

K Band High Linearity Power Amplifier

Key Features

- Frequency Range: 17 21 GHz
- 20 dB Gain
- 30 dBm nominal P1dB
- 42 dBm nominal OTOI
- 20 dB Return Loss
- Bias 5 7 V @ 825 mA
- 0.25 um 3MI pHEMT technology
- Chip Dimensions 2.43 x 1.45 x 0.1mm

Measured Fixtured Data

Bias Conditions: Vd = 7 V, Id = 825 mA

Primary Applications

- Point-to-Point Radio
- K Band Sat-Com

Product Description

The TriQuint TGA4530 is a High Power Amplifier MMIC for 17 – 21GHz applications. The part is designed using TriQuint's 0.25 um 3MI pHEMT production process.

The TGA4530 nominally provides 30 dBm output power @ 1dB gain compression and 42 dBm OTOI at a bias of 7 V and 825 mA. The typical gain is 20 dB.

The part is ideally suited for low cost emerging markets such as Point-to-Point Radio, and K-band Satellite Communications.

The TGA4530 is 100% DC and RF tested on-wafer to ensure performance compliance.

The TGA4530 has a protective surface passivation layer providing environmental robustness.

Lead-Free & RoHS compliant

Note: Device is early in the characterization process prior to finalizing all electrical specifications. Specifications are subject to change without notice

TABLE I ABSOLUTE MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
Vd	Positive Supply Voltage	8 V	
Vg	Negative Supply Voltage Range	-5 V TO 0 V	
ld	Positive Supply Current	1.75 A	
I _G	Gate Supply Current	35 mA	
P_{IN}	Input Continuous Wave Power	26 dBm	
P_{D}	Power Dissipation	14.0 W	
Tchannel	Channel Temperature	200 °C	<u>2</u> /
	Mounting Temperature (30 Seconds)	320 °C	
	Storage Temperature	-65 to 200 °C	

- These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and/or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- .2/ Junction operating temperature will directly affect the device median lifetime. For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

TABLE II ELECTRICAL CHARACTERISTICS

 $(Ta = 25 \degree C Nominal)$

PARAMETER	TYPICAL	UNITS
Frequency Range	17 - 21	GHz
Drain Voltage, Vd	7	V
Drain Current, Id	825	mA
Gate Voltage, Vg	-0.45	V
Small Signal Gain, S21	20	dB
Input Return Loss, S11	20	dB
Output Return Loss, S22	20	dB
Saturated Output Power @ Pin = 16dBm, Psat	32	dBm
Output Power @ 1dB Gain Compression, P1dB	30	dBm
Output Third Order Intercept, OTOI @ 20dBm/Tone	42	dBm
Small Signal Gain Temperature Coefficient	-0.03	dB/ ⁰ C
Noise Figure @ 19GHz	6	dB

TABLE III
THERMAL INFORMATION

PARAMETER	TEST CONDITIONS	Tchannel (℃)	θ _{JC}	T _m (HRS)
θ _{JC} Thermal Resistance (channel to Case)	Vd = 7 V Id = 825 mA P _{diss} = 5.78 W Small Signal	150	14.7	1.0E+6
θ _{JC} Thermal Resistance (channel to Case)	Vd = 7 V Id = 1050 mA @ Psat P _{out} = 1.6 W (RF) P _{diss} = 5.75 W	150	14.7	1.0E+6

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 65°C baseplate temperature.

.

Median Lifetime (Tm) vs. Channel Temperature

Bias Conditions: Idq = 825 mA

Bias Conditions: Vd = 4 V - 7 V, Idq = 825 mA

Bias Conditions: Vd = 7 V, ldq = 825 mA

Bias Conditions: Vd=4 V - 7 V, Idq = 825 mA, $\Delta F = 1 MHz$

Bias Conditions: Vd = 6 V, ldq = 825 mA

Mechanical Drawing

Units: Millimeters (inches) Thickness: 0.10 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad

Chip size tolerance: +/- 0.05 (0.002)

GND IS BACKSIDE OF MMIC

Bond pad # 1	(RF Input)	0.100 x 0.150 (0.004 x 0.006)
Bond pad # 2	(Vg)	0.100 x 0.100 (0.004 x 0.004)
Bond pad # 3	(Vd)	0.150 x 0.100 (0.006 x 0.004)
Bond pad # 4	(Vdet)	0.081 x 0.081 (0.003 x 0.003)
Bond pad # 5	(RF Out)	0.100 x 0.150 (0.004 x 0.006)
Bond pad # 6	(Vd)	0.150 x 0.100 (0.006 x 0.004)
Bond pad # 7	(Vref)	0.081 x 0.081 (0.003 x 0.003)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Recommended Assembly Diagram

Vd = 5 to 7 V Id = 825 mA Vg = -0.45 V (Typical for 7 V Vd bias)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Power Detector

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200 ⁰C.

Ordering Information

Part	Package Style
TGA4530	GaAs MMIC Die

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.