

TPS65193

SLVS964A-JULY 2009-REVISED JULY 2010

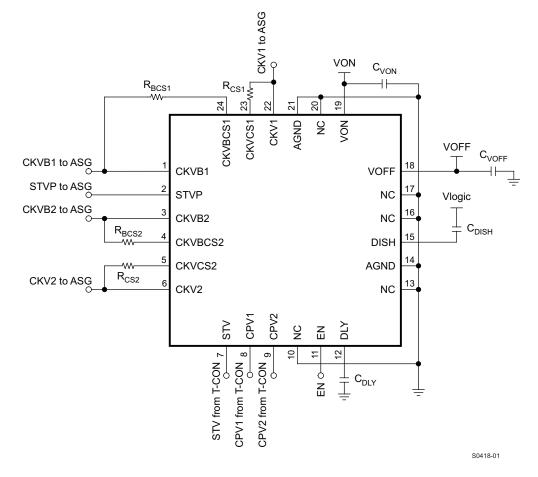
TFT LCD Using Amorphous Silicon Gate (ASG)

Dual High-Voltage Scan Driver for TFT-LCD

Check for Samples: TPS65193

APPLICATIONS

Technology


FEATURES

- Dual High-Voltage Scan Driver
- Scan Driver Output Charge Share
- High Output-Voltage Level: Up to 35 V
- Low Output-Voltage Level: Down to -28 V
- Logic-Level Inputs
- 24-Pin 4-mm × 4-mm QFN package

DESCRIPTION

 $\overline{\Lambda}\overline{\Lambda}$

The TPS65193 is dual high-voltage scan driver to drive an amorphous-silicon-gate (ASG) circuit on TFT glass. Each single high-voltage scan driver receives logic-level inputs of CPVx and generates two high-voltage outputs of CKVx and CKVBx. The device receives a logic-level input of STV and generates a high-voltage output of STVP. These outputs are swings from Voff (–28 V) to Von (35 V) and are used to drive the ASG circuit and charge/discharge the capacitive loads of the TFT LCD. In order to reduce the power dissipation of the device, a charge-share function is implemented. The device features a discharge function, which shorts Voff to GND in order to shut down the panel faster when the LCD is turned off.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPS65193

SLVS964A-JULY 2009-REVISED JULY 2010

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION⁽¹⁾

T _A	ORDERING P/N	PACKAGE	PACKAGE MARKING	
-40°C to 85°C TPS65193RGE		24-Pin 4-mm x 4-mm QFN	TPS65193	

(1) The RGE package is available taped and reeled and shipped in quantities of 2500 devices per reel.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	VALUE	UNIT
Voltage on pins CPVx, STV	-0.3 to 5.5	V
Voltage on pins EN	–0.3 to 5.5	V
Input voltage on VON ⁽²⁾	40	V
Input voltage on VOFF ⁽²⁾	-30	V
Voltage on CKVx, CKVBx, CKVCSx, CKVBCSx	-30 to 40	V
VON-VOFF	62	V
Voltage on STVP	-30 to 40	V
Voltage on DISH	-3.6 to 5.5	V
ESD rating HBM	2	kV
ESD rating MM	200	V
ESD rating CDM	700	V
Continuous power dissipation	See Dissipation R	atings table
Operating junction temperature range	-40 to 150	°C
Storage temperature range	-65 to 150	°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

DISSIPATION RATINGS

PACKAGE	$R_{ heta J A}$	T _A ≤ 25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
24-pin 4-mm x 4-mm QFN	88°C/W (Low-K board)	1.13 W	0.62 W	0.45 W

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP MAX	UNIT
VON	Positive high-voltage range	15	35	V
VOFF	Negative low-voltage range	-28	-3	V
VON-VOFF	VON to VOFF voltage range		60	V
f _{CPV}	CPV input frequency		150	kHz
T _A	Operating ambient temperature	-40	85	°C
TJ	Operating junction temperature	-0	125	°C

Froeuct, old r Link(s : TPS65 193

Copyright © 2009

2010 Texas Instruments Incorporated

STRUMENTS

www.ti.com

XAS

2

TEXAS INSTRUMENTS

TPS65193 SLVS964A-JULY 2009-REVISED JULY 2010

www.ti.com

ELECTRICAL CHARACTERISTICS

VOFF = -10 V, VON = 30 V, EN = 3.3 V, T_A = -40° C to 85°C, typical values are at T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT					
	Quiescent current into VON	CPVx = GND, STV = 3.3 V		600	800	٨
I _{QIN}	Quiescent current out of VOFF			120	200	μA
I _{SD}	Shutdown current into VON	CPVx = GND, STV = 3.3 V EN = GND		520	800	μA
	Shutdown current out of VOFF			260	400	
UNDERV	OLTAGE LOCKOUT					
V	Linderveltage laskevit threshold on VON	VON rising	10		13	V
V _{UVLO}	Undervoltage lockout threshold on VON	Hysteresis		250		mV
LOGIC S	IGNALS EN, CPVx, STV					
V _{IH}	High-level input voltage of CPVx, STV, EN		2			V
V _{IL}	Low-level input voltage of CPVx, STV, EN				0.5	V
OUTPUT	CKVx, CKVBx, STVP, CKVCSx					
V	Output high voltage of CKVx, CKVBx	1 10 mA	VON - 0.3			V
V _{OH}	Output high voltage of STVP	– I _{OH} = 10 mA	VON - 0.8			V
V	Output low voltage of CKVx, CKVBx	10 m 4			VOFF + 0.2	V
V _{OL}	Output low voltage of STVP	$-I_{OL} = -10 \text{ mA}$			VOFF + 0.4	V
R _{CHSH}	Charge-sharing on-resistance	I _{CHSH} = 10 mA		120		Ω
DISCHAR	RGING CIRCUIT					
R _{DSCHG}	Discharging resistance	DISH = -2 V		1.5		kΩ
R _{BIAS}	Resistance DISH to GND			100		kΩ
	DL DELAY					
V _{DLYREF}	Reference voltage for comparator			2.9		V
IDLYREF	Delay charge current			15		μA
R _{DLY}	Delay resistor		140	200	260	kΩ

TPS65193

4

SLVS964A-JULY 2009-REVISED JULY 2010

www.ti.com

NSTRUMENTS

ÈXAS

ELECTRICAL CHARACTERISTICS (continued)

VOFF = -10 V, VON = 30 V, EN = 3.3 V, T_A = -40° C to 85°C, typical values are at T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
AC CHA	RACTERISTICS					
Slew-	Slew rate, Slew- STVP		30	55		V/µs
Slew+	Slew rate, Slew+ STVP		20	35		Vμs
t _{pf}	Propagation delay, t _{pf-STVP}	Load = 4.7 nF (See Figure 1)		40	100	ns
t _{pr}	Propagation delay, t _{pr-STVP}			30	100	ns

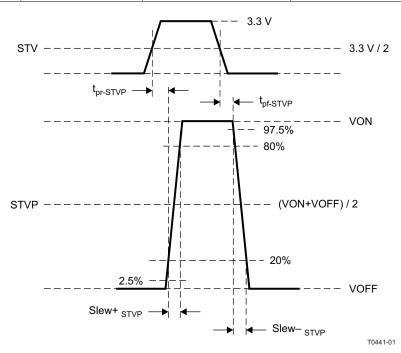


Figure 1. Switching Characteristics of STVP

CKVx, CKVBx SWITCHING CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{csf}	t _{csf-CPVx_CKVx} , t _{csf-CPVx_CKVBx}			80	150	ns
t _{csr}	t _{csr-CPVx_CKVx} , t _{csr-CPVx_CKVBx}	$f_{CPVx} = 85 \text{ kHz}, \text{ STV} = \text{GND},$ See Figure 2, load = 4.7 nF,		80	150	ns
t _f	tf-CPVx_CKVx, tf-CPVx_CKVBx	$R_{CS1} = R_{BCS1} = R_{CS2} = R_{BCS2} = 50 \Omega$		40	100	ns
t _r	t _{r-CPVx_CKVx} , t _{r-CPVx_CKVBx}			30	100	ns

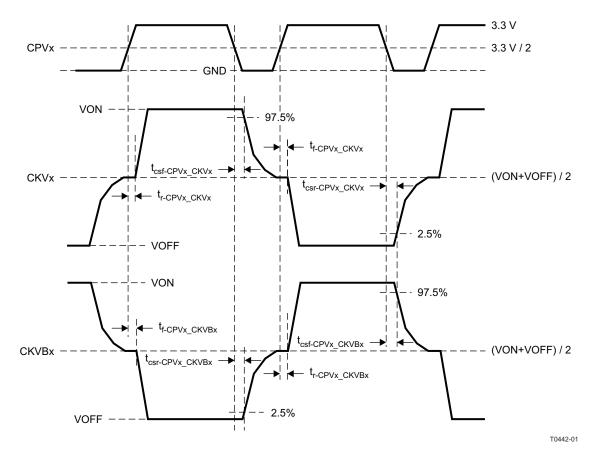


Figure 2. Switching Characteristics of CKVx, CKVBx (STV = GND)

TPS65193 SLVS964A – JULY 2009 – REVISED JULY 2010

www.ti.com

NSTRUMENTS

EXAS

CKVx, CKVBx SWITCHING CHARACTERISTICS (Continued)

VOFF = -10 V, VON = 30 V, EN = 3.3 V, T_A = -40° C to 85° C, typical values are at T_A = 25° C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Slew+	Slew+ _{CKVx} , Slew+ _{CKVBx}	f_{CPVx} = 85 kHz, STV = 3.3 V, See Figure 3, load = 4.7 nF, R _{CSx} = R _{BCSx} = 50 Ω	50	100		V/µs
Slew-	Slew- _{CKVx} , Slew- _{CKVBx}	f_{CPVx} = 85 kHz, STV = 3.3 V, See Figure 3, load = 4.7 nF, R _{CSx} = R _{BCSx} = 50 Ω	70	130		V/µs

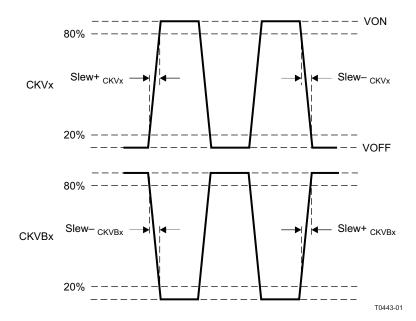
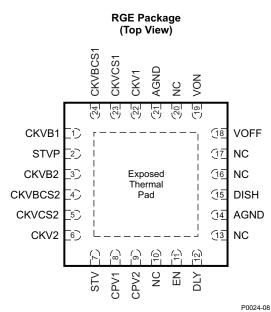


Figure 3. CKVx, CKVBx Output Rise and Fall Times (STV = 3.3 V)


Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com

7

Submit Documentation Feedback

DEVICE INFORMATION

Exposed thermal pad and NC pins are recommended to be connected with ground on the PCB for better thermal dissipation.

PIN		I/O	DESCRIPTION	
NAME	NO.			
CKV1	22	0	Output vertical-scan clock 1 for ASG	
CKV2	6	0	Dutput vertical-scan clock 2 for ASG	
CKVB1	1	0	Inverted-output vertical-scan clock 1 for ASG	
CKVB2	3	0	Inverted-output vertical-scan clock 2 for ASG	
CKVBCS1	24	Ι	Charge-share input for CKVB1	
CKVBCS2	4	Ι	Charge-share input for CKVB2	
CKVCS1	23	Ι	Charge-share input for CKV1	
CKVCS2	5	Ι	Charge-share input for CKV2	
CPV1	8	Ι	Input vertical-scan clock 1	
CPV2	9	Ι	Input vertical-scan clock 2	
DISH	15	Ι	VOFF discharge control	
DLY	12	0	Connecting a capacitor from this pin to GND allows the setting of the start-up delay.	
EN	11	Ι	Enable pin of device. When this pin is pulled high, the device starts up after a delay time set by DLY has passed.	
GND	14, 21	-	Ground	
NC	10, 13, 16, 17, 20	-	Not connected	
STV	7	Ι	Input vertical-scan start signal	
STVP	2	0	Output vertical-scan start signal	
VOFF	18	Ι	Negative low-supply voltage	
VON	19	Ι	Positive high-supply voltage	
Thermal pad		-	Not connected	

uct_old_r Lir (s_:*TP*S65 193

PIN FUNCTIONS

Instruments

Texas

TYPICAL CHARACTERISTICS

TABLE OF GRAPHS

		FIGURE
SYSTEM PERFORMANCE		ŀ
Start up acqueres CKV/v	EN = HIGH after UVLO, C _{DLY} = 10 nF, STV = LOW	Figure 4
Start-up sequence CKVx	EN = HIGH before UVLO, C_{DLY} = 10 nF, STV = LOW	Figure 5
Chart un comunes CTV/D	EN = HIGH after UVLO, C _{DLY} = 10 nF, CPVx = LOW	Figure 6
Start-up sequence STVP	EN = HIGH before UVLO, C _{DLY} = 10 nF, CPVx = LOW	Figure 7
OUTPUT CKVx, CKVBx, and STVP		
Disc time / propagation delay of CK//y	STV = HIGH, load = 4.7 nF	Figure 8
Rise time / propagation delay of CKVx	STV = LOW, load = 4.7 nF	Figure 9
Foll time / propagation dology of CK//y	STV = HIGH, load = 4.7 nF	Figure 10
Fall time / propagation delay of CKVx	STV = LOW, load = 4.7 nF	Figure 11
Rise time / propagation delay of STVP	CPV1 = LOW, load = 4.7 nF	Figure 12
Fall time / propagation delay of STVP	CPV1 = LOW, load = 4.7 nF	Figure 13
ST//D cutout	CPV1 = HIGH	Figure 14
STVP output	CPV1 = LOW	Figure 15
	STV = HIGH	Figure 16
CKVx, CKVBx outputs	STV = LOW	Figure 17

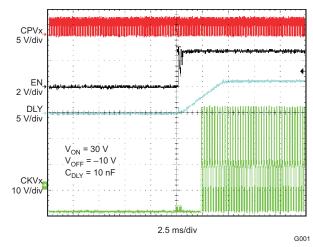


Figure 4. Start-Up Sequence CKVx, EN = HIGH After UVLO

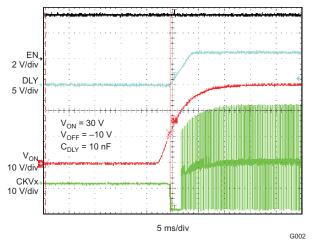
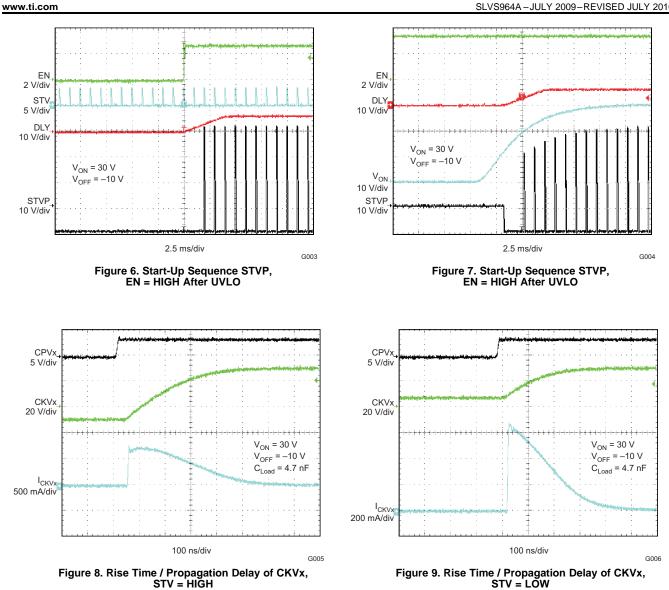



Figure 5. Start-Up Sequence CKVx, EN = HIGH Before UVLO

Foruct old r Link(s :TPS65 193

Copyright © 2009–2010, Texas Instruments Incorporated

9

Submit Documentation Feedback

TPS65193

SLVS964A-JULY 2009-REVISED JULY 2010

TEXAS INSTRUMENTS

TPS65193

10

SLVS964A-JULY 2009-REVISED JULY 2010

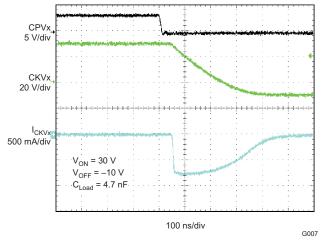


Figure 10. Fall Time / Propagation Delay of CKVx, STV = HIGH

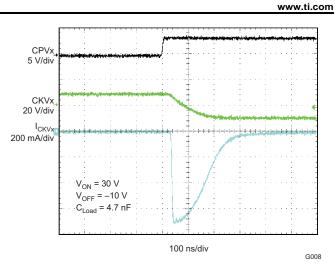


Figure 11. Fall Time / Propagation Delay of CKVx, STV = LOW

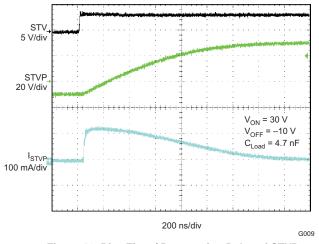


Figure 12. Rise Time / Propagation Delay of STVP, CPV1 = LOW

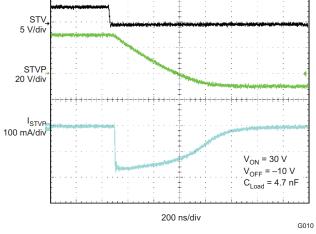


Figure 13. Fall Time / Propagation Delay of STVP, CPV1 = LOW

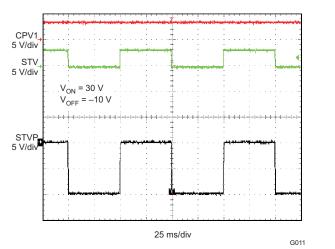
CPVx

5 V/div

STV 5 V/div

CKVBx 20 V/div

CKVx

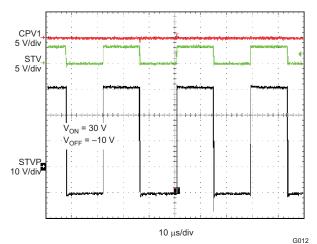

20 V/div

V_{ON} = 30 V

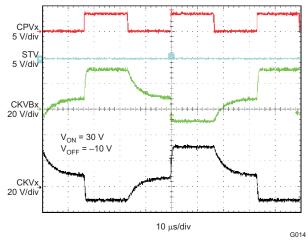
V_{OFF} = -10 V

TPS65193

SLVS964A-JULY 2009-REVISED JULY 2010

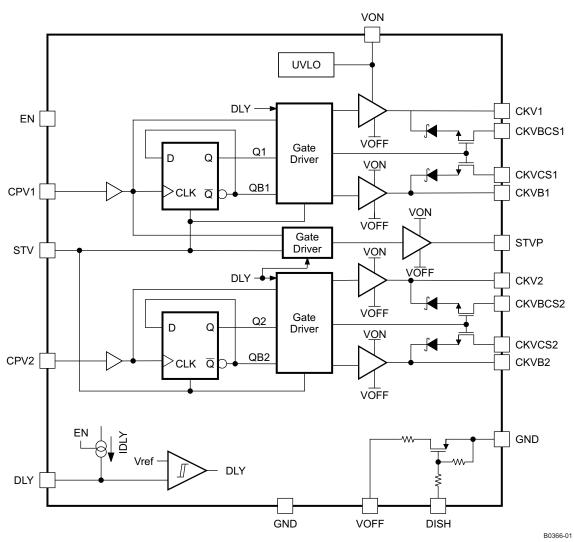


10 μs/div


Figure 16. CKVx, CKVBx Outputs, STV = HIGH

G013

Foruct old r Link(s :TPS65 193


Submit Documentation Feedback

Copyright © 2009–2010, Texas Instruments Incorporated

INSTRUMENTS

Texas

DETAILED DESCRIPTION

UNDERVOLTAGE LOCKOUT

The device has an undervoltage lockout feature to avoid improper operation of the device when input voltage VON is low. When VON is lower than 10 V, the device shuts down, and outputs CKVx, CKVBx, and STVP enter the high-impedance state.

INPUT SIGNALS

The timing controller in the system provides input signals to the TPS65193. STV is the synchronous signal for picture frames, and its frequency depends on the frame rate. CPVx are the synchronous signals for horizontal lines, and their frequency depends on the frame rate and vertical resolution.

OUTPUT SIGNALS

12

The STVP, CKVx, and CKVBx scan-driver outputs are generated with internal switches. Table 1 and Table 2 show the logic diagrams of the scan-driver outputs.

Copyright © 2009, 2010, Texas Instruments Incorporated

Table 1. STVP Logic Diagram

INPUT		OUTPUT
STV	CPV1	STVP
LOW	Don't care	VOFF
HIGH	LOW	VON
HIGH	HIGH	High impedance

Table 2. CKVx, CKVBx, and Output Charge-Share Logic

INPUT		OUTPUT				
STV	STV CPVx		CKVBx	CHARGE SHARE		
LOW	LOW	High impedance	High impedance	Enable		
LOW	Rising edge	Toggle state	Toggle state	Disable		
LOW	HIGH	Previous state	Previous state	Disable		
HIGH	LOW	VOFF	VON	Disable		
HIGH	HIGH	VON	VOFF	Disable		

OUTPUT CHARGE SHARE

Power dissipation can be reduced by the output charge share. Figure 18 shows the current flows when the charge share is enabled. CKVCSx and CKVBCSx are charge-share inputs. When the charge share is enabled, the charge that is in the capacitor of the positive voltage line is transferred to the capacitor of the negative voltage line. Charge-sharing resistors RCSx and RBCSx reduce the peak current into the charge-share inputs, CKVCSx and CKVBCSx, during the output charge share. These resistors also control the slope of the output charge-share waveform. The smaller RCSx and RBCSx, the bigger the peak current into the charge-share inputs and the steeper the slope of output charge-share waveform. The power dissipation in charge-sharing resistors should be taken into consideration. With 0603 size resistors, the power rating of two in parallel is good for most applications.

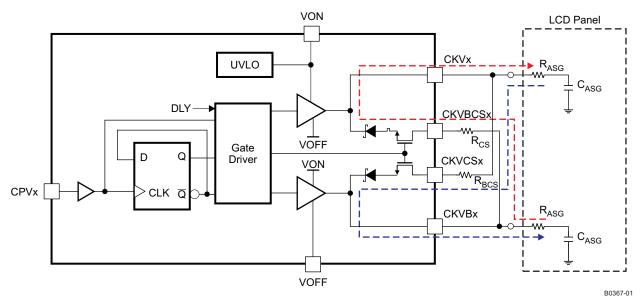


Figure 18. Single-Scan Driver Block Diagram

START-UP SEQUENCE (EN, DLY)

Copyright © 2009–2010, Texas Instruments Incorporated

The TPS65193 has adjustable start-up sequencing that is set by EN and DLY. When VON is below the UVLO threshold, all outputs are at high impedance. When EN is pulled LOW after the UVLO threshold is reached, all

old r Lir (s

:TPS6

uct

TPS65193 SLVS964A – JULY 2009 – REVISED JULY 2010

www.ti.com

outputs follow VOFF. Pulling EN high enables the device after a delay time set by the capacitor connected to DLY, and the delay time starts with EN = HIGH. If EN is pulled high before the UVLO threshold is reached, the delay starts when VON reaches the UVLO threshold. Pulling EN low disables the device and outputs CKVx, CKVBx, and STVP follow VOFF as long as VON is higher than the UVLO threshold. For the typical start-up sequence, see Figure 19 and Figure 20.

SETTING THE DELAY TIME (DLY)

Connecting an external capacitor to the DLY pin sets the delay time. If no delay time is required, the DLY pin can be left floating. The external capacitor is charged with a constant-current source of typically 15 μ A. The delay time is terminated when the capacitor voltage reaches the internal reference voltage of 2.9 V, and the final DLY voltage on an external capacitor is maximum 8 V.The voltage rating of the external capacitor must be higher than 8 V.

The external delay capacitor is calculated using the following formula:

C	_ Delay time	_ Delay time
C _{DLY} =	R _{DLY}	200 kΩ

Example for setting a delay time of 10 ms:

$$C_{DLY} = \frac{10 \text{ ms}}{200 \text{ k}\Omega} = 50 \text{ nF} \approx 47 \text{ nF}$$

(2)

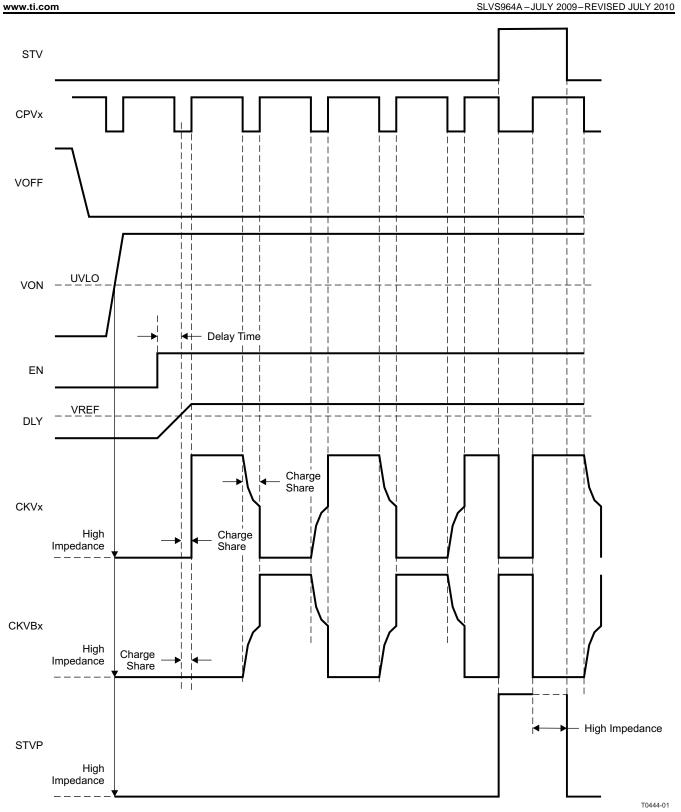


Figure 19. Start-Up Sequence With EN = High After UVLO Threshold

T

TPS65193 SLVS964A – JULY 2009–REVISED JULY 2010

1.1

STV

CPVx

VOFF

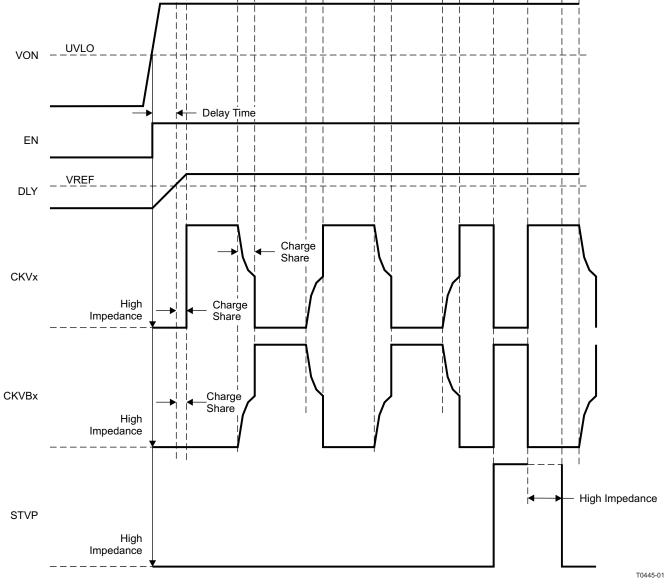


Figure 20. Start-Up Sequence With EN = High Before UVLO Threshold

Product old r Lir (s : TPS65193

Copyright © 2009 2010 Texas Instruments Incorporated

16

TIMING DIAGRAM OF SCAN DRIVER

Figure 21 shows the typical timing diagram of the TPS65193.

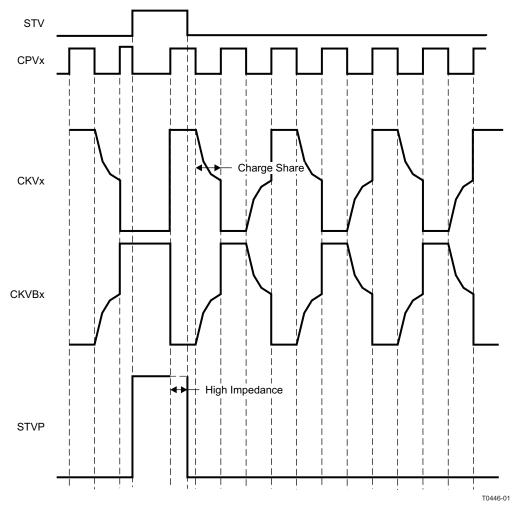
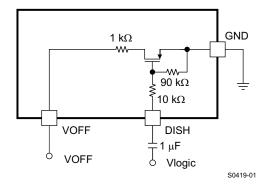


Figure 21. Scan Driver Timing Diagram

SUPPLY VOLTAGE, VON and VOFF

The TPS65193 drives the capacitive load. The high peak currents should be supplied from VON on the rising edges of the outputs and VOFF on the falling edges of the outputs, respectively. Bypass capacitors of 1 μ F must be placed as close as possible on both VON and VOFF supplies. Depending on the peak current that the TPS65193 must deliver, the bypass capacitor can be bigger than 1 μ F.


VOFF DISCHARGE

DISH controls the VOFF discharging time during the system power off. Figure 22 shows a typical application for VOFF discharge. DISH is connected to the system logic voltage through a capacitor. During power off, the system logic voltage falls, and the voltage on DISH falls below ground level. An internal switch turns on when DISH is below -0.6 V and VOFF is connected to ground through 1 k Ω , which helps VOFF discharge. A 1- μ F DISH capacitor is good for most applications. Figure 23 shows the typical power-off sequence of VOFF discharging. VOFF discharge can be disabled by connecting DISH to GND directly.

rouuct old r Link(s : TPS65

Copyright © 2009–2010, Texas Instruments Incorporated

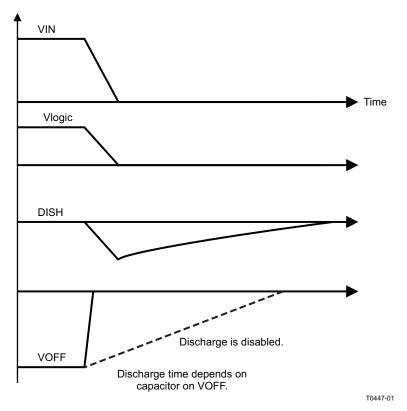


Figure 23. Power-Off Sequence of VOFF Discharge

18

TYPICAL APPLICATION

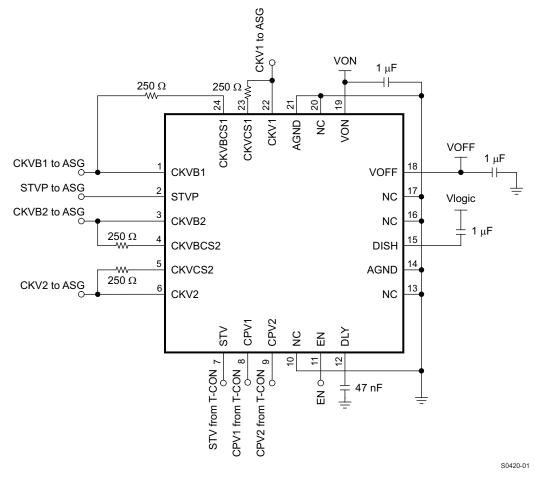


Figure 24. Typical Application With VOFF Discharge Enabled

TPS65193 SLVS964A-JULY 2009-REVISED JULY 2010

Figure 25. Typical Application With VOFF Discharge Disabled

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	e Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS65193RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Request Free Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

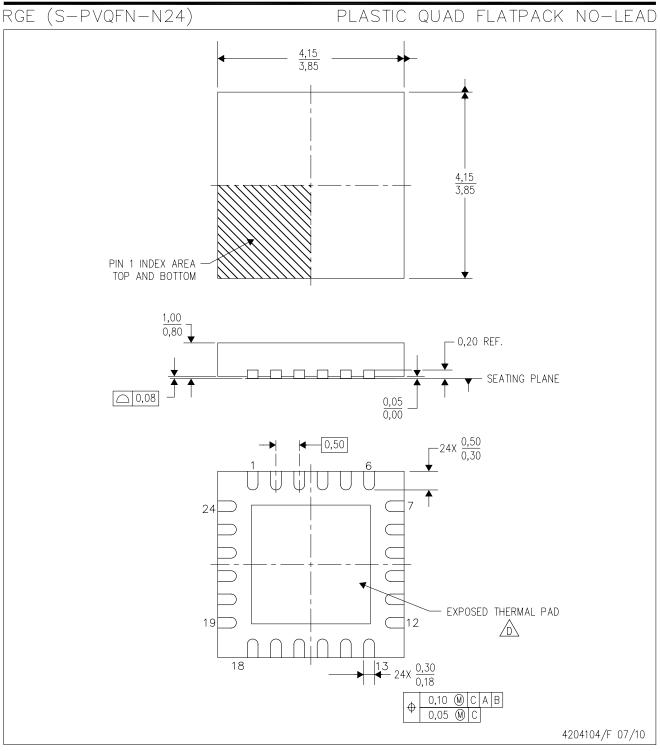
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

www.BDTIC.com/TI