

3.5-GHz, HIGH DYNAMIC RANGE, LOW-NOISE DOWN-CONVERTER

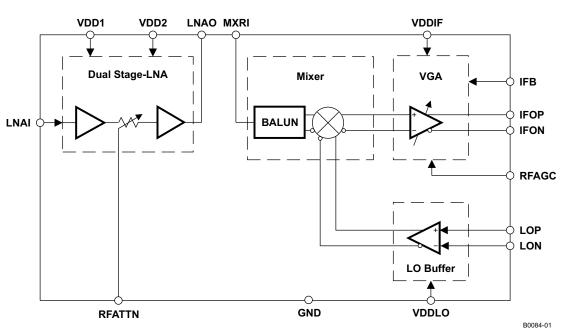
FEATURES

- Performs First Down-Conversion in 3.5-GHz Radios (3300–3800 MHz)
- Integrated LNA/Mixer/IF Amp/LO Buffer
- Provision for External Image Reject/Band-Pass Filter
- Low Noise-Figure/High Linearity
- Digital 10-dB Attenuator for High-Level Signals
- Frequency Range: 3.3–3.8 GHz
- 28 dB of Gain with 20 dB of Gain Control (10-dB Fixed)
- 2.5-dB Noise Figure, Typical
- LO Drive Level = 0 dBm, Typical

DESCRIPTION

The TRF1216 is the first of two integrated circuits used in the receiver section of Texas Instruments' 3.5-GHz radio chipset. The TRF1216 down-converts the 3.5-GHz input frequency to an intermediate frequency in the range of 400 MHz to 500 MHz. The device provides a differential output that passes through a SAW filter before connecting to a second down converter. For the best performance, Texas Instruments TRF1212 should be used to perform both the second down conversion and also provide the local oscillator for the TRF1216.

The TRF1216 includes a LNA with switchable attenuation, a balanced mixer, a variable gain IF amplifier and a differential LO Buffer for improved performance. In order to provide exceptional image rejection and extra jammer immunity, the TRF1216 offers a signal path to an off-chip filter. Specifications are provided assuming an in-band 2-dB insertion loss filter. To maximize input dynamic range, a 10-dB switchable attenuator is provided in the RF path as well as 10 dB of analog IF gain control. After the image reject filter, an on-chip Balun converts the signal from single ended to differential in order to provide better noise immunity at the mixer.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

BLOCK DIAGRAM

The detailed block diagram and the pin-out of the ASIC are shown in Figure 1 and Table 1.

TERMINAL				DESCRIPTION					
NO.	NAME								
1	LNAO	0	Analog	LNA Output, 50 Ω , ac-coupled					
2	VDD1	Ι	Power	LNA1 DC Bias (+5 V nominal)					
3, 4, 6, 9, 16, 19	GND	-	-	Ground					
5	LNAI	Ι	Analog	RF input - Needs dc block and input matching for optimum noise figure					
7	LOP	Ι	Analog	LO input positive, ac coupled					
8	LON	Ι	Analog	LO input negative, ac coupled					
10	VDDLO	Ι	Power	LO DC Bias (+5 V nominal)					
11	IFB	-	-	Not connected for normal operation. IF Bias Adjustment. Do not ground this pin or connect to any other pin.					
12	VDDIF	Ι	Power	IF Bias Network dc Bias (+5 V nominal)					
13	IFON	0	Analog	IF output and bias (see the application schematic for connections).					
14	IFOP	0	Analog	IF output and bias (see the application schematic for connections).					
15	RFAGC	Ι	Analog	Input voltage for analog gain control V_{RFAGC} = 0 V to 1.5 V Max gain at V_{RFAGC} = 0 V Min gain at V_{RFAGC} = 1.5 V					
17	RFATTN	I	Digital	TTL control for switched attenuator TTL low – Attenuator switched in TTL high – Attenuator switched out					
18	MXRI	Ι	Analog	Mixer Input 50 Ω					
20	VDD2	-	Power	LNA2 dc bias (+5 V nominal)					
Back	GND	_	_	Back of package has metal base that must be grounded for thermal and RF performance.					

TERMINAL FUNCTIONS

TRF1216

ABSOLUTE MAXIMUM RATINGS

		VALUES	UNIT
V _{DD}	DC supply voltage, VDD	0 to 5.5	V
P _{IN}	RF input power	10	dBm
TJ	Junction temperature	200	°C
P _D	Power dissipation	1100	mW
V _D	Digital input voltage	-0.3 to 5.5	V
V _A	Analog input voltage	–0.3 to 5	V
θ_{JC}	Thermal resistance junction-to-case ⁽¹⁾	9.1	°C/W
T _{stg}	Storage temperature	-40 to 105	°C
T _{op}	Operating temperature	-40 to 85	°C
	Lead temperature (40 Sec Max)	260	°C

(1) Thermal resistance is junction to ambient assuming thermal pad with nine thermal vias under package metal base. See the recommended PCB layout.

ELECTRICAL CHARACTERISTICS

The characteristics listed in the following tables are at V_{CC} = 5 V, T_A = 25°C unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
DC CHARACTERISTICS										
V_{DD}	Supply voltage			5	5.5	V				
I _{DD}	Total supply current			175	200	mA				
I _{LNA1}	LNA1 supply current	Pin 2 (VDD1)		35		mA				
I _{LNA2}	LNA2 supply current	Pin 20 (VDD2)		35		mA				
I _{IF}	IF AMP supply current	Pin 12 (VDDIF) plus IF drain bias on pins 13 and 14 (IFOP, IFON)		55		mA				
I _{LO}	LO supply current	Pin 10 (VDDLO)		50		mA				
V _{AGC}	Gain control voltage		0		2	V				
I _{AGC}	Gain control current		0		100	μA				
V _{IH}	Input high voltage		2.5		5	V				
V _{IL}	Input low voltage		0		0.8	V				
I _{IH}	Input high current				300	μA				
IIL	Input low current				-50	μA				

DOWNCONVERTER CHARACTERISTICS

Unless otherwise stated $V^{}_{DD}$ = 5 V, FRF = 3500 MHz, $T^{}_{A}$ = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
F _{RF}	RF input frequency		3300		3800	MHz
F _{LO}	LO input frequency		2800		3400	MHz
F _{IF}	IF output frequency		400	480	500	MHz
G	Maximum gain	V_{AGC} = 0 V, RFATTN disabled, Measured into 100- Ω differential load	27	30	33	dB
$\Delta_{\rm AGC}$	Analog gain control range	V_{AGC} from 0 to 1.5 V, Any RFATTN setting. Measured into 100- Ω differential load	7	10		dB
Δ_{ATTN}	Switched attenuator range	RFATTN from high-to-low, any VAGC setting. Measured into 100-Ω differential load	8.5	10	11.5	dB
G _{HG}	Gain flatness full band	Any 200-MHz band		1	2	dB
G _{NB}	Gain flatness / 6 MHz	Any 6-MHz band			0.4	dB
NF		V _{AGC} = 0 V, RFATTN disabled		2.5		dB
	Noise figure ⁽¹⁾	V _{AGC} = 0 V, RFATTN enabled		4.8		
		$V_{AGC} = 1.5 V$, RFATTN disabled	3.2			uр
		V _{AGC} = 1.5 V, RFATTN enabled				
		V _{AGC} = 0 V, RFATTN disabled		-17		
IP-1dB	Input power at 1-dB compression	$V_{AGC} = 0 V$, RFATTN enabled			dDm	
		$V_{AGC} = 1.5 V$, RFATTN disabled	-10			dBm
		$V_{AGC} = 1.5 V, RFATTN enabled$		-4		
		V _{AGC} = 0 V, RFATTN disabled		-7		
כחוו	Input 3rd order intercept point	V _{AGC} = 0 V, RFATTN enabled	-1			
IIP3	input sid order intercept point	V_{AGC} = 1.5 V, RFATTN disabled		-5		dBm
		$V_{AGC} = 1.5 V, RFATTN enabled$		5		
P _{LO}	LO input power	Referenced to $100-\Omega$ differential		0		dBm
	LO to MXRI leakage	LO input = 3 dBm, $V_{AGC} = 0 V$	-35	-45		dB
	LO to IF leakage	LO input = 3 dBm, $V_{AGC} = 0 V$	-40	-50		dB
	LNAO to RXI isolation	F _{RF} F = 3300 to 3800 MHz, RFATTN = TTL High	40			dB

(1) Assured by lab characterization/design and not subject to production test.

TYPICAL CHARACTERISTICS

Measurements resulting in the following graphs were taken on the evaluation board of the ASIC (see Figure 9).

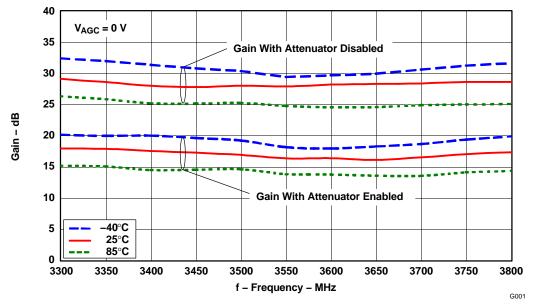


Figure 2. Gain vs Frequency for VAGC = 0 V

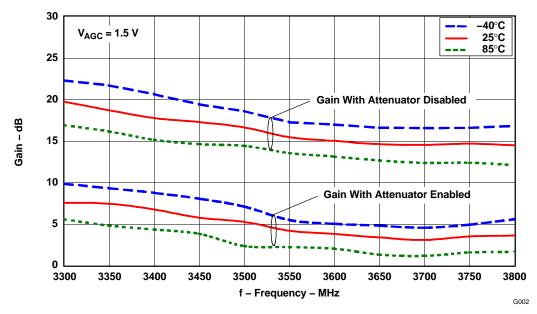
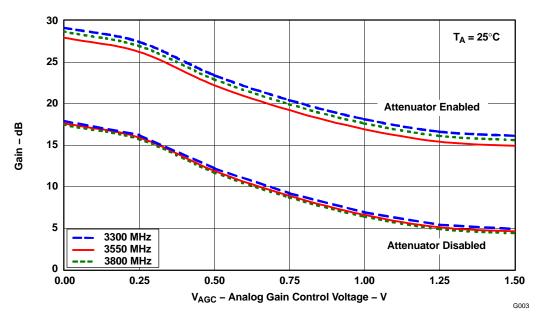



Figure 3. Gain vs Frequency for VAGC = 1.5 V

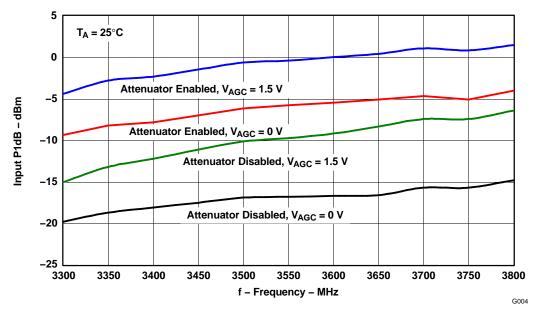
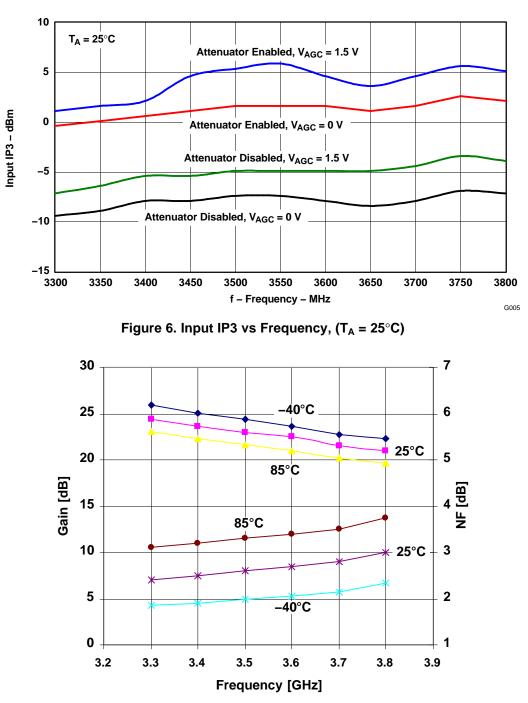
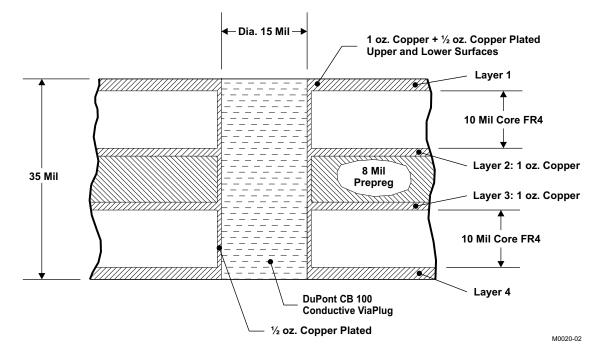



Figure 5. Input P1dB vs Frequency, ($T_A = 25^{\circ}C$)

TYPICAL CHARACTERISTICS (continued)

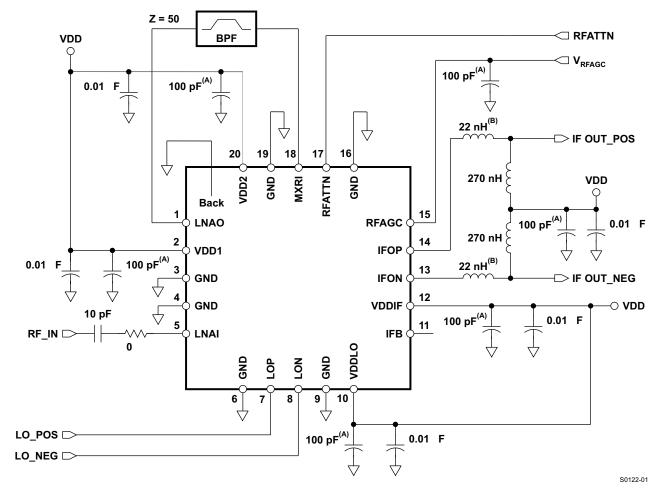
Figure 7. LNA Noise Figure vs Frequency With VAGC = 0 V


APPLICATION INFORMATION

A typical application schematic is shown in Figure 9.

The PCB material recommendations are shown in Table 1 and Figure 8.

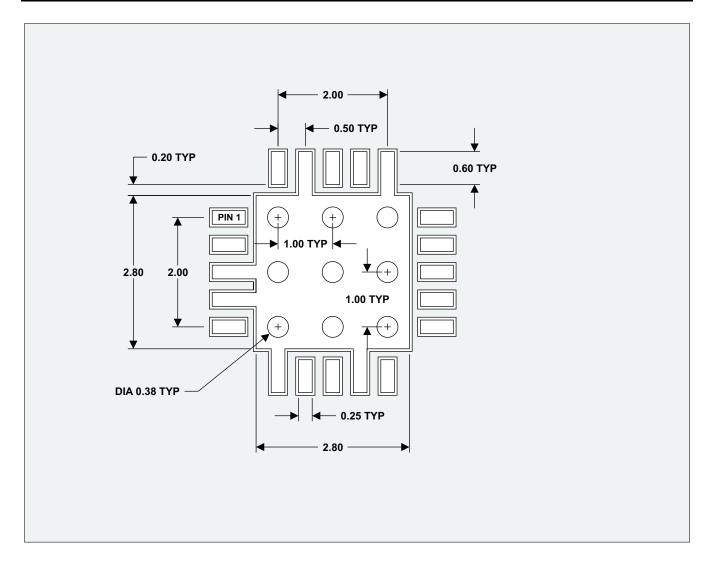
Table 1. PCB Recommendations


Board Material	FR4
Board Material Core Thickness	10 mil
Copper Thickness (starting)	1 oz
Prepreg Thickness	8 mil
Recommended Number of Layers	4
Via Plating Thickness	1/2 oz
Final Plate	White immersion tin
Final Board Thickness	33–37 mil

NOTE: Top and bottom surface finish: copper flash with 50–70 µin white tin immersion.

Figure 8. PCB Construction and Via Cross Section

TRF1216



A. Place 100-pF capacitors close to package pins.

B. Place 22-nH inductors close to package pins.

Figure 9. Recommended Application Schematic

Solder Mask. No Solder Mask Under Chip, On Lead Pads or On Ground Connections.

Notes: 9 Via Holes, Each 0.38 mm. Dimensions in mm

Figure 10. Recommended Pad Layout

M0022-02

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TRF1216IRGPR	ACTIVE	QFN	RGP	20	3000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR
TRF1216IRGPRG3	ACTIVE	QFN	RGP	20	3000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR
TRF1216IRGPT	ACTIVE	QFN	RGP	20	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR
TRF1216IRGPTG3	ACTIVE	QFN	RGP	20	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

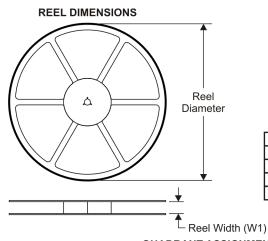
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

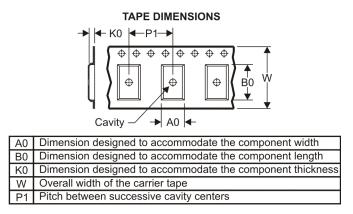
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

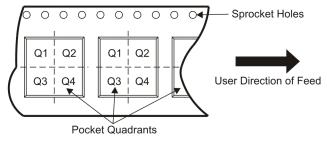
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

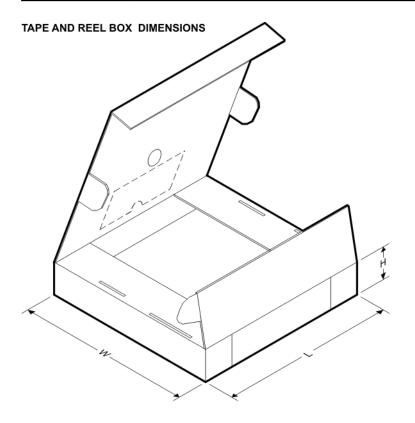

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*A	Il dimensions are nominal												
	Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TRF1216IRGPR	QFN	RGP	20	3000	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2
	TRF1216IRGPT	QFN	RGP	20	250	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

19-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRF1216IRGPR	QFN	RGP	20	3000	340.5	333.0	20.6
TRF1216IRGPT	QFN	RGP	20	250	340.5	333.0	20.6

MECHANICAL DATA

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.

- Β. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. E.
- 🖄 Check thermal pad mechanical drawing in the product datasheet for nominal lead length dimensions.

🞝 Ţexas Instruments **TTC.com/TI** www.]

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated