
9.9 - 12.5 Gb/s Linear/Limiting Optical Modulator Driver

Measured Performance

Bias conditions: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, $Vg \approx -0.3 \text{ V Typical}$

PRBS = 2³¹-1; CPC = 50%, 10.7 GB/s; Vin = 1Vpp

Key Features

- Up to 10 Vpp Linear Output Voltage
- > 12 Vpp Limiting Mode Output Voltage
- Gain: 19 dB
- Integrated High Frequency Bias Tee
- Internal DC blocks
- Single-ended Input / Output
- Bias: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg = -0.3 V Typical for Linear operation
- Package Dimensions: 8 x 8 x 2.1 mm

Primary Applications

 Mach-Zehnder Modulator Driver for Metro and Long Haul

Product Description

The TriQuint TGA4823-2-SM is part of a series of optical driver amplifiers suitable for a variety of driver applications.

The TGA4823-2-SM is a high power wideband AGC amplifier that typically provides 19 dB small signal gain with 19 dB AGC range.

The TGA4823-2-SM is an excellent choice for applications requiring high drive combined with high linearity. The TGA4823-2-SM has demonstrated capability to deliver 10Vpp while maintaining output harmonic levels near -30dBc for a 2GHz fundamental.

The TGA4823-2-SM requires a low frequency choke and control circuitry.

RoHS compliant and Lead-Free finish. MSL1 per IPC/JEDEC J-STD-020C. Evaluation boards available on request.

Table I Absolute Maximum Ratings 1/

Symbol	Parameter	Value	Notes
Vd-Vg	Drain to Gate Voltage	12 V	
Vd	Drain Voltage	9 V	2/
Vg	Gate Voltage Range	-5 to 0 V	2/
Vctrl	Control Voltage Range	-1 to +2 V	2/
ld	Drain Current	400 mA	2/
lg	Gate Current Range	-1.8 to 18.9 mA	
Ictrl	Control Current Range	-1.8 to 18.9 mA	
Pin	Input Continuous Wave Power	27.8 dBm	
Tchannel	Channel Temperature	200 °C	2/

- 1/ These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum power dissipation listed in Table IV.

Table II
Recommended Linear Operating Conditions

Symbol	Parameter 1/	Value
Vd	Drain Voltage	8 V
ld	Drain Current	310 mA
Id_Drive	Drain Current under RF Drive	350 mA
Vg	Typical Gate Voltage	-0.3 V
Vctrl	Control Voltage	1 V

1/ See assembly diagram for bias instructions.

Table III

TGA4823-2-SM

RF Characterization Table

Bias: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg = -0.3 V, typical

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	NOMINAL	MAX	UNITS
Gain	Small Signal Gain	f = 1.5 – 2.5 GHz	18.5	20	23	dB
Jam	oman oignar oam	f = 0.1 – 4 GHz	-	20	_	
		f = 6 GHz	_	19	_	
		f = 8 GHz	-	18	-	
3dB BW	Small Signal 3 dB Bandwidth <u>1/</u>	f = 0.1 – 12 GHz	7.5	9.5	-	GHz
IRL	Input Return Loss	f = 0.1 – 7GHz	-	15	_	dB
	·	f = 7.1 – 10 GHz	-	15	-	
		f = 10.1 – 16 GHz	-	9	-	
ORL	Output Return Loss	f = 0.1 – 4 GHz	-	15	-	dB
		f = 4.1 – 7 GHz	-	15	-	
		f = 7.1 – 11 GHz	-	15	-	
		f = 11.1 – 16 GHz	-	12	-	
Gain Ripple	S21 peak-peak gain	f = 0.1 – 0.5 GHz	-0.8		0.8	dB
	variation <u>2/</u>	f = 0.6 – 5 GHz	-1.2		1.2	
		f = 5.1 – 10 GHz	-3		3	
DLP	Deviation from S21	f = 2 – 10 GHz	-40	+/- 30	40	deg
	Linear Phase	f = 10.1 – 15 GHz	-175	+/- 150	175	
P2	2 nd Harmonic	f = 0.5, 2.0, 5.0 GHz Pout = 22 dBm	-	-	-22	dBc
P3	3 rd Harmonic	f = 0.5, 2.0, 5.0 GHz Pout = 22 dBm	_	-	-26	dBc
Psat	Saturated Output Power	f = 2 GHz	-	26 (12.5)	-	dBm (Vpp)
P1dB	Output Power @ 1dB Compression	f = 2 GHz	-	25	-	dBm
AGC Range	Small Signal AGC Range		_	19	-	dB

^{1/} Fit the S21 curve to 4th order polynomial. AssignAve gain = |S21| measured between 1.5 and 2.5 GHz. Determine 3dB point from polynomial fit to S21 curve.

^{2/} Ripple cacluation is defined the difference between measured S21 value (dB) and a 4th order (or less) polynomial fit for S21 (dB) for frequency range = 0.1 to 12 GHz.

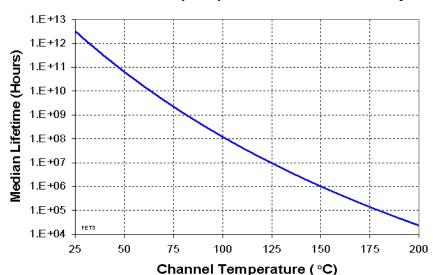
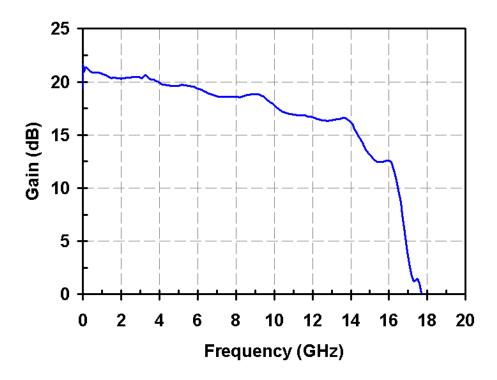
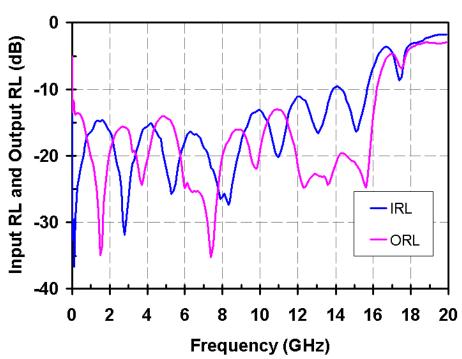
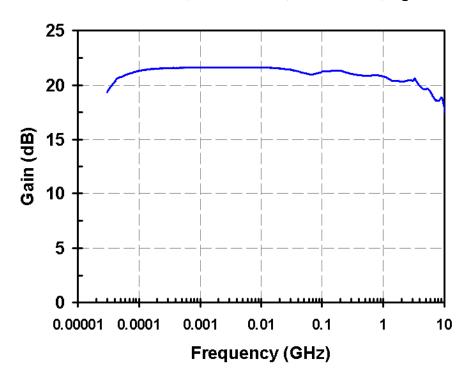


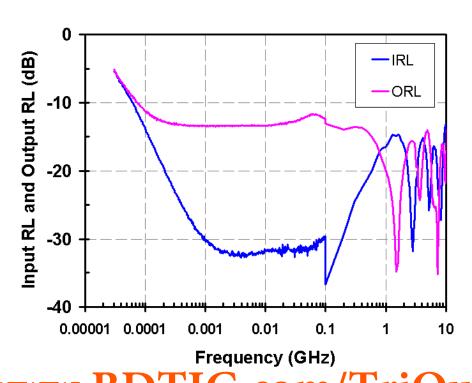
Table IV Power Dissipation and Thermal Properties

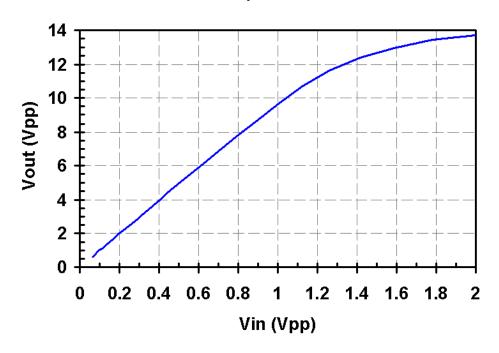
Parameter	Test Conditions	Value	Notes
Maximum Power Dissipation	Tbaseplate = 70 °C	Pd = 3.17 W Tchannel = 150 °C Tm = 1.0E+6 Hrs	<u>1/2</u> /
Thermal Resistance, θjc	Vd = 8 V Id = 310 mA Pd = 2.48 W	θjc = 24.3 (°C/W) Tchannel = 130 °C Tm = 5.8E+6 Hrs	
Thermal Resistance, θjc Under RF Drive	Vd = 8 V Id = 350 mA Pout = 26.5 dBm Pd = 2.36 W	θjc = 24.3 (°C/W) Tchannel = 127 °C Tm = 7.6E+6 Hrs	
Mounting Temperature		Refer to Solder Reflow Profiles (pp16)	
Storage Temperature		-65 to 150 °C	

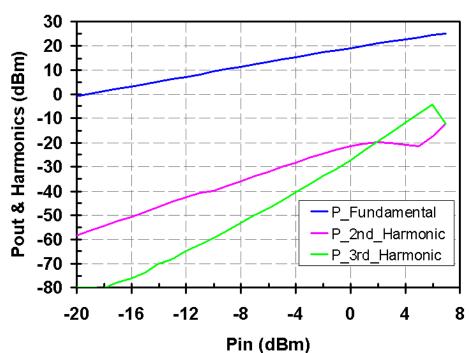

- 1/ For a median life of 1E+6 hours, Power Dissipation is limited to
 - $Pd(max) = (150 °C Tbase °C)/\theta jc.$
- Channel operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that channel temperatures be maintained at the lowest possible levels.


Median Lifetime (Tm) vs. Channel Temperature

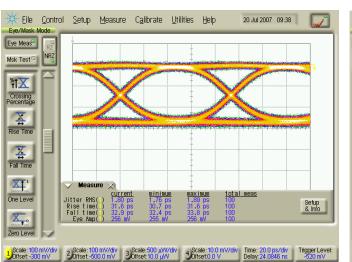

Bias conditions: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg ≈ -0.3 V Typical

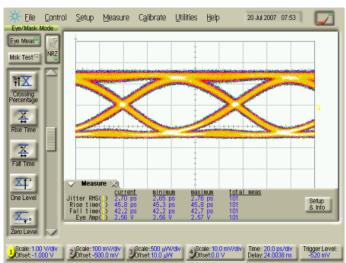



Bias conditions: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg ≈ -0.3 V Typical



Bias conditions: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg \approx -0.3 V Typical Freq = 2 GHz

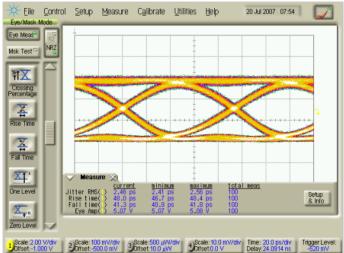



TGA4823-2-SM

Measured Data

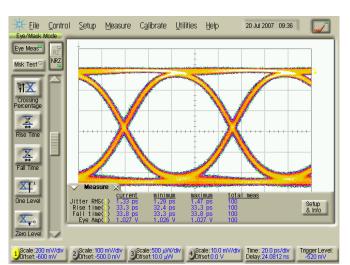
Linear Mode:

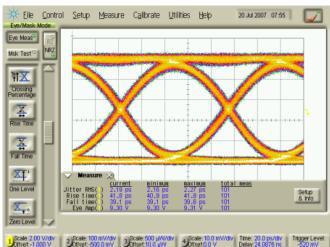

Bias conditions: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg \approx -0.3 V Typical PRBS = 2^{31} -1; CPC = 50%, 10.7 GB/s



Input Eye: $Vin = 250 \text{ mV}_{pp}$

Input Eye: Vin = 500 mV_{pp}

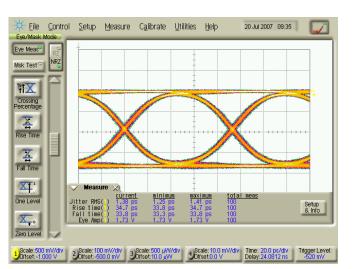

Output Eye: Vin = 500 mV_{pp}, Vo_{pp} = 5 V_{pp}

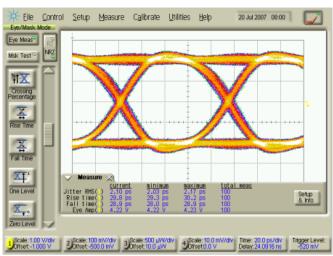


Linear Mode:

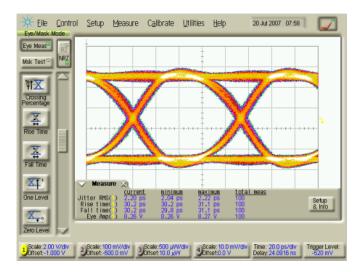
Bias conditions: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg \approx -0.3 V Typical PRBS = 2^{31} -1; CPC = 50%, 10.7 GB/s

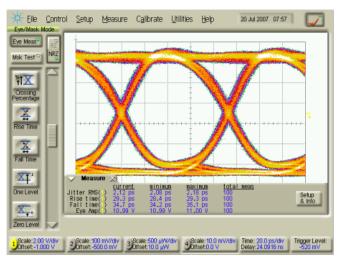
Input Eye: $Vin = 1 V_{pp}$


Output Eye: Vin = 1 V_{pp} , Vo_{pp} = 9.3 V_{pp}

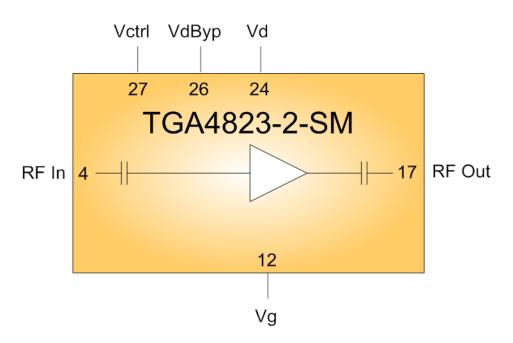


Limiting Mode:


Bias conditions: Vd = 8 V, Id = 310 mA, Vctrl = +1 V, Vg \approx -0.3 V Typical PRBS = 2^{31} -1; CPC = 50%, 10.7 GB/s


Input Eye: $Vin = 1700 \text{ mV}_{pp}$

Output Eye: Vin = 1700 V_{pp} , Vo_{pp} = 4.2 V_{pp}


Output Eye: Vin = 1700 V_{pp} , Vo_{pp} = 8.3 V_{pp}

Output Eye: Vin = 1700 V_{pp} , Vo_{pp} = 11 V_{pp}

Electrical Schematic

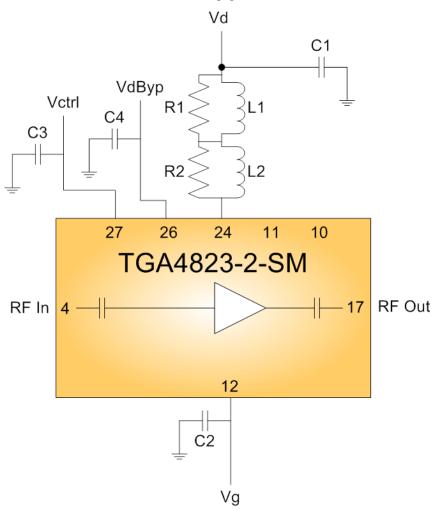
Bias Procedures

Vd=8V, CPC=50%

Bias ON

- 1. Disable the output of the PPG
- 2. Set Vd = 0V, Vctrl = 0V & Vg = 0V
- 3. Set Vg = -1.5V
- 4. Increase Vd to 8V observing Id
 - Assure Id = 0mA
- 5. Set Vctrl = +1V
 - Id should still be 0mA
- 6. Make Vg more positive until Id = 310mA.

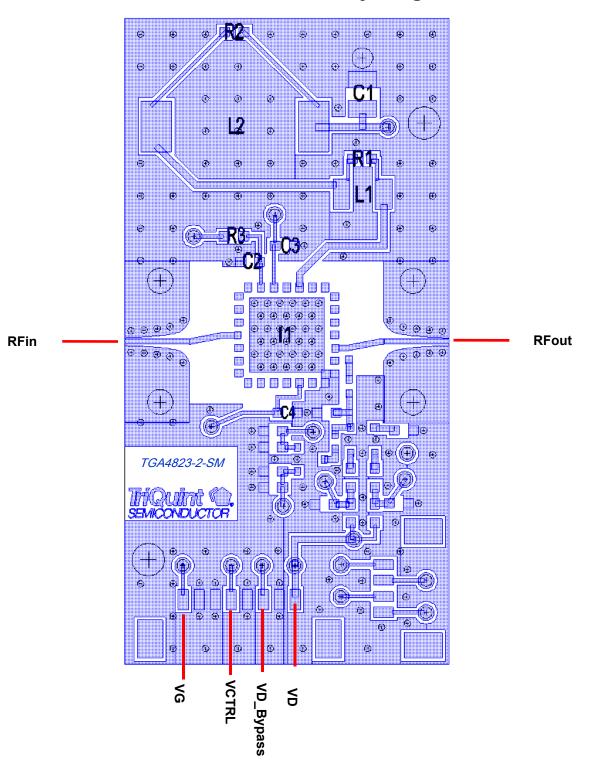
Vg will be approximately -0.3V.


- 7. Enable the output of the PPG.
- 8. <u>Output Swing Adjust</u>: Adjust Vctrl slightly positive to increase output swing or adjust Vctrl slightly negative to decrease the output swing.
- 9. <u>Crossover Adjust</u>: Adjust Vg slightly positive to push the crossover down or adjust Vg slightly negative to push the crossover up.

Bias OFF

- 1. Disable the output of the PPG
- 2. Set Vctrl = 0V
- 3. Set Vd = 0V
- 4. Set Vg = 0V

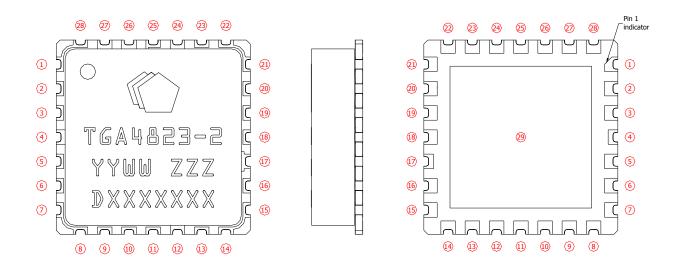
Recommended Application Circuit


Label	Value	Part Number	Vendor
L1	330nH	ELJ-FAR33MF2	Panasonic
L2	220uH	ELL-CTV221M	Panasonic
R1,R2	270 Ohm	ERJ-3GEYJ271V	Panasonic
R3	620 Ohm	ERJ-3GEYJ621V	Panasonic
C1	10uF	TAJA106K016R	AVX
C2,C3	1uF	0603YG105ZAT2A	AVX
C4	10uF	GRM188R60J106ME47D	Murata
U1		TGA4823-SM	TriQuint

^{**} Note: For Hot-Pluggable option, R3 is limited to Rx ohms, for a maximum Vctrl_user such that Vctrl pin on package does not exceed + 2 V Where Rx = (Vctrl_user - Vctrl_pin) / lctrl_max = (Vctrl_user - 2V) / 18.9 mA

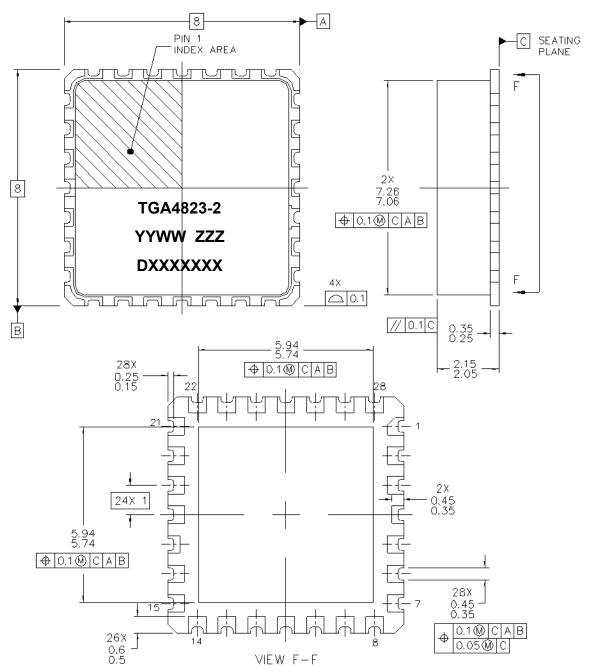
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling assembly and tests

Recommended Assembly Diagram



GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling assembly and tests

Package Pinout


Pin	Description
1,2,3,5,6,7,8,9,10, 11,13,14,15,16,18, 19,20,21,22, 23,25,28	N/C
4	RF In
12	Vg
17	RF Out
24	Vd
26	Vd_Bypass
25, 27	Vctrl
29	GND

Mechanical Drawing

Units: Millimeters

TGA4823-2-SM

Part Markings:

YY = Assembly year, WW = Assembly week, ZZZ = Serial Number, DXXXXXXX = Batch ID

Materials:

Package base Aluminum Nitride (AIN)
Package lid White Alumina (Al₂0₃)

Pad finish on package base:

Electroless gold (Au) 0.5 – 1.0 um

Over

Electroless nickel (Ni) 2.0 um min.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling assembly and tests

Assembly Notes

Recommended Surface Mount Package Assembly

- Proper ESD precautions must be followed while handling packages.
- Clean the board with acetone. Rinse with alcohol. Allow the circuit to fully dry.
- TriQuint recommends using a conductive solder paste for attachment. Follow solder paste and reflow oven vendors' recommendations when developing a solder reflow profile. Typical solder reflow profiles are listed in the table below.
- Hand soldering is not recommended. Solder paste can be applied using a stencil printer or dot
 placement. The volume of solder paste depends on PCB and component layout and should be well
 controlled to ensure consistent mechanical and electrical performance.
- Clean the assembly with alcohol.

Typical Solder Reflow Profiles

Reflow Profile	SnPb	Pb Free	
Ramp-up Rate	3 °C/sec	3 °C/sec	
Activation Time and Temperature	60 – 120 sec @ 140 – 160 °C	60 – 180 sec @ 150 – 200 °C	
Time above Melting Point	60 – 150 sec	60 – 150 sec	
Max Peak Temperature	240 °C	260 °C	
Time within 5 °C of Peak Temperature	10 – 20 sec	10 – 20 sec	
Ramp-down Rate	4 – 6 °C/sec	4 – 6 °C/sec	

Ordering Information

Part	Package Style	
TGA4823-2-SM	8x8 Surface Mount	

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.