
- Full Look-Ahead for High-Speed Operations on Long Words
- Input Clamping Diodes Minimize
  Transmission-Line Effects
- Darlington Outputs Reduce Turn-Off
  Time
- Arithmetic Operating Modes: Addition Subtraction Shift Operand A One Position Magnitude Comparison Plus Twelve Other Arithmetic Operations
- Logic Function Modes: Exclusive-OR Comparator AND, NAND, OR, NOR Plus Ten Other Logic Operations

SN54LS181, SN54S181 . . . J OR W PACKAGE SN74LS181, SN74S181 . . . DW OR N PACKAGE

|                     | (TOP VIEW)  |     |                                    |  |  |  |  |  |  |  |  |  |  |  |  |
|---------------------|-------------|-----|------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| B0<br>A0            | d T         | 724 | VCC<br>Ā1<br><b>B1</b><br>Ā2<br>B2 |  |  |  |  |  |  |  |  |  |  |  |  |
| A0                  |             | 23  | Ā1                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| S3                  | []3         | 22  | <b>B</b> 1                         |  |  |  |  |  |  |  |  |  |  |  |  |
| S2                  | []₄         | 21  | Ā2                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| S1                  | ∐s          | 20  | B2                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| S0                  | <b>[</b> 6  | 19  | Ā3                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| Cn                  | []r         | 18  | Ā3<br>B3<br>G                      |  |  |  |  |  |  |  |  |  |  |  |  |
| м                   | Цs          | 17  | G                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| FO                  | []9         | 16  | <u>C</u> n + 4<br>P                |  |  |  |  |  |  |  |  |  |  |  |  |
| M<br>F0<br>F1<br>F2 | []10        | 15  | P                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| F2                  | יים         | 14  | A ≃ B                              |  |  |  |  |  |  |  |  |  |  |  |  |
| GND                 | <b>[</b> 12 | 13  | F3                                 |  |  |  |  |  |  |  |  |  |  |  |  |

#### SN54LS181, SN54S181... FK PACKAGE (TOP VIEW)



NC - No internal connection

#### TYPICAL ADDITION TIMES

| NUMBER     | ADDITI                    | ON TIMES                 | PA                         | CKAGE COUNT                    | CARRY METHOD    |
|------------|---------------------------|--------------------------|----------------------------|--------------------------------|-----------------|
| OF<br>BITS | USING 'LS181<br>AND 'S182 | USING 'S181<br>AND 'S182 | ARITHMETIC/<br>LOGIC UNITS | LOOK-AHEAD<br>CARRY GENERATORS | BETWEEN<br>ALUs |
| 1 to 4     | 24 ns                     | 11 ns                    | 1                          |                                | NONE            |
| 5 to 8     | 40 ns                     | 18 ns                    | 2                          |                                | RIPPLE          |
| 9 to 16    | 44 ns                     | 19 ns                    | 3 or 4                     | 1                              | FULL LOOK-AHEAD |
| 17 to 64   | 68 ns                     | 28 ns                    | 5 to 16                    | 2 to 5                         | FULL LOOK-AHEAD |

#### description

The 'LS181 and 'S181 are arithmetic logic units (ALU)/function generators that have a complexity of 75 equivalent gates on a monolithic chip. These circuits perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the SN54S182 or SN74S182 full carry look-ahead circuits, high-speed arithmetic operations can be performed. The typical addition times shown above illustrate the little additional time required for addition of longer words when full carry look-ahead is employed. The method of cascading 'S182 circuits with these ALUs to provide multi-level full carry look-ahead is illustrated under typical applications data for the 'S182.

If high speed is not of importance, a ripple-carry input ( $C_n$ ) and a ripple-carry output ( $C_{n+4}$ ) are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

#### description (continued)

The 'LS181 and 'S181 will accommodate active-high data if the pin designations are interpreted as follows:

| PIN NUMBER                 | 2              | 1  | 23             | 22             | 21             | 20             | 19             | 18             | 9  | 10             | 11             | 13 | 7   | 16               | 15 | 17 |
|----------------------------|----------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----|----------------|----------------|----|-----|------------------|----|----|
| Active-low data (Table 1)  | Ā <sub>0</sub> | Bo | Ā1             | B <sub>1</sub> | Ā2             | B <sub>2</sub> | Ā3             | B <sub>3</sub> | Ē٥ | F <sub>1</sub> | F <sub>2</sub> | F3 | Cn  | C <sub>n+4</sub> | P  | Ğ  |
| Active-high data (Table 2) | A <sub>0</sub> | BO | A <sub>1</sub> | B1             | A <sub>2</sub> | B <sub>2</sub> | A <sub>3</sub> | B3             | FO | F <sub>1</sub> | F2             | F3 | Ē'n | Cn+4             | Х  | Y  |

Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.

The 'LS181 or 'S181 can also be utilized as a comparator. The A = B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU must be in the subtract mode with  $C_n = H$  when performing this comparison. The A = B output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (Cn + 4) can also be used to supply relative magnitude information. Again, the ALU must be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

| INPUT Cn | OUTPUT C <sub>n+4</sub> | ACTIVE-LOW DATA<br>(FIGURE 1) | ACTIVE-HIGH DATA<br>(FIGURE 2) |
|----------|-------------------------|-------------------------------|--------------------------------|
| н        | н                       | A≥B                           | A < B                          |
| н        | L                       | A < 8                         | A > B                          |
| L        | н                       | A > B                         | A < B                          |
| L        | L                       | A ≤ B                         | A ≥ B                          |

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR, and OR functions.

Series 54, 54LS, and 54S devices are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74LS and 74S devices are characterized for operation from 0°C to 70°C.

#### signal designations

In both Figures 1 and 2, the polarity indicators ( $\square$ ) indicate that the associated input or output is active-low with respect to the function shown inside the symbol, and the symbols are the same in both figures. The signal designations in Figure 1 agree with the indicated internal functions based on active-low data, and are for use with the logic functions and arithmetic operations shown in Table 1. The signal designations have been changed in Figure 2 to accommodate the logic functions and arithmetic operations for the active-high data given in Table 2. The 'LS181 and 'S181, together with the 'S182, can be used with the signal designation of either Figure 1 or Figure 2.



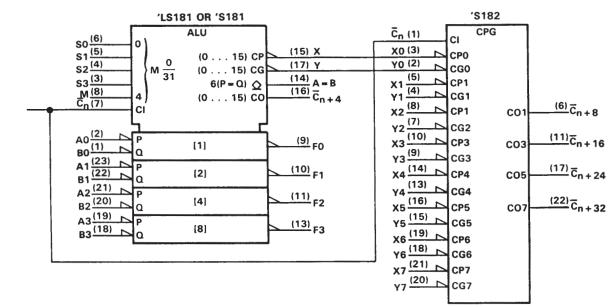
#### SN54LS181, SN54S181 SN74LS181, SN74S181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS SDLS136 – DECEMBER 1972 – REVISED MARCH 1988

'S182 'LS181 OR 'S181 CPG ALU C<sub>n</sub> (1) S0<u>(6)</u> S1<u>(5)</u> CI 0 PO (3) (15) P CP0 (0...15) CP \$2<sup>(4)</sup>  $M \frac{0}{31}$ (17) G G0 (2) CGO (0...15) CG \$3<sup>(3)</sup> (14) A = B P1 (5) 6(P=Q) CP1 G1(4)  $(16) C_{n+4}$ M(8) Cn(7) CG1 4 (0...15) CO P2<sup>(8)</sup> (6) Cn + 8 CI CP1 CO1 G2(7) CG2 P3(10)  $\overline{A}0\frac{(2)}{\overline{B}0}$ (11) Cn+16 (9) F0 Ρ CP3 1 CO3 [1] <u>G</u>3<sup>(9)</sup> Q  $\overline{\overline{A1}} \frac{(23)}{(22)}$   $\overline{B1} \frac{(23)}{(22)}$ CG3  $(17) C_{n+24}$ P4(14) Ρ (10) F1 [2] CP4 C05  $\overline{G4}^{(13)}$ Ā2(21) Q CG4 (11) F2 B2(20) Ρ P5(16) (22) Cn + 32 [4] CP5 C07 Q A3(19) G5(15) Ρ (13) F3 CG5 B3(18) P6(19) [8] Q CP6 G6<sup>(18)</sup> CG6 P7 (21) CP7 G7<sup>(20)</sup> CG7

#### logic symbols<sup>†</sup> and signal designations (active-low data)

<sup>†</sup>These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for dual-in-line and "small outline" packages.

#### FIGURE 1 (USE WITH TABLE 1)


| т | ۰Δ | R | t. | F | 1 |
|---|----|---|----|---|---|
|   | ~  | 2 | -  | - |   |

|     | 0 = 1 = 2 |      |    |                        | ACTIVE-LOW DA                    | ТА                                      |
|-----|-----------|------|----|------------------------|----------------------------------|-----------------------------------------|
|     | SELE      | SHON |    | M = H                  | M = L; ARITHM                    | ETIC OPERATIONS                         |
|     |           |      |    | LOGIC                  | Cn = L                           | Cn = H                                  |
| S3  | S2        | S1   | S0 | FUNCTIONS              | (no carry)                       | (with carry)                            |
| L   | L         | L    | L  | F=A                    | F = A MINUS 1                    | F = A                                   |
| L   | L         | L    | н  | F = AB                 | F = AB MINUS 1                   | F = AB                                  |
| L   | L         | н    | L  | F = A + B              | F = AB MINUS 1                   | F = AB                                  |
| L L | L         | н    | н  | F ≕ 1                  | F = MINUS 1 (2's COMP)           | F = ZERO                                |
| L   | н         | L    | L  | $F = \overline{A + B}$ | F = A PLUS (A + B)               | F = A PLUS (A + B) PLUS 1               |
| L   | н         | L    | н  | F = B                  | $F = AB PLUS (A + \overline{B})$ | $F = AB PLUS (A + \overline{B}) PLUS 1$ |
| L   | н         | н    | L  | $F = A \oplus B$       | F = A MINUS B MINUS 1            | F = A MINUS B                           |
| L   | н         | н    | н  | $F = A + \overline{B}$ | $F = A + \overline{B}$           | $F = (A + \overline{B}) PLUS 1$         |
| н   | L         | L    | L  | F = AB                 | F = A PLUS (A + B)               | F = A PLUS (A + B) PLUS 1               |
| н   | L         | L    | н  | F = A 🕀 B              | F = A PLUS B                     | F = A PLUS B PLUS 1                     |
| н   | L         | н    | L  | F = B                  | F = AB PLUS (A + B)              | F = AB PLUS (A + B) PLUS 1              |
| н   | L         | н    | н  | F = A + B              | F = (A + B)                      | F = (A + B) PLUS 1                      |
| Н   | н         | L    | L  | F=0                    | $F = A PLUS A^{\ddagger}$        | F = A PLUS A PLUS 1                     |
| н   | н         | L    | н  | F ≈ AB                 | F = AB PLUS A                    | F = AB PLUS A PLUS 1                    |
| Н   | н         | н    | L  | F = AB                 | F = AB PLUS A                    | F = AB PLUS A PLUS 1                    |
| н   | н         | н    | н  | F = A                  | F = A                            | F = A PLUS 1                            |

<sup>‡</sup>Each bit is shifted to the next more significant position.



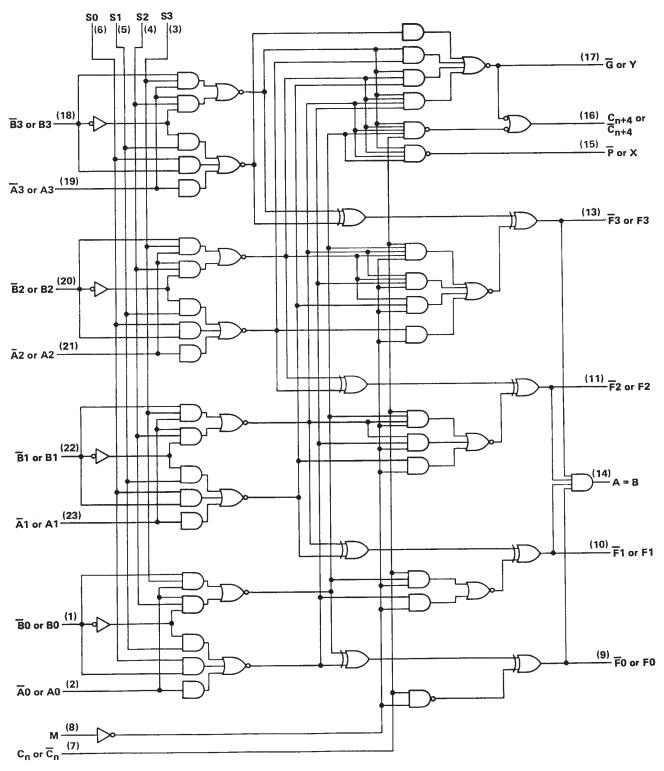
SDLS136 - DECEMBER 1972 - REVISED MARCH 1988



#### logic symbols<sup>†</sup> and signal designations (active-high data)

<sup>†</sup>These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for dual-in-line and "small outline" packages.

#### FIGURE 2 (USE WITH TABLE 2)


#### TABLE 2

|            | 051.5 | OTION |    |                        | ACTIVE-HIGH DA                     | ТА                                     |
|------------|-------|-------|----|------------------------|------------------------------------|----------------------------------------|
|            | SELE  | CTION |    | M = H                  | M = L; ARITHM                      | ETIC OPERATIONS                        |
| <b>S</b> 3 | S2    | S1    | S0 | LOGIC                  | <mark>C</mark> n = H<br>(no carry) | <mark>¯C</mark> n ≕ L<br>(with carry)  |
| L          | L     | L     | L  | $F = \overline{A}$     | F = A                              | F = A PLUS 1                           |
| L          | L     | L     | н  | $F = \overline{A + B}$ | F = A + B                          | F = (A + B) PLUS 1                     |
| L          | L     | н     | L  | F = AB                 | $F = A + \overline{B}$             | $F = (A + \overline{B}) PLUS 1$        |
| L          | L     | н     | н  | F = 0                  | F = MINUS 1 (2's COMPL)            | F = ZERO                               |
| L          | н     | L     | L  | $F = \overline{AB}$    | F = A PLUS AB                      | F = A PLUS AB PLUS 1                   |
| L          | н     | L     | н  | F = B                  | F = (A + B) PLUS AB                | F = (A + B) PLUS AB PLUS 1             |
| L          | н     | н     | L  | F = A 🕀 B              | F = A MINUS B MINUS 1              | F = A MINUS B                          |
| L          | н     | н     | н  | F = AB                 | F = AB MINUS 1                     | $F = \overline{AB}$                    |
| н          | L     | L     | L  | F = A + B              | F = A PLUS AB                      | F = A PLUS AB PLUS 1                   |
| н          | L     | L     | н  | F = A 🕀 B              | F = A PLUS B                       | F = A PLUS B PLUS 1                    |
| н          | L     | н     | L  | F = B                  | F = (A + B) PLUS AB                | F = (A + B) PLUS AB PLUS 1             |
| н          | L     | н     | н  | F = AB                 | F = AB MINUS 1                     | F = AB                                 |
| н          | н     | L     | L  | F = 1                  | F = A PLUS A <sup>†</sup>          | F = A PLUS A PLUS 1                    |
| н          | н     | L     | н  | $F = A + \overline{B}$ | F = (A + B) PLUS A                 | F = (A + B) PLUS A PLUS 1              |
| н          | н     | н     | L  | F = A + B              | $F = (A + \overline{B}) PLUS A$    | $F = (A + \overline{B}) PLUS A PLUS 1$ |
| н          | н     | н     | н  | F=A                    | F = A MINUS 1                      | F = A                                  |

<sup>†</sup> Each bit is shifted to the next more significant position.



#### logic diagram (positive logic)



Pin numbers shown are for DW, J, N, and W packages.



SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

| absolute maximum ratings over reco           | on | nm | en | nde | ed | ор | er | ati | ing | j fi | ree | )-a | ir : | ter | np | er | at | ur | e r | ar | Ige | e (1 | un | le | <b>S</b> S | ot | he | rw | ise | n          | oted) |  |
|----------------------------------------------|----|----|----|-----|----|----|----|-----|-----|------|-----|-----|------|-----|----|----|----|----|-----|----|-----|------|----|----|------------|----|----|----|-----|------------|-------|--|
| Supply voltage, V <sub>CC</sub> (see Note 1) |    |    |    |     |    | •  |    |     |     |      |     |     |      |     |    |    | •  |    |     |    |     |      |    |    |            |    |    | •  |     | •          | 7 V   |  |
| Input voltage                                |    |    |    |     |    |    |    |     |     |      |     |     |      | •   | •  |    |    |    |     |    |     |      |    |    |            |    | •  | •  |     |            | 5.5 V |  |
| Interemitter voltage (see Note 2)            |    |    |    |     |    |    |    |     |     |      |     |     |      |     |    |    |    |    |     |    |     |      |    |    |            |    |    |    |     |            |       |  |
| Operating free-air temperature range         |    |    |    |     |    |    |    |     |     |      |     |     |      |     |    |    |    |    |     |    |     |      |    |    |            |    |    |    |     |            |       |  |
|                                              |    |    |    |     |    |    |    |     |     |      |     |     |      |     |    |    |    |    |     |    |     |      |    |    |            |    |    |    |     |            | 70°C  |  |
| Storage temperature range                    | •  | •  | •  | •   | •  | •  | •  | •   | •   | •    | •   | •   | •    | •   | •  | •  | •  | •  | •   | •  | •   | •    | •  | •  | •          |    | -6 | ۶° | C t | <b>o</b> 1 | 150°C |  |

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to each A input in conjunction with inputs S2 or S3, and to each  $\vec{B}$  input in conjunction with inputs S0 or S3.

recommended operating conditions

|                                                           | SI  | N54LS1    | 81   | SN   | 174LS1 | 81   |      |
|-----------------------------------------------------------|-----|-----------|------|------|--------|------|------|
|                                                           | MIN | 4.5 5 5.5 |      |      | NOM    | MAX  | UNIT |
| Supply voltage, V <sub>CC</sub>                           | 4.5 | 5         | 5.5  | 4.75 | 5      | 5.25 | V    |
| High-level output current, IOH (All outputs except A = B) |     |           | -400 |      |        | -400 | μA   |
| Low-level output current, IOL                             |     |           | 4    |      |        | 8    | mA   |
| Operating free-air temperature, T <sub>A</sub>            | -55 |           | 125  | 0    |        | 70   | °c   |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                                                                                | DADA                | METER                                      | TEC                                                              | T CONDITIONS            | .t                      | SI  | 154LS1           | 81   | S   | N74LS1 | 81   |      |
|--------------------------------------------------------------------------------|---------------------|--------------------------------------------|------------------------------------------------------------------|-------------------------|-------------------------|-----|------------------|------|-----|--------|------|------|
|                                                                                | FANAI               | VIETER                                     | 153                                                              | CONDITIONS              |                         | MIN | TYP <sup>‡</sup> | MAX  | MIN | TYP‡   | MAX  | UNIT |
| VIH                                                                            | High-level in       | nput voltage                               |                                                                  |                         |                         | 2   |                  |      | 2   |        |      | V    |
| VIL                                                                            | Low-level in        | put voltage                                |                                                                  |                         |                         |     |                  | 0.7  |     |        | 0.8  | V    |
| VIK                                                                            | Input clamp         | voltage                                    | V <sub>CC</sub> = MIN,                                           | I <sub>I</sub> = -18 mA |                         |     |                  | -1.5 |     |        | -1.5 | V    |
| Vон                                                                            |                     | utput voltage,<br>except A = B             | V <sub>CC</sub> = MIN,<br>V <sub>IL</sub> = V <sub>IL</sub> max, |                         |                         | 2.5 | 3.4              |      | 2.7 | 3.4    |      | v    |
| юн                                                                             |                     | utput current,                             | $V_{CC} = MIN,$<br>$V_{1L} = V_{1L} max,$                        | V <sub>IH</sub> = 2 V,  | ·                       |     |                  | 100  |     |        | 100  | μA   |
|                                                                                |                     |                                            | VIL VIL Max,                                                     | VOH 0.5 V               | IOL = 4 mA              |     | 0.25             | 0.4  |     | 0.25   | 0.4  | -    |
| VOL                                                                            | Low-level<br>output | All outputs                                | V <sub>CC</sub> = MIN,                                           | V <sub>IH</sub> = 2 V,  | IOL = 8 mA              |     |                  |      |     | 0.35   | 0.5  | v    |
| •OL                                                                            | voltage             | Output G                                   | VIL = VIL max                                                    |                         | I <sub>OL</sub> = 16 mA |     | 0.47             | 0.7  |     | 0.47   | 0.7  | v    |
|                                                                                | vortage             | Output P                                   |                                                                  |                         | IOL = 8 mA              |     | 0.35             | 0.6  |     | 0.35   | 0.5  |      |
|                                                                                | Input               | Mode input                                 |                                                                  |                         |                         |     | 0.1              |      |     |        |      |      |
| ų.                                                                             | current at          | Any A or B input                           | V <sub>CC</sub> = MAX,                                           | V. = 5 5 V              |                         |     |                  | 0.3  |     |        | 0.3  |      |
| 1                                                                              | max. input          | Any S input                                |                                                                  | v] = 5.5 v              |                         |     |                  | 0.4  |     |        | 0.4  | mA   |
|                                                                                | voltage             | Carry input                                |                                                                  |                         |                         |     |                  | 0.5  |     |        | 0.5  |      |
|                                                                                | High-level          | Mode input                                 |                                                                  |                         |                         |     |                  | 20   |     |        | 20   |      |
| цн                                                                             | input               | Any $\overline{A}$ or $\overline{B}$ input | V <sub>CC</sub> = MAX,                                           | $V_1 = 2.7 V$           |                         |     |                  | 60   |     |        | 60   | μA   |
| .111                                                                           | current             | Any S input                                |                                                                  | • [ - 2.7 •             |                         |     |                  | 80   |     |        | 80   | μA   |
|                                                                                | burrent             | Carry input                                |                                                                  |                         |                         |     |                  | 100  |     |        | 100  |      |
|                                                                                | Low-level           | Mode input                                 |                                                                  |                         |                         |     |                  | -0.4 |     |        | -0.4 |      |
| hε                                                                             | input               | Any A or B input                           | V <sub>CC</sub> = MAX,                                           | $V_1 = 0.4 V$           |                         |     |                  | -1.2 |     |        | -1.2 | mA   |
| .16                                                                            | current             | Any S input                                |                                                                  | 1 0.41                  |                         |     |                  | -1.6 |     |        | -1.6 |      |
|                                                                                | Carry input         |                                            |                                                                  |                         |                         |     | -2               |      |     | -2     | 1    |      |
| $\frac{\text{Short-circuit output current,}}{\text{any output except A = B }}$ |                     |                                            | V <sub>CC</sub> = MAX                                            |                         |                         | -6  |                  | 40   | -5  |        | -42  | mA   |
| Icc                                                                            | CC Supply current   |                                            | V <sub>CC</sub> = MAX, See Note 3                                |                         |                         |     | 20               | 32   |     | 20     | 34   | mA   |
|                                                                                |                     |                                            |                                                                  |                         | 21                      | 35  |                  | 21   | 37  |        |      |      |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>‡</sup>All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ .

§Not more than one output should be shorted at a time.

NOTE 3: With outputs open,  $I_{CC}$  is measured for the following conditions:

A. S0 through S3, M, and A inputs are at 4.5 V, all other inputs are grounded.

B. S0 through S3 and M are at 4.5 V, all other inputs are grounded.



# SN54LS181, SN54S181 SN74LS181, SN74S181 **ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS** SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

| PARAMETER <sup>†</sup> | FROM<br>(INPUT)                  | TO<br>(OUTPUT)   | TEST CONDITIONS                               | MIN | ТҮР | MAX | דואט  |
|------------------------|----------------------------------|------------------|-----------------------------------------------|-----|-----|-----|-------|
| <sup>t</sup> PLH       | C C                              |                  |                                               |     | 18  | 27  | ns    |
| <sup>t</sup> PHL       | Cn                               | C <sub>n+4</sub> |                                               |     | 13  | 20  | 113   |
| <sup>t</sup> PLH       | Any A or B                       |                  | M = 0 V, S0 = S3 = 4.5 V,                     |     | 25  | 38  | ns    |
| <sup>t</sup> PHL       | ANYAOLP                          | C <sub>n+4</sub> | S1 = S2 = 0 V (SUM mode)                      |     | 25  | 38  |       |
| <sup>t</sup> PLH       | Any Ā or B                       |                  | M = 0 V, S0 = S3 = 0 V                        |     | 27  | 41  | ns    |
| <sup>t</sup> PHL       |                                  | C <sub>n+4</sub> | S1 = S2 = 4.5 V (DIFF mode)                   |     | 27  | 41  | ] ''' |
| <sup>t</sup> PLH       | 2                                | A                | M = 0 V                                       |     | 17  | 26  | ns    |
| <sup>t</sup> PHL       | C <sub>n</sub>                   | Any F            | (SUM or DIFF mode)                            |     | 13  | 20  | 115   |
| tPLH                   |                                  | G                | M = 0 V, S0 = S3 = 4.5 V,                     |     | 19  | 29  |       |
| tPHL                   | Any A or B                       |                  | S1 = S2 = 0 V (SUM mode)                      |     | 15  | 23  | ns    |
| <sup>t</sup> PLH       |                                  | Ğ                | M = 0 V, S0 = S3 = 0 V,                       |     | 21  | 32  |       |
| <sup>t</sup> PHL       | Any A or B                       | G                | S1 = S2 = 4.5 V (DIFF mode)                   |     | 21  | 32  | ns    |
| <sup>t</sup> PLH       |                                  | p                | M = 0 V, S0 = S3 = 4.5 V,                     |     | 20  | 30  |       |
| tPHL                   | Any A or B                       | P                | S1 = S2 = 0 V, (SUM mode)                     |     | 20  | 30  | - ns  |
| tPLH                   |                                  |                  | M = 0 V, S0 = S3 = 0 V,                       | 1   | 20  | 30  | 1     |
| tPHL                   | Any A or B                       | P                | S1 = S2 = 4.5 V (DIFF mode)                   |     | 22  | 33  | - ns  |
| <sup>t</sup> PLH       |                                  |                  | M = 0 V, S0 = S3 = 4.5 V,                     |     | 21  | 32  |       |
| <sup>t</sup> PHL       | Ā <sub>i</sub> or Ē <sub>i</sub> | Fi               | $S1 = S2 = 0 V (\overline{SUM} \text{ mode})$ |     | 13  | 20  | ns    |
| tPLH                   |                                  |                  | M = 0 V, S0 = S3 = 0 V,                       | 1   | 21  | 32  |       |
| tPHL                   | Ā <sub>i</sub> or B <sub>i</sub> | Fi               | S1 = S2 = 4.5 V (DIFF mode)                   |     | 21  | 32  | - ns  |
| tPLH                   | 7.5                              |                  |                                               |     | 22  | 33  |       |
| <sup>t</sup> PHL       | Ā <sub>i</sub> or B <sub>i</sub> | Fi               | M = 4.5 V (logic mode)                        |     | 26  | 38  | -  n: |
| tPLH                   |                                  |                  | M = 0 V, S0 = S3 = 0 V,                       | 1   | 33  | 50  |       |
| tPHL                   | Any A or B                       | A = B            | S1 = S2 = 4.5 V (DIFF mode)                   |     | 41  | 62  | - ns  |

# switching characteristics, V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C, (C<sub>L</sub> = 15 pF, R<sub>L</sub> = 2 k $\Omega$ , see note 4)

<sup>†</sup>tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage wveforms are shown in Section 1. Refer to Parameter Measurement Information page for test conditions.

#### schematics of inputs and outputs





SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, V <sub>CC</sub> (see Note | 1)       |  |       |   |  |  |  |   |   |   |   |   |   |   |   |    |     |        | 7 V   |  |
|-------------------------------------------|----------|--|-------|---|--|--|--|---|---|---|---|---|---|---|---|----|-----|--------|-------|--|
| Input voltage                             |          |  |       |   |  |  |  |   |   |   |   |   |   |   | • |    | ••• | . 5    | i.5 V |  |
| Interemitter voltage (see Note 2          | )        |  |       |   |  |  |  |   |   |   |   |   |   |   |   |    |     | . 5    | 5.5 V |  |
| Operating free-air temperature:           | SN54S181 |  |       |   |  |  |  |   |   |   |   | • |   |   |   | 5  | 5°C | to 12  | 25°C  |  |
|                                           | SN74S181 |  |       |   |  |  |  |   |   |   |   |   |   |   |   |    | 0°0 | C to D | 70°C  |  |
| Storage temperature range .               |          |  | <br>• | • |  |  |  | • | • | • | • |   | · | • |   | -6 | 5°C | to 1!  | 50°C  |  |

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to each A input in conjunction with inputs S2 or S3, and to each  $\overline{B}$  input in conjunction with inputs S0 or S3.

#### recommended operating conditions

|                                                           | S   | SN54S181 |     |      | SN74S181 |      |      |
|-----------------------------------------------------------|-----|----------|-----|------|----------|------|------|
|                                                           | MIN | NOM      | MAX | MIN  | NOM      | MAX  | UNIT |
| Supply voltage, V <sub>CC</sub>                           | 4.5 | 5        | 5.5 | 4.75 | 5        | 5.25 | V    |
| High-level output current, IOH (All outputs except A = B) |     |          | -1  |      |          | -1   | mA   |
| Low-level output current, IOI                             |     |          | 20  |      |          | 20   | mA   |
| Operating free-air temperature, TA                        | -55 |          | 125 | 0    |          | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                    | PARAMETER                                 |                                     |                                      |                         |                                       |     | SN54S181 |      |          | SN74S181 |      |      |  |
|--------------------|-------------------------------------------|-------------------------------------|--------------------------------------|-------------------------|---------------------------------------|-----|----------|------|----------|----------|------|------|--|
|                    |                                           |                                     | TEST CONDITIONS <sup>†</sup>         |                         |                                       |     | TYP‡     | MAX  | MIN      | түр‡     | MAX  | UNIT |  |
| VIH                | High-level in                             | put voltage                         |                                      |                         |                                       | 2   |          |      | 2        |          |      | V    |  |
| VIL                | Low-level in                              |                                     |                                      |                         |                                       |     |          | 0.8  |          |          | 0.8  | V    |  |
| VIK                | Input clamp                               |                                     | V <sub>CC</sub> = MIN,               | l <sub>l</sub> = -18 mA |                                       |     |          | -1.2 |          |          | -1.2 | V    |  |
|                    | High-level o                              | utput voltage,                      | $V_{CC} = MIN,$                      | V <sub>IH</sub> = 2 V,  |                                       |     |          |      |          |          |      | v    |  |
| Vон                | •                                         | except A = B                        | V <sub>1L</sub> = 0.8 V,             | I <sub>OH</sub> = -1 mA |                                       | 2.5 | 3.4      |      | 2.7      | 3.4      |      | v    |  |
|                    |                                           | utput current,                      | V <sub>CC</sub> = MIN,               | V <sub>IH</sub> = 2 V,  |                                       |     |          | 050  |          |          | 250  | μА   |  |
| юн                 | A = B outpu                               |                                     |                                      |                         |                                       |     |          | 250  |          |          | 250  | μΑ   |  |
|                    |                                           |                                     | V <sub>CC</sub> = MIN,               | V <sub>IH</sub> = 2 V,  |                                       |     |          | 0.5  |          |          | 0.5  | v    |  |
| VOL                | OL Low-level output voltage               |                                     | V <sub>IL</sub> = 0.8 V,             | l <sub>OL</sub> = 20 mA |                                       |     |          | 0.5  |          |          | 0.5  | v.   |  |
| lj –               | Input current at<br>maximum input voltage |                                     | V <sub>CC</sub> = MAX,               | V <sub>I</sub> = 5.5 V  |                                       |     |          | 1    |          |          | 1    | mA   |  |
|                    | maximum                                   | Mode input                          |                                      |                         |                                       |     |          | 50   | <u> </u> |          | 50   |      |  |
|                    | High-level                                | Any Ā or B input                    | 1                                    |                         |                                       |     |          | 150  |          |          | 150  | 1.   |  |
| ЧН                 | input                                     | Any S input                         | V <sub>CC</sub> = MAX,               | V <sub>1</sub> = 2.5 V  | V <sub>1</sub> = 2.5 V                |     |          | 200  |          |          | 200  |      |  |
|                    | current                                   | Carry input                         |                                      |                         |                                       |     |          | 250  | <u> </u> |          | 250  | 1    |  |
|                    | . <u> </u>                                | Mode input                          |                                      |                         | · · · · · · · · · · · · · · · · · · · |     |          | -2   |          |          | -2   |      |  |
|                    | Low-level                                 | Any A or B input                    | -                                    |                         |                                       |     |          | -6   |          |          | -6   | 1 .  |  |
| 11                 | input                                     | Any S input                         | V <sub>CC</sub> = MAX,               | V <sub>I</sub> = 0.5 V  |                                       |     |          | -8   | 1        |          | -8   | mA   |  |
|                    | current                                   | Carry input                         | 1                                    |                         |                                       |     |          | -10  |          |          | -10  | 1    |  |
| los                |                                           | t output current,<br>except A = B § | V <sub>CC</sub> = MAX                |                         |                                       | -40 |          | -100 | -40      |          | 100  | mA   |  |
| ICC Supply current |                                           | rent                                | V <sub>CC</sub> = MAX,<br>See Note 3 | T <sub>A</sub> = 125°C, | W package<br>only                     |     |          | 195  |          |          |      | mA   |  |
|                    |                                           |                                     | V <sub>CC</sub> = MAX,               | See Note 3              | All packages                          |     | 120      | 220  | 1        | 120      | 220  | 1    |  |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ .

§Not more than one output should be shorted at a time.

NOTE 3: I<sub>CC</sub> is measured for the following conditions (the typical and maximum values apply to both):

A. S0 through S3, M, and A inputs are at 4.5 V, all other inputs are grounded, and all outputs are open.

B. S0 through S3 and M are at 4.5 V, all other inputs grounded, and all outputs are open.



SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

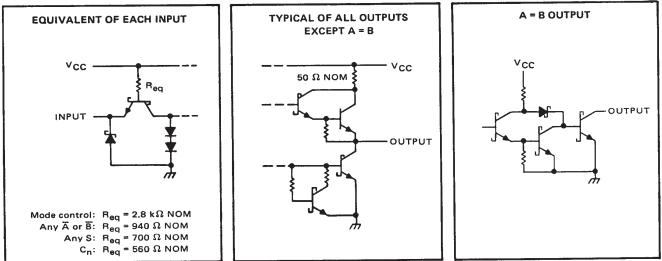
| PARAMETER <sup>†</sup> | FROM (INPUT)                       | TO (OUTPUT)      | TEST CONDITIONS                               | MIN | TYP  | MAX  | UNIT         |
|------------------------|------------------------------------|------------------|-----------------------------------------------|-----|------|------|--------------|
| tPLH                   |                                    |                  |                                               |     | 7    | 10.5 | ns           |
| <sup>t</sup> PHL       | C <sub>n</sub>                     | C <sub>n+4</sub> |                                               |     | 7    | 10.5 |              |
| tPLH                   |                                    |                  | M = 0 V, S0 = S3 = 4.5 V,                     |     | 12.5 | 18.5 | ns           |
| tPHL                   | Any Ā or B                         | C <sub>n+4</sub> | S1 = S2 = 0 V (SUM mode)                      |     | 12.5 | 18.5 |              |
| tPLH                   |                                    |                  | M = 0 V, S0 = S3 = 0 V,                       |     | 15.5 | 23   | ns           |
| tPHL                   | Any Ā or B                         | C <sub>n+4</sub> | S1 = S2 = 4.5 V (DIFF mode)                   |     | 15.5 | 23   |              |
| <sup>t</sup> PLH       |                                    | . =              | M = 0 V                                       |     | 7    | 12   | ns           |
| tPHL                   | C <sub>n</sub>                     | Any F            | (SUM or DIFF mode)                            |     | 7    | 12   |              |
| <sup>t</sup> PLH       |                                    | ō                | M = 0 V, S0 = S3 = 4.5 V,                     |     | 8    | 12   | ns           |
| tPHL                   | Any Ā or B                         | G                | $S1 = S2 = 0 V (\overline{SUM} \text{ mode})$ |     | 7.5  | 12   |              |
| <sup>t</sup> PLH       |                                    | G                | M = 0 V, S0 = S3 = 0 V,                       |     | 10.5 | 15   | ns           |
| tPHL                   | Any A or B                         | G                | S1 = S2 = 4.5 V (DIFF mode)                   |     | 10.5 | 15   | <b>–</b> 113 |
| <sup>t</sup> PLH       |                                    | P                | M = 0 V, S0 = S3 = 4.5 V,                     |     | 7.5  | 12   | ns           |
| <sup>t</sup> PHL       | Any Ā or B                         |                  | S1 = S2 = 0 V (SUM mode)                      |     | 7.5  | 12   | <b> </b> ''' |
| <sup>t</sup> PLH       |                                    |                  | M = 0 V, S0 = S3 = 0 V,                       |     | 10.5 | 15   | ns           |
| <sup>t</sup> PHL       | Any Ā or B                         | P                | S1 = S2 = 4.5 V (DIFF mode)                   |     | 10.5 | 15   |              |
| tPLH                   |                                    |                  | M = 0 V, S0 = S3 = 4.5 V,                     |     | 11   | 16.5 | ns           |
| tPHL                   | Ā <sub>i</sub> or B <sub>i</sub>   | Fi               | S1 = S2 = 0 V (SUM mode)                      |     | 11   | 16.5 | - ''°        |
| <sup>1</sup> 112       |                                    |                  | M = 0 V, S0 = S3 = 0 V,                       |     | 14   | 20   |              |
| tPHL                   | - Ā <sub>i</sub> or B <sub>i</sub> | Fi               | S1 = S2 = 4.5 V (DIFF mode)                   |     | 14   | 22   | - ns         |
| tPLH                   |                                    |                  |                                               |     | 14   | 20   | 1            |
| tPHL                   | - Ā <sub>i</sub> or B <sub>i</sub> | Fi               | M = 4.5 V (logic mode)                        |     | 14   | 22   | - ns         |
| tPLH                   | <u> </u>                           |                  | M = 0 V, S0 = S3 = 0 V,                       |     | 15   | 23   | 1            |
| YELN                   | J Anv Āor ₿                        | A = B            |                                               | - H |      | 00   | ns           |

#### switching characteristics. VCC = 5 V, TA = 25°C (CL = 15 pF, RL = 280 $\Omega$ , see note 4)

 $^{\dagger}t_{PLH} \equiv$  propagation delay time, low-to-high-level output

Any A or B

tpHL = propagation delay time, high-to-low-level output


NOTE 4: Load circuits and voltage wveforms are shown in Section 1. Refer to Parameter Measurement Information page for test conditions.

S1 = S2 = 4.5 V (DIFF mode)

A = B

#### schematics of inputs and outputs

**tPHL** 





30

20

#### SN54LS181, SN54S181 SN74LS181, SN74S181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS SDLS136 – DECEMBER 1972 – REVISED MARCH 1988

DECEMBER 1972 - REVISED MARCH 1988

# PARAMETER MEASUREMENT INFORMATION

|              |      | OTHER INPUT<br>SAME BIT<br>APPLY APPLY<br>4.5 V GND |                | OTHER DA             | TA INPUTS                            |                              | OUTPUT       |
|--------------|------|-----------------------------------------------------|----------------|----------------------|--------------------------------------|------------------------------|--------------|
| PARAMETER    | TEST |                                                     |                | APPLY<br>4.5 V       | APPLY<br>GND                         | TEST                         | (See Note 4) |
| tPLH<br>tPHL | Āi   | 8,                                                  | None           | Remaining<br>A and B | Cn                                   | Fi                           | In-Phase     |
|              | Bi   | Ā                                                   | None           | Remaining<br>A and B | Cn                                   | Fi                           | In-Phase     |
|              | Āi   | Bi                                                  | None           | None                 | Remaining<br>Ā and Ē, C <sub>n</sub> | P                            | In-Phase     |
|              | Bi   | Āi                                                  | None           | None                 | Remaining<br>Ā and Ē, C <sub>n</sub> | ą                            | in-Phase     |
|              | Āj   | None                                                | B <sub>i</sub> | Remaining<br>B       | Remaining<br>Ā, C <sub>n</sub>       | G                            | In-Phase     |
| трін         | Bi   | None                                                | Āi             | Remaining<br>B       | Remaining<br>Ã, C <sub>n</sub>       | G                            | In-Phase     |
| tPLH<br>tPHL | Cn   | None                                                | None           | A11<br>Ā             | All<br>B                             | Any F<br>or C <sub>n+4</sub> | In-Phase     |
|              | Āi   | None                                                | B <sub>i</sub> | Remaining<br>B       | Remaining<br>Ã, C <sub>n</sub>       | C <sub>n+4</sub>             | Out-of-Phase |
| tPLH<br>tPHL | Bi   | None                                                | Āi             | Remaining<br>B       | Remaining<br>Ā, C <sub>n</sub>       | C <sub>n+4</sub>             | Out-of-Phase |

FUNCTION INPUTS: S0 = S3 = 4.5 V, S1 = S2 = M = 0 V

#### DIFF MODE TEST TABLE FUNCTION INPUTS: S1 = S2 = 4.5 V, S0 = S3 = M = 0 V

|                  |                  |                         |                        |           | •                       |              |                    |  |
|------------------|------------------|-------------------------|------------------------|-----------|-------------------------|--------------|--------------------|--|
|                  | INPUT            | OTHER INPUT<br>SAME BIT |                        | OTHER DA  |                         |              | OUTPUT<br>WAVEFORM |  |
| PARAMETER        | UNDER            | APPLY                   | APPLY                  | APPLY     | APPLY                   | TEST         |                    |  |
|                  | TEST             | 4.5 V                   | GND                    | 4.5 V     | GND                     | TEST         | (See Note 4)       |  |
| <sup>t</sup> PLH | Āj               | None B;                 |                        | Remaining | Remaining               | Fi           | In-Phase           |  |
| <sup>t</sup> PHL | 1 1              |                         | 5,                     | Ā         | B, Cn                   |              |                    |  |
| <sup>t</sup> PLH | Bi               | Āi                      | None                   | Remaining | Remaining               | Ēį           | Out-of-Phase       |  |
| 19HL             |                  |                         | INOTE                  | Ā         | B, C <sub>n</sub>       | .,           |                    |  |
| <sup>T</sup> PLH | Āi               | None                    | Bi                     | None      | Remaining               | P            | In-Phase           |  |
| 1PHL             |                  | None ol                 |                        | None      | Ā and B, C <sub>n</sub> |              |                    |  |
| <sup>t</sup> PLH | Ēį               | Āj                      | None                   | None      | Remaining               | ē            | Out-of-Phase       |  |
| <sup>t</sup> PHL | Pi               | ^                       | NOR                    | None      | A and B, Cn             |              | out or these       |  |
| tPLH             | Ā                | <b>B</b> i              | None                   | None      | Remaining               | G            | In-Phase           |  |
| 1PHL             | - ^i             | Pi                      | None                   | None      | A and B, Cn             | , u          | nin nose           |  |
| <b>tPLH</b>      | Bi               | None                    | None Ai None Remaining |           | ច                       | Out-of-Phase |                    |  |
| 1PHL             | Pi               | NOUR                    |                        | NOTE      | A and B, Cn             |              | Out-or-i mase      |  |
| <sup>t</sup> PLH | Ā,               | None                    | Bi                     | Remaining | Remaining               | A = B        | In-Phase           |  |
| 1PHL             | 1 1              | None                    |                        | Ā         | B, Cn                   |              | in indac           |  |
| <sup>t</sup> PLH | Bi               | Āi                      | None                   | Remaining | Remaining               | A = B        | Out-of Phase       |  |
| 1PHL             | 1 <sup>0</sup> i | ^i                      | None                   | Ā         | B, Cn                   |              | Curtor Huse        |  |
| <sup>t</sup> PLH | Cn               | None                    | None                   | All       | None                    | Cn+4         | In-Phase           |  |
| <sup>t</sup> PHL | 1 <sup>Un</sup>  | None                    | 1 TONE                 | A and B   |                         | or any F     | Huse               |  |
| <sup>t</sup> PLH | Āi               | Ēi                      | None                   | None      | Remaining               | Cn+4         | Out-of-Phase       |  |
| <sup>t</sup> PHL | 1 7              | Pi                      | 110/16                 | 1.40me    | Ā, B, C <sub>n</sub>    | -174         |                    |  |
| <sup>t</sup> PLH | Ēį               | None                    | Āi                     | None      | Remaining               | Cn+4         | In -Phase          |  |
| <sup>t</sup> PHL | 1                |                         |                        |           | Ā, B, C <sub>n</sub>    | -114         |                    |  |
|                  |                  |                         |                        |           |                         |              |                    |  |

#### LOGIC MODE TEST TABLE FUNCTION INPUTS: S1 = S2 = M = 4.5 V, S0 = S3 = 0 V

| PARAMETER    |      | OTHER INPUT<br>SAME BIT |              | OTHER D        | ATA INPUTS                           |      | OUTPUT<br>WAVEFORM |  |
|--------------|------|-------------------------|--------------|----------------|--------------------------------------|------|--------------------|--|
| PARAMETER    | TEST | APPLY<br>4.5 V          | APPLY<br>GND | APPLY<br>4.5 V | APPLY<br>GND                         | TEST | (See Note 4)       |  |
| tPLH<br>tPHL | Āi   | Bi                      | None         | None           | Remaining<br>Ā and B, C <sub>n</sub> | Ŧ,   | Out-of-Phase       |  |
| tPLH<br>tPHL | Ē    | Āi                      | None         | None           | Remaining<br>Ā and B, C <sub>n</sub> | Fi   | Out-of-Phase       |  |

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.





www.ti.com

31-Mar-2011

#### **PACKAGING INFORMATION**

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package Qty | Eco Plan <sup>(2)</sup> | Lead/<br>Ball Finish | MSL Peak Temp <sup>(3)</sup> | Samples<br>(Requires Login) |
|------------------|------------|--------------|--------------------|------|-------------|-------------------------|----------------------|------------------------------|-----------------------------|
| JM38510/07801BJA | ACTIVE     | CDIP         | J                  | 24   | 1           | TBD                     | Call TI              | N / A for Pkg Type           |                             |
| SN54LS181J       | ACTIVE     | CDIP         | J                  | 24   | 1           | TBD                     | Call TI              | N / A for Pkg Type           |                             |
| SN54S181J        | ACTIVE     | CDIP         | J                  | 24   | 1           | TBD                     | Call TI              | N / A for Pkg Type           |                             |
| SN74LS181N       | ACTIVE     | PDIP         | Ν                  | 24   | 15          | Pb-Free (RoHS)          | CU NIPDAU            | N / A for Pkg Type           |                             |
| SN74LS181N3      | OBSOLETE   | PDIP         | Ν                  | 24   |             | TBD                     | Call TI              | Call TI                      |                             |
| SN74LS181NE4     | ACTIVE     | PDIP         | Ν                  | 24   | 15          | Pb-Free (RoHS)          | CU NIPDAU            | N / A for Pkg Type           |                             |
| SN74S181J        | OBSOLETE   | CDIP         | J                  | 24   |             | TBD                     | Call TI              | Call TI                      |                             |
| SN74S181N        | OBSOLETE   | PDIP         | Ν                  | 24   |             | TBD                     | Call TI              | Call TI                      |                             |
| SN74S181N3       | OBSOLETE   | PDIP         | Ν                  | 24   |             | TBD                     | Call TI              | Call TI                      |                             |
| SNJ54LS181FK     | ACTIVE     | LCCC         | FK                 | 28   | 1           | TBD                     | POST-PLATE           | N / A for Pkg Type           |                             |
| SNJ54LS181J      | ACTIVE     | CDIP         | J                  | 24   | 1           | TBD                     | Call TI              | N / A for Pkg Type           |                             |
| SNJ54LS181W      | ACTIVE     | CFP          | W                  | 24   | 1           | TBD                     | A42                  | N / A for Pkg Type           |                             |
| SNJ54S181FK      | ACTIVE     | LCCC         | FK                 | 28   | 1           | TBD                     | POST-PLATE           | N / A for Pkg Type           |                             |
| SNJ54S181J       | ACTIVE     | CDIP         | J                  | 24   | 1           | TBD                     | Call TI              | N / A for Pkg Type           |                             |
| SNJ54S181JT      | ACTIVE     | CDIP         | JT                 | 24   | 1           | TBD                     | A42                  | N / A for Pkg Type           |                             |
| SNJ54S181W       | ACTIVE     | CFP          | W                  | 24   | 1           | TBD                     | A42                  | N / A for Pkg Type           |                             |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)





www.ti.com

31-Mar-2011

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

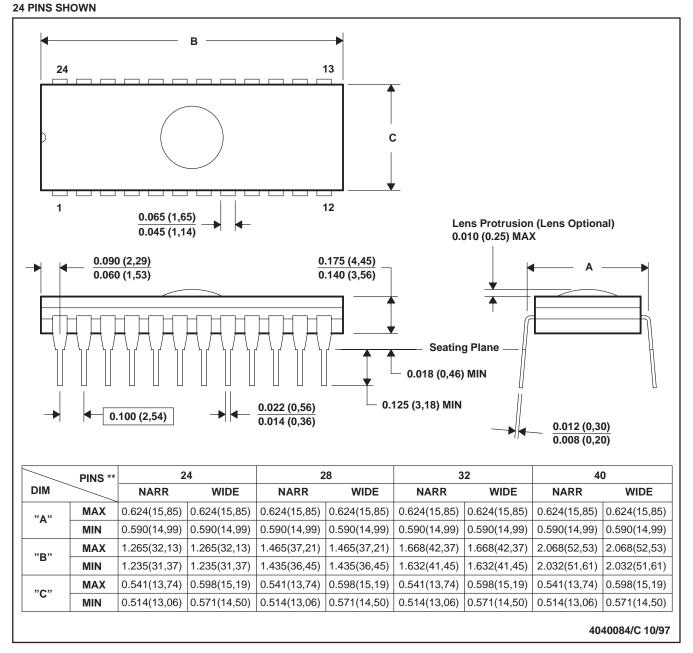
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN54LS181, SN54S181, SN74LS181, SN74S181 :

• Catalog: SN74LS181, SN74S181

• Military: SN54LS181, SN54S181


NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications



MCDI004A - JANUARY 1995 - REVISED NOVEMBER 1997

#### **CERAMIC DUAL-IN-LINE PACKAGE**



NOTES: A. All linear dimensions are in inches (millimeters).

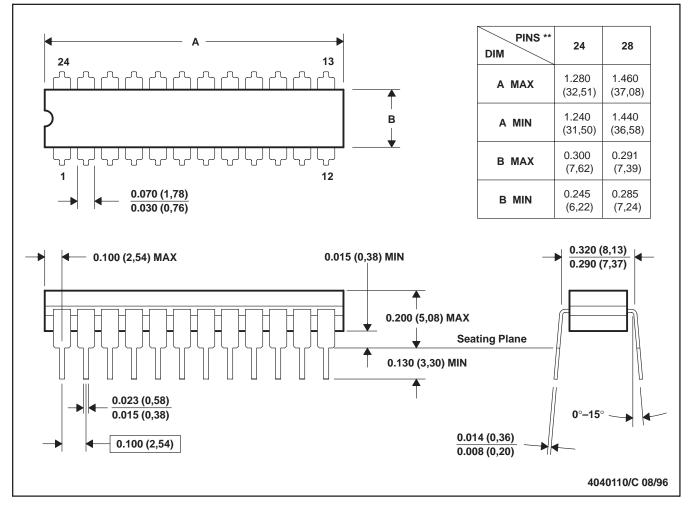
B. This drawing is subject to change without notice.

C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).

D. This package can be hermetically sealed with a ceramic lid using glass frit.

E. Index point is provided on cap for terminal identification.



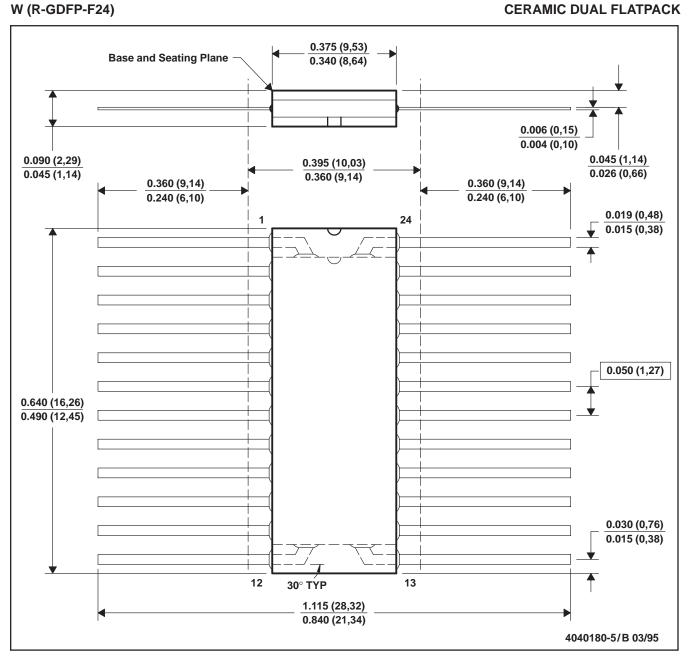

#### J (R-GDIP-T\*\*)

MCER004A - JANUARY 1995 - REVISED JANUARY 1997

# JT (R-GDIP-T\*\*)

#### **CERAMIC DUAL-IN-LINE**

24 LEADS SHOWN




NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

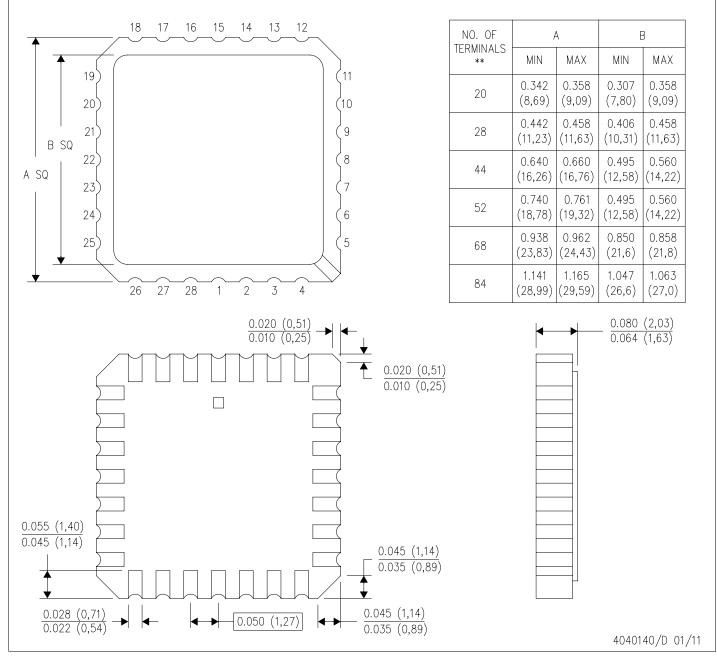


MCFP007 - OCTOBER 1994



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. This package can be hermetically sealed with a ceramic lid using glass frit.

- D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
- E. Index point is provided on cap for terminal identification only.



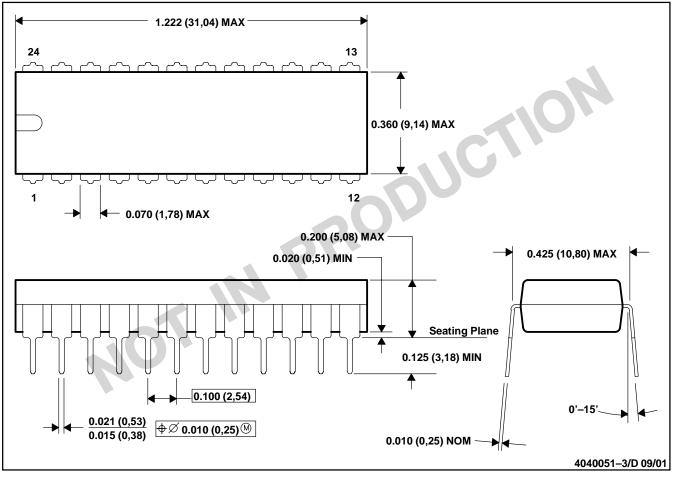
LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N\*\*) 28 TERMINAL SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



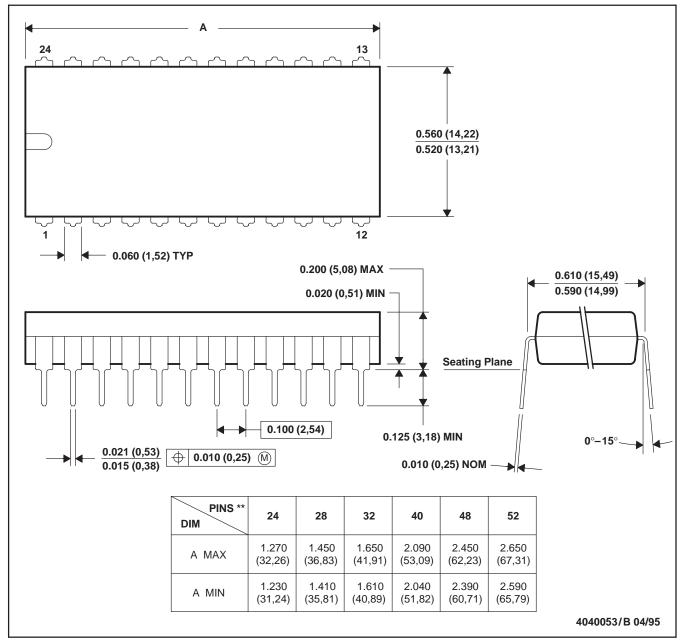
MPDI006B - SEPTEMBER 2001 - REVISED APRIL 2002

#### N (R-PDIP-T24)

#### PLASTIC DUAL-IN-LINE



- NOTES: A. All linear dimensions are in inches (millimeters).
  - B. This drawing is subject to change without notice.
  - C. Falls within JEDEC MS-010




MPDI008 - OCTOBER 1994

#### N (R-PDIP-T\*\*)

#### PLASTIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-011
- D. Falls within JEDEC MS-015 (32 pin only)



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications                     |                                   |
|-----------------------------|------------------------|----------------------------------|-----------------------------------|
| Audio                       | www.ti.com/audio       | Communications and Telecom       | www.ti.com/communications         |
| Amplifiers                  | amplifier.ti.com       | Computers and Peripherals        | www.ti.com/computers              |
| Data Converters             | dataconverter.ti.com   | Consumer Electronics             | www.ti.com/consumer-apps          |
| DLP® Products               | www.dlp.com            | Energy and Lighting              | www.ti.com/energy                 |
| DSP                         | dsp.ti.com             | Industrial                       | www.ti.com/industrial             |
| Clocks and Timers           | www.ti.com/clocks      | Medical                          | www.ti.com/medical                |
| Interface                   | interface.ti.com       | Security                         | www.ti.com/security               |
| Logic                       | logic.ti.com           | Space, Avionics and Defense      | www.ti.com/space-avionics-defense |
| Power Mgmt                  | power.ti.com           | Transportation and<br>Automotive | www.ti.com/automotive             |
| Microcontrollers            | microcontroller.ti.com | Video and Imaging                | www.ti.com/video                  |
| RFID                        | www.ti-rfid.com        | Wireless                         | www.ti.com/wireless-apps          |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        |                                  |                                   |
|                             |                        |                                  |                                   |

**TI E2E Community Home Page** 

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

# www.BDTIC.com/TI