TLC1550l, TLC1550M, TLC1551I 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS

- Power Dissipation .. . 40 mW Max
- Advanced LinEPIC ${ }^{\text {™ }}$ Single-Poly Process Provides Close Capacitor Matching for Better Accuracy
- Fast Parallel Processing for DSP and $\mu \mathrm{P}$ Interface
- Either External or Internal Clock Can Be Used
- Conversion Time ... $6 \mu \mathrm{~s}$
- Total Unadjusted Error . . . ± 1 LSB Max
- CMOS Technology

description

The TLC1550x and TLC1551 are data acquisition analog-to-digital converters (ADCs) using a 10-bit, switched-capacitor, successive-approximation network. A high-speed, 3 -state parallel port directly interfaces to a digital signal processor (DSP) or microprocessor ($\mu \mathrm{P}$) system data bus. D0 through D9 are the digital output terminals with D0 being the least significant bit (LSB). Separate power terminals for the analog and digital portions minimize noise pickup in the supply leads. Additionally, the digital power is divided into two parts to separate the lower current logic from the higher current bus drivers. An external clock can be applied to CLKIN to override the internal system clock if desired.

The TLC1550l and TLC1551I are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC1550M is characterized over the full military range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

\dagger Refer to the mechanical data for the JW package.

NC - No internal connection

AVAILABLE OPTIONS

TA *	PACKAGE			
	CERAMIC CHIP CARRIER (FK)	PLASTIC CHIP CARRIER (FN)	CERAMIC DIP (J)	SOIC (DW)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	TLC1550IFN TLC1551IFN	-	TLC1550IDW TLC1551IDW
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	TLC1550MFK	-	TLC1550MJ	-

This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either V_{CC} or ground.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinEPIC is a trademark of Texas Instruments.

TLC1550I, TLC1550M, TLC1551I

10-BIT ANALOG-TO-DIGITAL CONVERTERS

functional block diagram

typical equivalent inputs

TLC1550I, TLC1550M, TLC1551I 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS

Terminal Functions

TERMINAL			DESCRIPTION
NAME	No. \dagger	No. \ddagger	
ANLG GND	4	3	Analog ground. The reference point for the voltage applied on terminals ANLG V ${ }_{\text {DD }}$, AIN, REF+, and REF-.
AIN	5	4	Analog voltage input. The voltage applied to AIN is converted to the equivalent digital output.
ANLG V ${ }_{\text {DD }}$	6	5	Analog positive power supply voltage. The voltage applied to this terminal is designated $\mathrm{V}_{\text {DD3 }}$.
CLKIN	26	22	Clock input. CLKIN is used for external clocking instead of using the internal system clock. It usually takes a few microseconds before the internal clock is disabled. To use the internal clock, CLKIN should be tied high or left unconnected.
$\overline{\mathrm{CS}}$	25	21	Chip-select. $\overline{\mathrm{CS}}$ must be low for $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to be recognized by the A/D converter.
D0	13	11	Data bus output. D0 is bit 1 (LSB).
D1	14	12	Data bus output. D1 is bit 2.
D2	16	13	Data bus output. D2 is bit 3.
D3	17	14	Data bus output. D3 is bit 4.
D4	18	15	Data bus output. D4 is bit 5 .
D5	19	16	Data bus output. D5 is bit 6.
D6	20	17	Data bus output. D6 is bit 7 .
D7	21	18	Data bus output. D7 is bit 8 .
D8	23	19	Data bus output. D8 is bit 9 .
D9	24	20	Data bus output. D9 is bit 10 (MSB).
DGTL GND1	7	6	Digital ground 1. The ground for power supply DGTL V DD1 $^{\text {and }}$ is the substrate connection
DGTL GND2	9	7	Digital ground 2. The ground for power supply DGTL V ${ }_{\text {DD2 }}$
DGTL VDD1	10	8	Digital positive power-supply voltage 1 . DGTL $V_{D D 1}$ supplies the logic. The voltage applied to DGTL $V_{D D 1}$ is designated V_{DD}.
DGTL V ${ }_{\text {DD2 }}$	11	9	Digital positive power-supply voltage 2. DGTL $V_{\text {DD2 }}$ supplies only the higher-current output buffers. The voltage applied to DGTL $V_{D D 2}$ is designated $V_{D D 2}$.
$\overline{\text { EOC }}$	12	10	End-of-conversion. $\overline{\text { EOC }}$ goes low indicating that conversion is complete and the results have been transferred to the output latch. EOC can be connected to the $\mu \mathrm{P}$ - or DSP-interrupt terminal or can be continuously polled.
$\overline{\mathrm{RD}}$	28	24	Read input. When $\overline{\mathrm{CS}}$ is low and $\overline{\mathrm{RD}}$ is taken low, the data is placed on the data bus from the output latch. The output latch stores the conversion results at the most recent negative edge of $\overline{E O C}$. The falling edge of $\overline{\mathrm{RD}}$ resets $\overline{\mathrm{EOC}}$ to a high within the $\mathrm{t}_{\mathrm{d}(\mathrm{EOC})}$ specifications.
REF+	2	1	Positive voltage-reference input. Any analog input that is greater than or equal to the voltage on REF+ converts to 1111111111. Analog input voltages between REF + and REF - convert to the appropriate result in a ratiometric manner.
REF -	3	2	Negative voltage reference input. Any analog input that is less than or equal to the voltage on REF - converts to 0000000000 .
$\overline{\mathrm{WR}}$	27	23	Write input. When $\overline{\mathrm{CS}}$ is low, conversion is started on the rising edge of $\overline{\mathrm{WR}}$. On this rising edge, the ADC holds the analog input until conversion is completed. Before and after the conversion period, which is given by $\mathrm{t}_{\text {conv }}$, the ADC remains in the sampling mode.

[^0]
TLC1550I, TLC1550M, TLC1551I 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
 SLAS043G - MAY 1991 - REVISED NOVEMBER 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: $V_{D D 1}$ is the voltage measured at DGTL $V_{D D 1}$ with respect to DGND1. $V_{D D 2}$ is the voltage measured at DGTL $V_{D D 2}$ with respect to the DGND2. $V_{D D 3}$ is the voltage measured at ANLG $V_{D D}$ with respect to AGND. For these specifications, all ground terminals are tied together (and represent 0 V). When $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$, and V_{DD} are equal, they are referred to simply as V_{DD}.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD1 }}$, $\mathrm{V}_{\text {DD2 }}$, $\mathrm{V}_{\text {DD3 }}$		4.75	5	5.5	V
Positive reference voltage, $\mathrm{V}_{\mathrm{REF}+}$ (see Note 2)			VDD3		V
Negative reference voltage, $\mathrm{V}_{\text {REF }}$ ((see Note 2)			0		V
Differential reference voltage, $\mathrm{V}_{R E F_{+}-\mathrm{V}_{\text {REF }} \text { (}}$ (see Note 2)				VDD3	V
Analog input voltage range		0		VDD3	V
High-level control input voltage, V_{IH}		2			V
Low-level control input voltage, $\mathrm{V}_{\text {IL }}$				0.8	V
Input clock frequency, f(CLKIN)		0.5		7.8	MHz
Setup time, $\overline{\mathrm{CS}}$ low before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ goes low, $\mathrm{t}_{\text {su(CS }}$		0			ns
Hold time, $\overline{\mathrm{CS}}$ low after $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ goes high, $\mathrm{th}(\mathrm{CS})$		0			ns
$\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ pulse duration, $\mathrm{t}_{\mathrm{w}}(\mathrm{WR})$		50			ns
Input clock low pulse duration, $\mathrm{t}_{\mathrm{w}}(\mathrm{L}-\mathrm{CLKIN})$		40% of period		$80 \% \text { of }$ period	
	TLC155x\|	-40		85	
,	TLC1550M	-55		125	${ }^{\circ}$

NOTE 2: Analog input voltages greater than that applied to REF+ convert to all 1s (1111111111), while input voltages less than that applied to REF - convert to all 0s (0000000000). The total unadjusted error may increase as this differential voltage falls below 4.75 V .

TLC1550I, TLC1550M, TLC1551I 10-BIT ANALOG-TO-DIGITAL CONVERTERS
 WITH PARALLEL OUTPUTS
 SLAS043G - MAY 1991 - REVISED NOVEMBER 2003

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {REF+ }}=4.75 \mathrm{~V}$ to 5.5 V and $\mathrm{V}_{\text {REF- }}=0$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT	
V_{OH}	High-level output voltage		$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \quad \mathrm{IOH}=-360 \mu \mathrm{~A}$		2.4			V	
VOL Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \\ & \mathrm{l} \mathrm{OL}=2.4 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.4	V	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			0.5			
Ioz	Off-state (high-impedance-state) output current			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}, \quad \overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ at V_{DD}				10	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0$,	$\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ at V_{DD}			-10		
IIH	High-level input current		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$			0.005	2.5	$\mu \mathrm{A}$	
ILL	Low-level input current (except CLKIN)		$\mathrm{V}_{\mathrm{I}}=0$		-2.5	-0.005		$\mu \mathrm{A}$	
ILL	Low-level input current (CLKIN)				-50	-50		$\mu \mathrm{A}$	
Ios	Short-circuit output current		$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	7	14		mA	
			$\mathrm{V}_{\mathrm{O}}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-12	-6		
'(DD)	Operating supply current		$\overline{\mathrm{CS}}$ low and $\overline{\mathrm{RD}}$ high			2	8	mA	
C_{i}	Input capacitance	Analog inputs	See typical equivalent inputs TLC1550/11			60	90*	pF	
		Digital inputs				5	15*		

* On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
\dagger All typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TLC1550I, TLC1550M, TLC1551I
 10-BIT ANALOG-TO-DIGITAL CONVERTERS
 WITH PARALLEL OUTPUTS
 SLAS043G - MAY 1991 - REVISED NOVEMBER 2003

operating characteristics over recommended operating free-air temperature range with internal clock and minimum sampling time of $4 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{REF}+}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=0$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	TA ${ }^{\dagger}$	MIN	TYP\# MAX	UNIT
E_{L}	Linearity error	TLC1550I	See Note 3	Full range		± 0.5	LSB
		TLC1551I		Full range		± 1	
		TLC1550M		$25^{\circ} \mathrm{C}$		± 0.5	
				Full range		± 1	
EZS	Zero-scale error	TLC1550I	See Notes 2 and 4	Full range		± 0.5	LSB
		TLC1551I		Full range		± 1	
		TLC1550M		$25^{\circ} \mathrm{C}$		± 0.5	
				Full range		± 1	
EFS	Full-scale error	TLC15501	See Notes 2 and 4	Full range		± 0.5	LSB
		TLC1551I		Full range		± 1	
		TLC1550M		$25^{\circ} \mathrm{C}$		± 0.5	
				Full range		± 1	
	Total unadjusted error	TLC1550I	See Note 5	Full range		± 0.5	LSB
		TLC1551I		Full range		± 1	
		TLC1550M		$25^{\circ} \mathrm{C}$		± 1	
t_{c}	Conversion time		$\begin{aligned} & \mathrm{f}_{\text {clock }} \text { (external) }=4.2 \mathrm{MHz} \text { or } \\ & \text { internal clock } \end{aligned}$			6	$\mu \mathrm{s}$
$\mathrm{ta}_{\mathrm{a}}(\mathrm{D})$	Data access time after $\overline{\mathrm{RD}}$ goes low		See Figure 3			35	ns
$\mathrm{tv}_{\mathrm{V}}(\mathrm{D})$	Data valid time after $\overline{\mathrm{RD}}$ goes high				5		ns
$\mathrm{t}_{\text {dis }}$ (D)	Disable time, delay time from $\overline{\mathrm{RD}}$ high to high impedance					30	ns
$t_{d}(E O C)$	Delay time, $\overline{\mathrm{RD}}$ low to $\overline{\mathrm{EOC}}$ high				0	15	ns

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the TL155xI devices and $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the TLC1550M.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. Analog input voltages greater than that applied to REF+ convert to all 1s (1111111111), while input voltages less than that applied to REF - convert to all 0s (0000000000). The total unadjusted error may increase as this differential voltage falls below 4.75 V .
3. Linearity error is the difference between the actual analog value at the transition between any two adjacent steps and its ideal value after zero-scale error and full-scale error have been removed.
4. Zero-scale error is the difference between the actual mid-step value and the nominal mid-step value at specified zero scale. Full-scale error is the difference between the actual mid-step value and the nominal mid-step value at specified full scale.
5. Total unadjusted error is the difference between the actual analog value at the transition between any two adjacent steps and its ideal value. It includes contributions from zero-scale error, full-scale error, and linearity error.

PARAMETER MEASUREMENT INFORMATION

$\mathrm{V}_{\mathbf{c p}}=$ voltage commutation point for switching between source and sink currents
NOTE A: Equivalent load circuit of the Teradyne A500 tester for timing parameter measurement
Figure 1. Test Load Circuit

APPLICATION INFORMATION

simplified analog input analysis

Using the circuit in Figure 2, the time required to charge the analog input capacitance from 0 to V_{S} within $1 / 2$ LSB can be derived as follows:

The capacitance charging voltage is given by

$$
\begin{equation*}
V_{C}=V_{S}\left(1-e^{-t_{C} / R_{t} C_{i}}\right) \tag{1}
\end{equation*}
$$

Where:

$$
R_{t}=R_{s}+r_{i}
$$

The final voltage to $1 / 2$ LSB is given by

$$
\begin{equation*}
V_{C}(1 / 2 \mathrm{LSB})=\mathrm{V}_{\mathrm{S}}-\left(\mathrm{V}_{\mathrm{S}} / 1024\right) \tag{2}
\end{equation*}
$$

Equating equation 1 to equation 2 and solving for time t_{c} gives

$$
\begin{equation*}
\mathrm{V}_{\mathrm{S}}-\left(\mathrm{V}_{\mathrm{S}} / 512\right)=\mathrm{V}_{\mathrm{S}}\left(1-\mathrm{e}^{-\mathrm{t}_{\mathrm{C}} / \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{i}}}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{c}(1 / 2 L S B)=R_{t} \times C_{i} \times \ln (1024) \tag{4}
\end{equation*}
$$

Therefore, with the values given, the time for the analog input signal to settle is

$$
\begin{equation*}
t_{c}(1 / 2 L S B)=\left(R_{S}+1 k \Omega\right) \times 60 p F \times \ln (1024) \tag{5}
\end{equation*}
$$

This time must be less than the converter sample time shown in the timing diagrams.

$\mathrm{V}_{\mathbf{I}}=$ Input voltage at AIN
$\mathrm{V}_{\mathrm{S}}=$ External driving source voltage
$\mathbf{R}_{\mathbf{S}}=$ Source resistance
$\mathrm{r}_{\mathrm{i}}=$ Input resistance
$\mathrm{C}_{\mathrm{i}}=$ Input capacitance
\dagger Driving source requirements:

- Noise and distortion for the source must be equivalent to the resolution of the converter.
- R_{S} must be real at the input frequency.

Figure 2. Input Circuit Including the Driving Source

TLC1550I, TLC1550M, TLC1551I

PRINCIPLES OF OPERATION

The operating sequence for complete data acquisition is shown in Figure 3. Processors can address the TLC1550 and TLC1551 as an external memory device by simply connecting the address lines to a decoder and the decoder
 Once $\overline{\mathrm{CS}}$ is low, the onboard system clock permits the conversion to begin with a simple write command and the converted data to be presented to the data bus with a simple read command. The device remains in a sampling (track) mode from the rising edge of $\overline{E O C}$ until conversion begins with the rising edge of $\overline{W R}$, which initiates the hold mode. After the hold mode begins, the clock controls the conversion automatically. When the conversion is complete, the end-of-conversion $(\overline{\mathrm{EOC}})$ signal goes low indicating that the digital data has been transferred to the output latch. Lowering $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ then resets $\overline{\mathrm{EOC}}$ and transfers the data to the data bus for the processor read cycle.

Figure 3. TLC1550 or TLC1551 Operating Sequence
www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { e Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
TLC1550IDW	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TLC1550IDWG4	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1550IDWR	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1550IDWRG4	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TLC1550IFN	ACTIVE	PLCC	FN	28	37	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1550IFNG4	ACTIVE	PLCC	FN	28	37	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1550IFNR	ACTIVE	PLCC	FN	28	750	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1550INW	OBSOLETE	PDIP	NW	24		TBD	Call TI	Call TI
TLC1550MFKB	OBSOLETE	LCCC	FK	28		TBD	Call TI	Call TI
TLC1550MJ	OBSOLETE	CDIP	J	24		TBD	Call TI	Call TI
TLC1550MJB	OBSOLETE	CDIP	J	24		TBD	Call TI	Call TI
TLC1551IDW	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1551IDWG4	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1551IDWR	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1551IDWRG4	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1551IFN	ACTIVE	PLCC	FN	28	37	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC1551IFNG4	ACTIVE	PLCC	FN	28	37	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

		24		28		32		40	
		NARR	WIDE	NARR	WIDE	NARR	WIDE	NARR	WIDE
"A"	MAX	0.624(15,85)	0.624(15,85)	0.624(15,85)	0.624(15,85)	0.624(15,85)	0.624(15,85)	0.624(15,85)	0.624(15,85)
	MIN	0.590(14,99)	0.590(14,99)	$0.590(14,99)$	0.590(14,99)	0.590(14,99)	$0.590(14,99)$	0.590(14,99)	0.590(14,99)
"B"	MAX	1.265(32,13)	1.265(32,13)	1.465(37,21)	1.465(37,21)	1.668(42,37)	1.668(42,37)	2.068(52,53)	2.068(52,53)
	MIN	1.235(31,37)	1.235(31,37)	1.435(36,45)	$1.435(36,45)$	1.632(41,45)	1.632(41,45)	2.032(51,61)	2.032(51,61)
"C"	MAX	$0.541(13,74)$	0.598(15,19)	$0.541(13,74)$	0.598(15,19)	0.541(13,74)	$0.598(15,19)$	0.541(13,74)	0.598(15,19)
	MIN	0.514(13,06)	0.571(14,50)	0.514(13,06)	$0.571(14,50)$	0.514(13,06)	$0.571(14,50)$	0.514(13,06)	0.571(14,50)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).
D. This package can be hermetically sealed with a ceramic lid using glass frit.
E. Index point is provided on cap for terminal identification.

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers

Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
asp.ti.com
www.ti.com/clocks
nterface.ti.com
ogic.ti.com
oower.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/pr

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video \& Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontro
www.ti.com/medica
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/vided
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

[^0]: † Terminal numbers for FK and FN packages.
 \ddagger Terminal numbers for J, DW, and NW packages.

