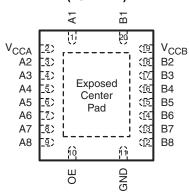

www.ti.com

8-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

FEATURES

- **No Direction-Control Signal Needed**
- Max Data Rates
 - 60 Mbps (Push Pull)
 - 2 Mbps (Open Drain)
- 1.2 V to 3.6 V on A Port and 1.65 V to 5.5 V on B Port ($V_{CCA} \leq V_{CCB}$)
- No Power-Supply Sequencing Required Either V_{CCA} or V_{CCB} Can Be Ramped First
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22 (A Port) ٠
 - 2000-V Human-Body Model (A114-B)
 - 150-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


- IEC 61000-4-2 ESD (B Port)
- ±8-kV Contact Discharge
 - ±6-kV Air-Gap Discharge

TERMINAL ASSIGNMENTS

	1	2	3	4	5
D	V _{CCB}	B2	B4	B6	B8
С	B1	B3	B5	B7	GND
В	A1	A3	A5	A7	OE
Α	V _{CCA}	A2	A4	A6	A8

RGY PACKAGE (TOP VIEW)

The exposed center pad, if used, must be connected as a secondary ground or left electrically open.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

(TOP VIEW) 🗆 B1 20 ___ V 19

PW PACKAGE

A2 LL	3	18	B2
A3 🗔	4	17	B3
A4 🗔	5	16	B4
A5 🖂	6	15	B5
A6 🖂	7	14	B6
A7 🖂	8	13	B7
A8 🖂	9	12	B8
OE 🗔	10	11	GND
		_	

Copyright © 2007_2008_Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date Products conform to specifications per Instruments standard warranty. Provide necessarily include testing of all parameter the tern of the Texas

D0

TEXAS INSTRUMENTS

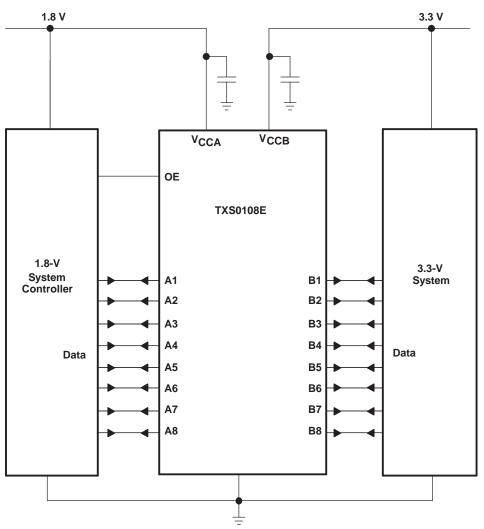
www.ti.com

SCES642B-DECEMBER 2007-REVISED SEPTEMBER 2008

DESCRIPTION/ORDERING INFORMATION

This 8-bit noninverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.65 V to 5.5 V. This allows for low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state.


To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN – RGY	Reel of 1000	TXS0108ERGYR	YF08E
–40°C to 85°C	TSSOP – PW	Reel of 2000	TXS0108EPWR	YF08E
	UFBGA – ZXY	Reel of 2500	TXS0108EZXYR	YF08E

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

TYPICAL OPERATING CIRCUIT

Submit Documentation Feedback Copyright © 2007, 2008 Texas Instruments Incorporated

Texas Instruments

www.ti.com

SCES642B-DECEMBER 2007-REVISED SEPTEMBER 2008

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CCA}			-0.5	4.6	V
V _{CCB}	Supply voltage range		-0.5	5.5	V
V	logut veltage renge (2)	A port	-0.5	4.6	V
VI	Input voltage range ⁽²⁾	B port	-0.5	6.5	v
N/	Voltage range applied to any output	A port	-0.5	4.6	V
Vo	in the high-impedance or power-off state ⁽²⁾	B port	-0.5	6.5	v
\ <i>\</i>	Valta as reasons and is the provident is the bight of law state $\binom{2}{3}$	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage range applied to any output in the high or low state $^{(2)(3)}$	B port	-0.5	V _{CCB} + 0.5	v
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

THERMAL IMPEDANCE RATINGS

				UNIT
		PW package ⁽¹⁾	70	
θ_{JA}	Package thermal impedance	RGY package ⁽²⁾	80.9	°C/W
		ZXY package ⁽¹⁾	47	

(1) The package thermal impedance is calculated in accordance with JESD 51-5.

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

INSTRUMENTS

Texas

www.ti.com

RECOMMENDED OPERATING CONDITIONS⁽¹⁾⁽²⁾

			V _{CCA}	V _{CCB}	MIN	MAX	UNIT
V _{CCA}	Supply voltage ⁽³⁾				1.2	3.6	V
V _{CCB}	Supply vollage				1.65	5.5	v
		A-Port I/Os	1.2 V to 1.95 V	1.65 V to 5.5 V	V _{CCI} – 0.2	V _{CCI}	
V	Lligh lovel input voltage	A-POILI/OS	1.95 V to 3.6 V	1.05 V 10 5.5 V	$V_{CCI} - 0.4$	V _{CCI}	V
V _{IH}	High-level input voltage	B-Port I/Os	1.2 V to 3.6 V		$V_{CCI} - 0.4$	V _{CCI}	v
		OE	1.2 V 10 3.6 V	1.65 V to 5.5 V	$V_{CCA} \times 0.65$	5.5	
		A-Port I/Os	1.2 V to 1.95 V		0	0.15	
V	Low lovel input veltage	A-POILI/OS	1.95 V to 3.6 V	1.65 V to 5.5 V	0	0.15	V
V _{IL}	Low-level input voltage	B-Port I/Os			0	0.15	v
		OE	1.2 V to 3.6 V	1.65 V to 5.5 V	0	$V_{CCA} \times 0.35$	
		A-Port I/Os push-pull driving					
Δt/Δv	Input transition rise or fall rate	B-Port I/Os push-pull driving	1.2 V to 3.6 V	1.65 V to 5.5 V		10	ns/V
		Control input					
T _A	Operating free-air temperature				-40	85	°C

V_{CCI} is the V_{CC} associated with the data input port.
 V_{CCO} is the V_{CC} associated with the output port.
 V_{CCA} must be less than or equal to V_{CCB}, and V_{CCA} must not exceed 3.6 V.

www.ti.com

ELECTRICAL CHARACTERISTICS⁽¹⁾⁽²⁾⁽³⁾

over recommended operating free-air temperature range (unless otherwise noted)

DA	RAMETER	TEST	V	v		T _A = 25°C		-40°C to 8	5°C	UNIT
PA	RAMETER	CONDITIONS	V _{CCA}	V _{CCB}	MIN	ТҮР	MAX	MIN	MAX	UNIT
V		I _{OH} = -20 μA,	1.2 V	1.65 V to 5.5 V		$V_{CCA} \times 0.67$				V
V _{OHA}		$V_{IB} \ge V_{CCB} - 0.4 V$	1.4 V to 3.6 V	1.03 V 10 3.3 V				$V_{CCA} \times 0.67$		v
		I _{OL} = 135 μA, V _{IB} ≤ 0.15 V	1.2 V				0.25			
		I _{OL} = 180 μA, V _{IB} ≤ 0.15 V	1.4 V						0.4	
V _{OLA}		$\begin{array}{l} I_{OL} = 220 \ \mu\text{A}, \\ V_{IB} \leq 0.15 \ \text{V} \end{array}$	1.65 V	1.65 V to 5.5 V					0.4	V
		$\begin{array}{l} I_{OL}=300 \ \mu\text{A}, \\ V_{IB} \leq 0.15 \ \text{V} \end{array}$	2.3 V						0.4	
		$\begin{array}{l} I_{OL} = 400 \; \mu \text{A}, \\ V_{IB} \leq 0.15 \; \text{V} \end{array}$	3 V						0.55	
V		I _{OH} = -20 μA,	1.2 V	1.65 V to 5.5 V						V
V _{OHB}		$V_{IA} \ge V_{CCA} - 0.2 V$	1.4 V to 3.6 V	1.03 V 10 5.3 V				$V_{CCB} \times 0.67$		v
		$\begin{array}{l} I_{OL} = 220 \ \mu\text{A}, \\ V_{IA} \leq 0.15 \ \text{V} \end{array}$		1.65 V					0.4	
V		$ I_{OL} = 300 \ \mu\text{A}, \\ V_{IA} \leq 0.15 \ \text{V} $	- 1.2 V to 3.6 V	2.3 V					0.4	V
V _{OLB}		$\begin{array}{l} I_{OL} = 400 \; \mu \text{A}, \\ V_{IA} \leq 0.15 \; \text{V} \end{array}$	1.2 V 10 5.6 V	3 V					0.55	v
		$\begin{split} I_{OL} &= 620 \ \mu\text{A}, \\ V_{IA} &\leq 0.15 \ \text{V} \end{split}$		4.5 V					0.55	
l _i	OE	$V_I = V_{CCI}$ or GND	1.2 V	1.65 V to 5.5 V			±1		2	μA
l _{oz}	A or B port		1.2 V	1.65 V to 5.5 V			±1		±2	μA
			1.2 V	1.65 V to 5.5 V		1.5			±2	
		$V_I = V_O = Open,$	1.4 V to 3.6 V	2.3 V to 5.5 V					2	۸
CCA		$I_{O} = 0$	3.6 V	0 V					2	μA
			0 V	5.5 V					-1	
			1.2 V	1.65 V to 5.5 V		1.5				
		$V_{I} = V_{O} = Open,$	1.4 V to 3.6 V	2.3 V to 5.5 V					6	
ССВ		$I_{O} = 0$	3.6 V	0 V					-1	μA
			0 V	5.5 V					1	
		$V_{I} = V_{CCI}$ or GND,	1.2 V	2.3 V to 5.5 V		3				μA
CCA +	CCB	I _O = 0	1.4 V to 3.6 V	2.3 V 10 3.3 V					8	μА
1		$V_{I} = V_{O} = Open,$	1.2 V	1.65 V to 5.5 V		0.05				
CCZA		$I_0 = 0$, $OE = GND$	1.4 V to 3.6 V	1.05 V 10 5.5 V					2	μA
1		$V_I = V_O = Open,$	1.2 V			4				
CCZB		I _O = 0, OE = GND	1.4 V to 3.6 V	1.65 V to 5.5 V					6	μA
Ci	OE		3.3 V	3.3 V		4.5			5.5	pF
<u>_</u>	A port		2.2.1/	2.2.1/		6			7	~ [
C _{io}	B port		3.3 V	3.3 V		5.5			6	pF

Pociet older Line (s. TXS01 8E

 $\begin{array}{ll} (1) & V_{CCO} \text{ is the } V_{CC} \text{ associated with the output port.} \\ (2) & V_{CCI} \text{ is the } V_{CC} \text{ associated with the input port.} \\ (3) & V_{CCA} \text{ must be less than or equal to } V_{CCB} \text{, and } V_{CCA} \text{ must not exceed 3.6 V.} \end{array}$

www.ti.com

TIMING REQUIREMENTS

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 V$

				V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3.3 V	V _{CCB} = 5 V	UNIT
				TYP	TYP	TYP	ТҮР	UNIT
	Data rata	Push-pull driving		20	20	20	20	Mhna
	Data rate	Open-drain driving		2	2	2	2	Mbps
	Dulas duration	Push-pull driving	Data innuta	50	50	50	50	~~
۱ _w	Pulse duration	Open-drain driving	Data inputs	500	500	500	500	ns

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 1.5 V ± 0.1 V (unless otherwise noted)

				V _{ССВ} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		V _{ССВ} = ± 0.5		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Data rate	Push-pull driving			40		60		60		50	Mbps
		Open-drain driving			2		2		2		2	wops
tw	Dulas duration	Push-pull driving	Data inputa	25		16.7		16.7		20		~~
	Pulse duration	Open-drain driving	Data inputs	500		500		500		500		ns

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted)

				V _{CCB} = 1 ± 0.15	1.8 V 5 V	V _{CCB} = 2 ± 0.2		V _{CCB} = 3 ± 0.3		V _{CCB} = ± 0.		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Data rate	Push-pull driving			40		60		60		60	Mbps
		Open-drain driving			2		2		2		2	wops
\mathbf{t}_{w}	Dulas duration	Push-pull driving	Data inputa	25		16.7		16.7		16.7		~~
	Pulse duration	Open-drain driving	Data inputs	500		500		500		500		ns

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (unless otherwise noted)

				V _{CCB} = 2. ± 0.2 \		V _{CCB} = 3 ± 0.3		V _{CC} = 5 ± 0.5		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
	Data vata	Push-pull driving			60		60		60	Mana
	Data rate	Open-drain driving			2		2		2	Mbps
	Pulse duration	Push-pull driving	Data inputa	16.7		16.7		16.7		20
۱ _w		Open-drain driving	Data inputs	500		500		500		ns

TIMING REQUIREMENTS

Submit Documentation Feedback

over recommended operating free-air temperature range, V_{CCA} = 3.3 V \pm 0.3 V (unless otherwise noted)

				V _{CCB} = 3 ± 0.3		V _{CC} = 5 ± 0.5	s v v	UNIT
				MIN	MAX	MIN	MAX	
	Data rate	Push-pull driving			60		60	Mhno
	Dala Tale	Open-drain driving			2		2	Mbps
÷	Pulse duration	Push-pull driving	Data inputs	16.7		16.7		20
۱ _w	Fuise duration	Open-drain driving	Data inputs	500		500		ns

Bocuct older Lin (s, TXS01/BEO

Copyright © 2007 2008 Texas Instruments Incorporated

www.ti.com

Texas

INSTRUMENTS

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CCA} = 1.2 V (unless otherwise noted)

PARAMETER	FROM	TO	TEST	V _{CCB} = 1.8 V ± 0.15 V	V _{CCB} = 2.5 V ± 0.2 V	V _{CCB} = 3.3 V ± 0.3 V	V _{CCB} = 5 V ± 0.5 V	UNIT	
	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР	ТҮР	ТҮР	ТҮР		
			Push-pull driving	6.5	5.9	5.7	5.5		
t _{PHL}	•		Open-drain driving	11.9	11.1	11.0	11.1		
4	A	В	Push-pull driving	7.1	6.3	6.2	6.6	ns	
t _{PLH}			Open-drain driving	293	236	197	152		
			Push-pull driving	6.4	6	5.8	5.6		
t _{PHL}	D	А	Open-drain driving	8.5	6.8	6.2	5.9		
	В		Push-pull driving	5.6	4.1	3.6	3.2	ns	
t _{PLH}			Open-drain driving	312	248	192	132		
t _{en}	OE A or B		Duch null driving	200	200	200	200	ns	
t _{dis}	OE	A or B	Push-pull driving	16.8	13.9	13.2	13.5	ns	
	A		Push-pull driving	7.9	6.7	6.5	6.4		
t _{rA}	A-por	t rise time	Open-drain driving	296	238	185	127	ns	
	D nor	t rice time	Push-pull driving	6.3	3.3	1.8	1.5		
t _{rB}	в-рог	t rise time	Open-drain driving	236	164	115	60	ns	
	A	rt fall time	Push-pull driving	5.8	4.8	4.3	3.8		
t _{fA}	А-ро	rt fall time	Open-drain driving	5.9	4.7	4.1	3.5		
4	P no	rt fall time	Push-pull driving	4.6	2.8	2.2	1.9	ns	
t _{fB}	B-port fall time		Open-drain driving	4.5	2.7	2.2	1.9		
t _{SK(O)}		el-to-channel skew	Push-pull driving	1	1	1	1	ns	
May data with			Push-pull driving	20	20	20	20	Miler -	
Max data rate	F	A or B	Open-drain driving	2	2	2	2	Mbps	

NSTRUMENTS www.ti.com

Texas

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CCA} = 1.5 V \pm 0.1 V (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CCB} = ± 0.15		V _{CCB} = ± 0.2		V _{CCB} = 3 ± 0.3	3.3 V V	V _{ССВ} = ± 0.5	= 5 V 5 V	UNIT
	(INPUT)	(001P01)	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		11		9.2		8.6		8.6	
t _{PHL}	۸	В	Open-drain driving	4	14.4	3.6	12.8	3.5	12.2	3.5	12	20
+	A B		Push-pull driving		12		10		9.8		9.7	ns
t _{PLH}			Open-drain driving	182	720	143	554	114	473	81	384	
			Push-pull driving		12.7		11.1		11		12	
t _{PHL}	Р	٨	Open-drain driving	3.4	13.2	3.1	9.6	2.8	8.5	2.5	7.5	
	В	A	Push-pull driving		9.5		6.2		5.1		1.6	ns
t _{PLH}			Open-drain driving	186	745	147	603	118	519	84	407	
t _{en}	OE	A or B	Push-pull driving		200		200		200		200	ns
t _{dis}	OE	A or B	Push-puli unving		28.1		22		20.1		19.6	ns
	Anort	rice time	Push-pull driving	3.5	13.1	3	9.8	3.1	9	3.2	8.3	
t _{rA}	А-роп	rise time	Open-drain driving	147	982	115	716	92	592	66	481	ns
+	Poort	rise time	Push-pull driving	2.9	11.4	1.9	7.4	0.9	4.7	0.7	2.6	20
t _{rB}	в-роп	inse unie	Open-drain driving	135	1020	91	756	58	653	20	370	ns
4	A nor	t fall time	Push-pull driving	2.3	9.9	1.7	7.7	1.6	6.8	1.7	6	
t _{fA}	А-роп	t fall time	Open-drain driving	2.4	10	2.1	7.9	1.7	7	1.5	6.2	ns
t	B por	t fall time	Push-pull driving	2	8.7	1.3	5.5	0.9	3.8	0.8	3.1	115
t _{fB}	в-роп		Open-drain driving	1.2	11.5	1.3	8.6	1	9.6	0.5	7.7	
t _{SK(O)}		-to-channel kew	Push-pull driving		1	1	1		1.1		1	ns
Max data rate	•	or B	Push-pull driving	40		60		60		50		Mbp
wax uata rate	А		Open-drain driving	2		2		2		2		s

www.ti.com

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CCA} = 1.8 V \pm 0.15 V(unless otherwise noted)

PARAMETER	FROM	то	TEST	V _{CCB} = 1 ± 0.15	.8 V V	V _{CCB} = 2 ± 0.2		V _{CCB} = ± 0.3	3.3 V 5 V	V _{CCB} = ± 0.5		UNIT	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MA X	UNIT	
			Push-pull driving		8.2		6.4		5.7		5.6		
t _{PHL}	•		Open-drain driving	3.6	11.4	3.2	9.9	3.1	9.3	3.1	8.9		
	A	В	Push-pull driving		9		2.1		6.5		6.3	ns	
t _{PLH}			Open-drain driving	194	729	155	584	126	466	90	346		
			Push-pull driving		9.8		8		7.4		7		
t _{PHL}	в	Р	٨	Open-drain driving	3.4	12.1	2.8	8.5	2.5	7.3	2.1	6.2	20
t _{PLH} B	В	A	Push-pull driving		10.2		7		5.8		5	ns	
			Open-drain driving	197	733	159	578	129	459	93	323		
t _{en}	OE	A or B	Duch null driving		200		200		200		200	ns	
t _{dis}	OE	A or B	Push-pull driving		25.1		18.8		16.5		15.3	ns	
	A		Push-pull driving	3.1	11.9	2.6	8.6	2.7	7.8	2.8	7.2		
t _{rA}	A-pon	t rise time	Open-drain driving	155	996	124	691	100	508	72	350	ns	
	Dinor	trice time	Push-pull driving	2.8	10.5	1.8	7.2	1.2	5.2	0.7	2.7	20	
t _{rB}	в-роп	t rise time	Open-drain driving	132	1001	106	677	73	546	32	323	ns	
	A	t fall times	Push-pull driving	2.1	8.8	1.6	6.6	1.4	5.7	1.4	4.9		
t _{fA}	А-рог	t fall time	Open-drain driving	2.2	9	1.7	6.7	1.4	5.8	1.2	5.2		
	D	t fall times	Push-pull driving	2	8.3	1.3	5.4	0.9	3.9	0.7	3	ns	
t _{fB}	в-por	t fall time	Open-drain driving	0.8	10.5	0.7	10.7	1	9.6	0.6	7.8		
t _{SK(O)}	Channel-to	-channel skew	Push-pull driving		1		1		1		1	ns	
May data rata	٥	or D	Push-pull driving	40		60		60		60		Mhpa	
Max data rate	A	or B	Open-drain driving	2		2		2		2		Mbps	

www.ti.com

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CCB} = 2 ± 0.2		V _{CCB} = 3 ± 0.3		V _{CCB} = ± 0.5		UNIT
	(INFUT)	(001201)	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		5		4		3.7	
t _{PHL}	А	В	Open-drain driving	2.4	6.9	2.3	6.3	2.2	5.8	
	A	D	Push-pull driving		5.2		4.3		3.9	ns
t _{PLH}	'PLH		Open-drain driving	149	592	125	488	93	368	
			Push-pull driving		5.4		4.7		4.2	
t _{PHL}	В	•	Open-drain driving	2.5	7.3	2.2	6	1.8	4.9	
	В	A	Push-pull driving		5.9		4.4		3.5	ns
t _{PLH}			Open-drain driving	150	595	126	481	94	345	
t _{en}	OE	A or B	Duch cull deixing		200		200		200	ns
t _{dis}	OE	A or B	 Push-pull driving 		15.7		12.9		11.2	ns
	A	t via a time a	Push-pull driving	2	7.3	2.1	6.4	2.2	5.8	
t _{rA}	A-por	t rise time	Open-drain driving	110	692	93	529	68	369	ns
	Dura	t via a time a	Push-pull driving	1.8	6.5	1.3	5.1	0.7	3.4	
t _{rB}	B-por	t rise time	Open-drain driving	107	693	79	483	41	304	ns
	A		Push-pull driving	1.5	5.7	1.2	4.7	1.3	3.8	
t _{fA}	А-ро	rt fall time	Open-drain driving	1.5	5.6	1.2	4.7	1.1	4	
4	Dee	rt fall time	Push-pull driving	1.4	5.4	0.9	4.1	0.7	3	ns
t _{fB}	в-ро	rt fall time	Open-drain driving	0.4	14.2	0.5	19.4	0.4	3	
t _{SK(O)}	Channel-to	o-channel skew	Push-pull driving		1		1.2		1	ns
May data note		. er D	Push-pull driving	60		60		60		Mana
Max data rate	F	A or B	Open-drain driving	2		2		2		Mbps

www.ti.com

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (unless otherwise noted)

PARAMETER	FROM	TO	TEST	V _{CCB} = 3 ± 0.3	3.3 V V	V _{CCB} = ± 0.5		UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	MAX	MIN	MAX	
			Push-pull driving		3.8		3.1	
t _{PHL}	A B		Open-drain driving	2	5.3	1.9	4.8	
	t _{PLH} A B		Push-pull driving		3.9		3.5	ns
^L PLH			Open-drain driving	111	439	87	352	
			Push-pull driving		4.2		3.8	
t _{PHL}	В	•	Open-drain driving	2.1	5.5	1.7	4.5	~~~
	Б	A	Push-pull driving		3.8		4.3	ns
t _{PLH}			Open-drain driving	112	449	86	339	
t _{en}	OE	A or B	Duch null driving		200		200	ns
t _{dis}	OE	A or B	Push-pull driving		11.9		9.8	ns
	A north	rias time	Push-pull driving	1.8	5.7	1.9	5	
t _{rA}	А-роп	rise time	Open-drain driving	75	446	57	337	ns
	D nort	rise time	Push-pull driving	1.5	5	1	3.6	
t _{rB}	в-роп	lise line	Open-drain driving	72	427	40	290	ns
•		t fall time	Push-pull driving	1.2	4.5	1.1	3.5	
t _{fA}	А-роп		Open-drain driving	1.1	4.4	1	3.7	20
t	Boor	t fall time	Push-pull driving	1.1	4.2	0.8	3.1	ns
t _{fB}	в-роп		Open-drain driving	1	4.2	0.8	3.1	
t _{SK(O)}	Channel-to	-channel skew	Push-pull driving		1		1	ns
		or B	Push-pull driving	60		60		Mbo
Max data rate	А		Open-drain driving	2		2		Mbps

OPERATING CHARACTERISTICS

T_A=25°C

						V _{CCA}						
			1.2 V	1.2 V	1.5 V	1.8 V	2.5 V	2.5 V	3.3 V			
	PARAMETER	TEST CONDITIONS	V _{CCB}									
			5 V	1.8 V	1.8 V	1.8 V	2.5 V	5 V	3.3 V to 5 V			
			TYP	ТҮР	ТҮР	ТҮР	ТҮР	ТҮР	TYP			
C	A-port input, B-port output		5.9	5.7	5.9	5.9	6.7	6.9	8			
C _{pdA}	B-port input, A-port output	$C_{L} = 0, f = 10 \text{ MHz},$ $t_{r} = t_{f} = 1 \text{ ns},$	10.2	10.3	9.9	9.7	9.7	9.4	9.8	pF		
C	A-port input, B-port output	$\dot{OE} = V_{CCA}$ (outputs enabled)	29.9	22.2	21.5	20.8	21	23.4	23	pr		
C _{pdB}	B-port input, A-port output		22.9	16.7	16.7	16.8	17.8	20.8	20.9			
C	A-port input, B-port output		0.01	0.01	0.01	0.01	0.01	0.01	0.01			
C _{pdA}	B-port input, A-port output	$C_{L} = 0, f = 10 \text{ MHz},$ $t_{f} = t_{f} = 1 \text{ ns},$	0.06	0.01	0.01	0.01	0.01	0.01	0.01	۶Ē		
C	A-port input, B-port output	OE = GND (outputs disabled)	0.06	0.01	0.01	0.01	0.01	0.03	0.02	pF		
C _{pdB}	B-port input, A-port output		0.06	0.01	0.01	0.01	0.01	0.03	0.02			

W.

www.ti.com

PRINCIPLES OF OPERATION

Applications

The TXS0108E can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The TXS0108E is ideal for use in applications where an open-drain driver is connected to the data I/Os. The TXS0108E can also be used in applications where a push-pull driver is connected to the data I/Os, but the TXB0104 might be a better option for such push-pull applications. The TXS0108E device is a semi-buffered auto-direction-sensing voltage translator design is optimized for translation applications (e.g. MMC Card Interfaces) that require the system to start out in a low-speed open-drain mode and then switch to a higher speed push-pull mode.

Architecture

To address these application requirements, a semi-buffered architecture design is used and is illustrated below (see Figure 1). Edge-rate accelerator circuitry (for both the high-to-low and low-to-high edges), a High-Ron n-channel pass-gate transistor (on the order of 300Ω to 500Ω) and pull-up resistors (to provide DC-bias and drive capabilities) are included to realize this solution. A direction-control signal (to control the direction of data flow from A to B or from B to A) is not needed. The resulting implementation supports both low-speed open-drain operation as well as high-speed push-pull operation.

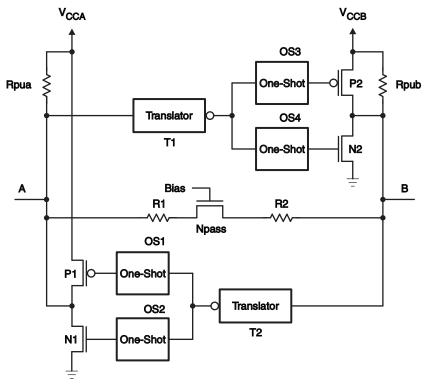


Figure 1. Architecture of a TXS01xx Cell

When transmitting data from A to B ports, during a rising edge the One-Shot (OS3) turns on the PMOS transistor (P2) for a short-duration and this speeds up the low-to-high transition. Similarly, during a falling edge, when transmitting data from A to B, the One-Shot (OS4) turns on NMOS transistor (N2) for a short-duration and this speeds up the high-to-low transition. The B-port edge-rate accelerator consists of one-shots OS3 and OS4, Transistors P2 and N2 and serves to rapidly force the B port high or low when a corresponding transition is detected on the A port.

When transmitting data from B to A ports, during a rising edge the One-Shot (OS1) turns on the PMOS transistor

www.ti.com

(P1) for a short-duration and this speeds up the low-to-high transition. Similarly, during a falling edge, when transmitting data from B to A, the One-Shot (OS2) turns on NMOS transistor (N1) for a short-duration and this speeds up the high-to-low transition. The A-port edge-rate accelerator consists of one-shots OS1 and OS2, Transistors P1 and N1 components and form the edge-rate accelerator and serves to rapidly force the A port high or low when a corresponding transition is detected on the B port.

Power Up

During operation, ensure that $V_{CCA} \leq V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \geq V_{CCB}$ does not damage the device, so any power supply can be ramped up first.

Enable and Disable


The TXS0108E has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pullup or Pulldown Resistors on I/O Lines

Each A-port I/O has a pull-up resistor (R_{pua}) to V_{CCA} and each B-port I/O has a pull-up resistor (R_{pub}) to V_{CCB} . R_{pua} and R_{pub} have a value of 40 k Ω when the output is driving low. R_{pua} and R_{pub} have a value of 4 k Ω when the output is driving high. R_{pua} and R_{pub} are disabled when OE = Low.

www.ti.com

PARAMETER MEASUREMENT INFORMATION

- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

ocuct older Lin (s, *TXS01*

Copyright © 2007

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TXS0108EPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TXS0108EPWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TXS0108ERGYR	ACTIVE	VQFN	RGY	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TXS0108EZXYR	ACTIVE	BGA MI CROSTA R JUNI OR	ZXY	20	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

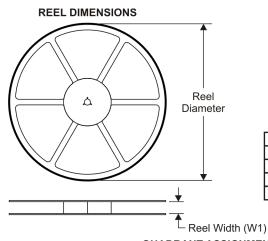
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

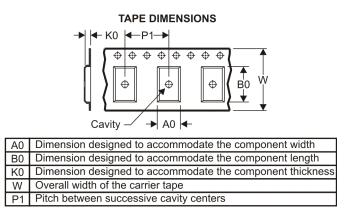
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

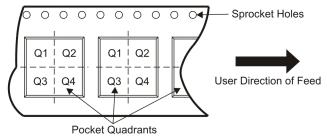
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

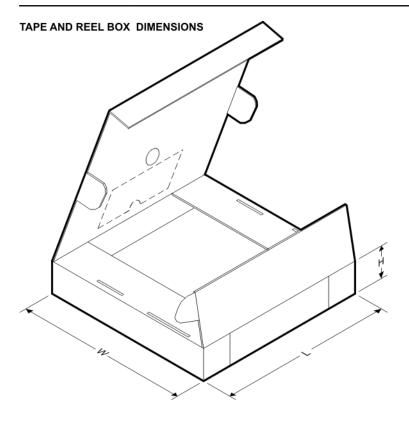

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

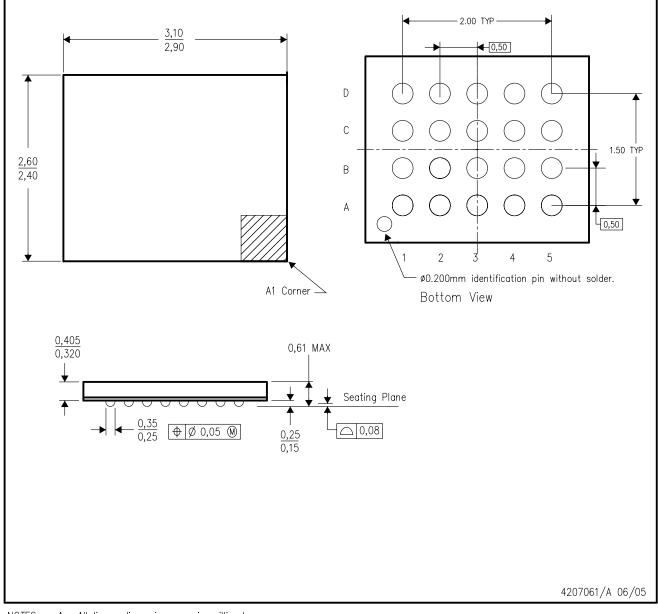

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS0108EPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TXS0108ERGYR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
TXS0108EZXYR	BGA MI CROSTA R JUNI OR	ZXY	20	2500	330.0	12.4	2.8	3.3	1.0	4.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

5-May-2011



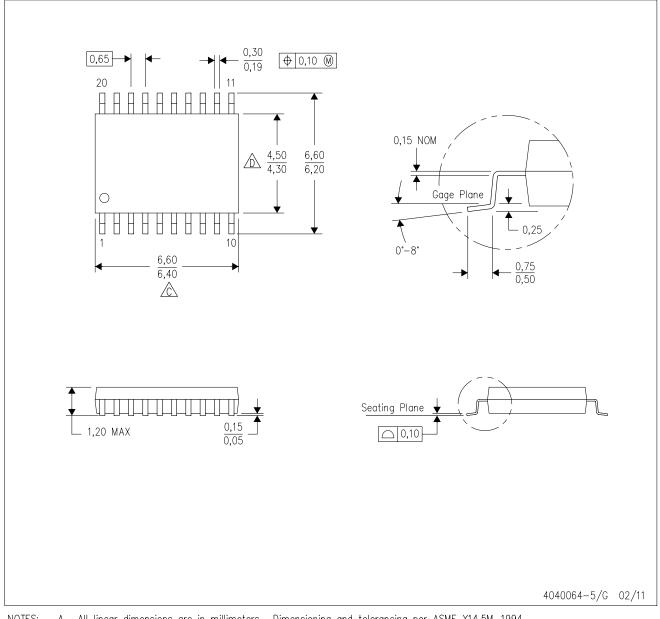
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXS0108EPWR	TSSOP	PW	20	2000	346.0	346.0	33.0
TXS0108ERGYR	VQFN	RGY	20	3000	346.0	346.0	29.0
TXS0108EZXYR	BGA MICROSTAR JUNIOR	ZXY	20	2500	340.5	338.1	20.6

ZXY (S-PBGA-N20)

PLASTIC BALL GRID ARRAY

NOTES:


A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

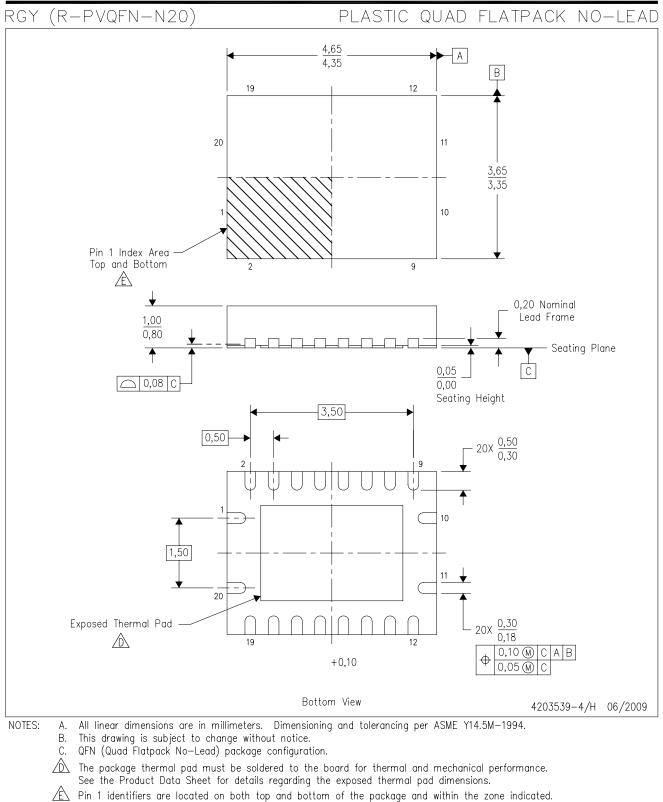
C. This package is a lead-free solder ball design.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

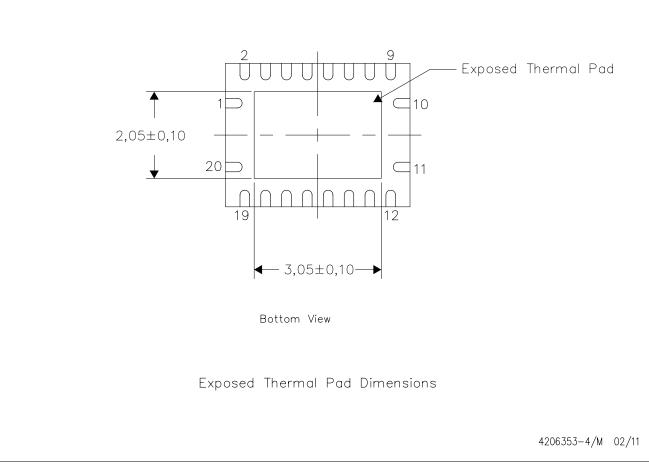
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

MECHANICAL DATA

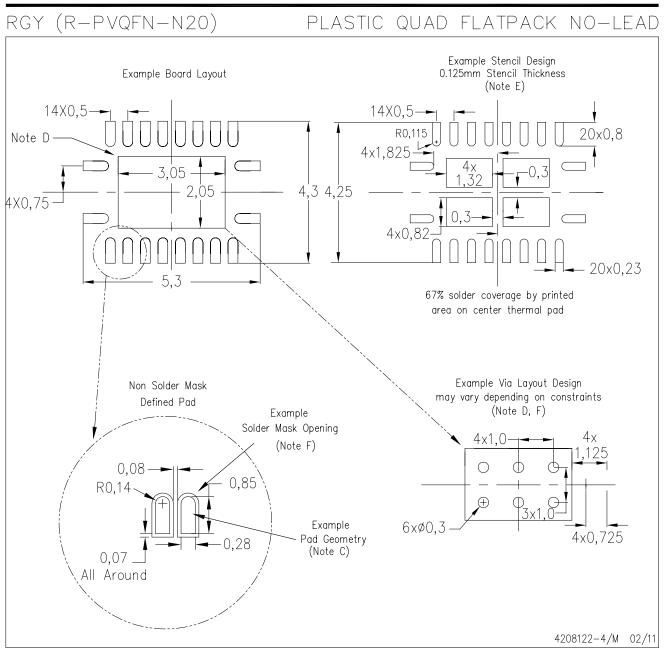
- <u>FL</u> Pin 1 identifiers are located on both top and bottom of the package and within the zone in The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BC.

RGY (R-PVQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated