP22DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN65LVCP22PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVCP22DR	SOIC	D	16	2500	346.0	346.0	33.0
SN65LVCP22PWR	TSSOP	PW	16	2000	346.0	346.0	29.0

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

矛舁 TEXAS
INSTRUMENTS
www.ti.com

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Audio	
Amplifiers	$\underline{\text { www.ti.com/audio }}$
Data Converters	$\frac{\text { amplifier.ti.com }}{\text { dataconverter.ti.com }}$
DLP® Products	$\frac{\text { www.dlp.com }}{\text { dsp.ti.com }}$
DSP	$\frac{\text { www.ti.com/clocks }}{\text { interface.ti.com }}$
Clocks and Timers	$\underline{\text { logic.ti.com }}$
Interface	$\underline{\text { power.ti.com }}$
Logic	$\underline{\text { microcontroller.ti.com }}$
Power Mgmt	$\underline{\text { www.ti-fid.com }}$
Microcontrollers	$\underline{\text { www.ti.com/lprf }}$

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

