

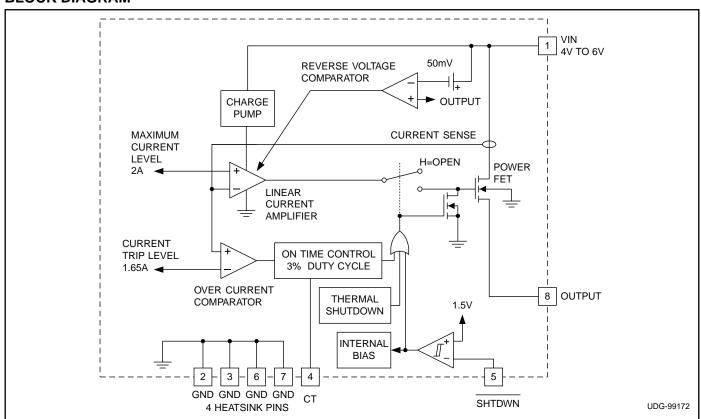
SCSI Termpower Manager

FEATURES

- Integrated Circuit Breaker Function
- Integrated 0.2Ω Power FET
- SCSI, SCSI-2, SCSI-3 Compliant
- 1μA ICC When Disabled
- Programmable On Time
- Accurate 1.65A Trip Current and 2.0A Max Current
- Fixed 3% Duty Cycle
- Uni-Directional Switch
- Thermal Shutdown

DESCRIPTION

The UCC3916 SCSI termpower manager provides complete power management, hot swap capability, and circuit breaker functions with minimal external components. For most applications, the only external component required to operate the device, other than supply bypassing, is a timing capacitor which sets the fault time.

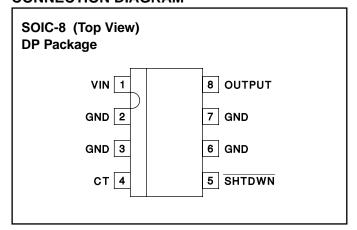

The current trip level is internally set at 1.65A, and the maximum current level is also internally programmed for 2A. While the output current is below the trip level of 1.65A, the internal power MOSFET is switched on at a nominal $220m\Omega.$ When the output current exceeds the trip level but remains less than the maximum current level, the MOSFET remains switched on, but the fault timer starts charging CT. Once the fault time is reached, the circuit will shut off for a time which equates to a 3% duty cycle. Finally, when the output current reaches the maximum current level, the MOSFET transitions from a switch to a constant current source.

The UCC3916 is designed for uni-directional current flow, emulating a diode in series with the power MOSFET.

The UCC3916 can be put in a sleep mode, drawing only $1\mu A$ of supply current.

Other features include thermal shutdown and low thermal resistance Small Outline Power package.

BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

VIN	+6V
Output Current	
DC	Self Limiting
Pulse (Less than 100ns)	20Å
Storage Temperature	-65°C to +150°C
Junction Temperature	-55°C to +150°C
Lead Temperature (Soldering, 10 sec.)	+300°C

Currents are positive into, negative out of the specified terminal. Consult Packaging Section of Databook for thermal limitations and considerations of packages.

CONNECTION DIAGRAM

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these parameters apply for T_J = 0°C to +70°C; VIN = 5V, SHTDWN = 2.4V T_A = T_J

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current Section		•	•	•	_
ICC			1.00	2.00	mA
ICC - Sleep Mode	SHTDWN = 0.2V		0.50	5	μΑ
Output Section					
Voltage Drop	IOUT = 1A		0.22	0.33	V
	IOUT = 1.5A		0.33	0.50	V
	IOUT = 1.65A		0.40	0.60	V
Trip Current		-1.8	-1.65	-1.5	Α
Max Current		-2.4	-2	-1.65	Α
Reverse Leakage	VIN = 4.5V, VOUT = 5V		6	20	μΑ
	VIN = 0V, $VOUT = 5V$		0.50	9	μΑ
Soft Start Time	Initial Startup		50		μs
Short Circuit Response			100		ns
Fault Section					
CT Charge Current	VCT = 1.0V	–45	-36.0	-27	μΑ
CT Discharge Current	VCT = 1.0V	0.90	1.0	1.50	μΑ
Output Duty Cycle	Vout = 0V	2.00	3.00	6.00	%
CT Charge Threshold		0.4	0.5	0.6	V
CT Discharge Threshold		1.2	1.4	1.8	V
Thermal Shutdown			170		°C
Thermal Hysteresis			10		°C
Shutdown Section					
Shutdown Threshold			1.5	3.0	V
Shutdown Hysteresis			150	300	mV
Shutdown Bias Current	Current SHTDWN = 1.0V				nA

Note 1: All voltages are with respect to ground.

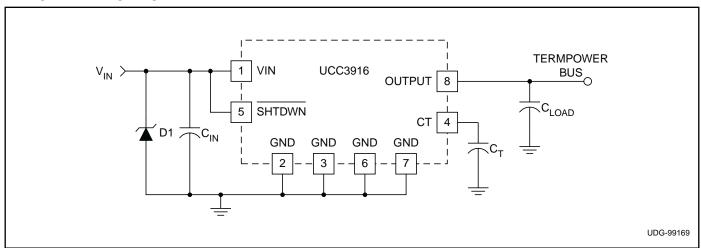
PIN DESCRIPTIONS

CT: A capacitor is applied between this pin and ground to set the maximum fault time. The maximum fault time must be more than the time to charge external capacitance. The maximum fault time is defined as:

Once the fault time is reached the output will shutdown for a time given by:

$$TSD = 1 \cdot 10^6 \cdot CT$$

this results in a 3% duty cycle. $0.1\mu F$ is recommended for SCSI applications to achieve the normal maximum capacitance on the Termpwr line.


SHTDWN: The IC enters a low-power sleep mode when this pin is low and exits the sleep mode when this pin is high.

VIN: Input voltage to the circuit breaker, ranging from 4V to 6V.

VOUT: Output voltage of the circuit breaker. When switched, the output voltage is approximately:

VOUT = VIN
$$-(220m\Omega) \cdot IOUT$$
.

TYPICAL APPLICATION

APPLICATION INFORMATION

Protecting The UCC3916 From Voltage Transients

The parasitic inductance associated with the power distribution can cause a voltage spike at $V_{\rm IN}$ if the load current is suddenly interrupted by the UCC3916. It is important to limit the peak of this spike to less than 6V to prevent damage to the UCC3916. This voltage spike can be minimized by:

- Reducing the power distribution inductance (e.g., twist the positive (+) and negative (-) leads of the power supply feeding V_{IN} pin, locate the power supply close to the UCC3916 or use a PCB ground plane).
- Decoupling V_{IN} with a capacitor, C_{IN} , located close to the V_{IN} . This capacitor is typically less than $1\mu F$ to limit the inrush current.
- Clamping the voltage at V_{IN} below 6V with a Zener diode, D1, located close to the V_{IN} pin.

SAFETY RECOMMENDATIONS

Although the UCC3916 is designed to provide system protection for all fault conditions, all integrated circuits can ultimately fail short. For this reason, if the UCC3916 is intended for use in safety critical applications where UL[©] or some other safety rating is required, a redundant safety device such as a fuse should be placed in series with the device. The UCC3916 will prevent the fuse from blowing virtually all fault conditions, increasing system reliability and reducing maintainence cost, in addition to providing the hot swap benefits of the device.

om 18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UCC3916DP	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UCC3916DPG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UCC3916DPTR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UCC3916DPTRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated