Precision Low-Input Current Operational Amplifier (Internally Compensated)

OP12

1.0 SCOPE

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die_Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/OP12
2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description
OP12-000C Precision Low-Input Current Operational Amplifier (Internally Compensated)

3.0 Die Information

3.1 Die Dimensions

Die Size	Die Thickness	Bond Pad Metalization
$43 \mathrm{mil} \times 59 \mathrm{mil}$	$19 \mathrm{mil} \pm 2 \mathrm{mil}$	$\mathrm{Al} / \mathrm{Cu}$

3.2 Die Picture

OP12

3.3 Absolute Maximum Ratings 1/
 Supply Voltage
 $\pm 20 \mathrm{~V}$
 Differential Input Current 2/
 $\pm 10 \mathrm{~mA}$
 Input Voltage 3/
 $\pm 15 \mathrm{~V}$
 Output Short Circuit Duration
 Indefinite
 Storage Temperature
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 Operating Temperature Range
 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 Junction Temperature (T_{J})..................................... $+150^{\circ} \mathrm{C}$

Absolute Maximum Rating Notes:

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
2/ The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is provided.
3/ For supply voltages less than -15 V , the absolute maximum input voltage is equal to the supply voltage.

4.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.
(a) Qual Sample Size and Qual Acceptance Criteria - 10/0
(b) Qual Sample Package - DIP
(c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics						
Parameter	Symbol	$\begin{gathered} \hline \text { Conditions } \\ \underline{1 /} \\ \hline \end{gathered}$		$\begin{aligned} & \hline \text { Limit } \\ & \text { Min } \end{aligned}$	Limit Max	Units
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$				0.15	mV
Input Offset Current	Ios				0.2	nA
Input Bias Current	I_{B}				± 2	nA
Input Voltage Range	IVR			± 13		V
Common-Mode Rejection	CMR		= IVR	104		dB
Power Supply Rejection	PSRR	$\mathrm{V}_{\mathrm{S}}=$	V to $\pm 15 \mathrm{~V}$		7	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	V_{O}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 13		V
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		± 10		
Large-Signal Voltage Gain	A_{vo}	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	80		V/mV
			$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	50		
Supply Current	$\mathrm{I}_{\text {SY }}$	No Load	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$		0.6	mA

Table I Notes:
$\underline{1 /} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Table II -Electrical Characteristics for Qual Samples

Table II -Electrical Characteristics for Qual Samples							
Parameter	Symbol	$\begin{gathered} \text { Conditions } \\ 1 / \\ \hline \end{gathered}$		Subgroups	Limit Min	Limit Max	Units
Input Offset Voltage	$\mathrm{V}_{\text {os }}$			1		0.15	mV
				2, 3		0.35	
Input Offset Current	Ios			1		0.2	nA
				2, 3		0.4	
Input Bias Current	I_{B}			1		± 2	nA
				2, 3		± 3	
Input Voltage Range	IVR			1,2,3	± 13		V
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}=\mathrm{IVR}$		1	104		dB
				2, 3	100		
Power Supply Rejection	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		1		7	$\mu \mathrm{V} / \mathrm{V}$
				2, 3		10	
Output Voltage Swing	$\mathrm{V}_{\text {o }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		4, 5, 6	± 13		V
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		4, 5, 6	± 10		
Large-Signal Voltage Gain	A_{vo}	$\begin{gathered} \mathrm{V}_{\mathrm{O}}= \\ \pm 10 \mathrm{~V} \end{gathered}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	4	80		V/mV
			$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	4	50		
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	5, 6	40		
Supply Current	$\mathrm{I}_{\text {SY }}$	No Load	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \\ \pm 15 \mathrm{~V} \end{gathered}$	1		0.6	mA
			$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	2, 3		0.6	

Table II Notes:

$$
\underline{1 /} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \text { and } \mathrm{RS}=50 \Omega \text {, unless otherwise specified. }
$$

Table III - Life Test Endpoint and Delta Parameter

(Product is tested in accordance with Table II with the following exceptions)

Test Title	Symbol	$\begin{array}{c}\text { Sub- } \\ \text { groups }\end{array}$	Post Burn In Limit		Post Life Test Limit		$\begin{array}{c}\text { Life } \\ \text { Test }\end{array}$	Units
			Min	Max	Min	Max	Delta	

5.0 Life Test/Burn-In Information

5.1 HTRB is not applicable for this drawing.
5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
A	Initiate	8-OCT-01
B	Change package from Sidebrazed DIP to DIP Change from $\pm 20 \mathrm{~V}$ supply voltage to $\pm 15 \mathrm{~V}$ Supply voltage for Vos, Ios, and Iв on Table I and II. Change IOS from .4 to .5 nA at temp on table III	19-Dec-01
C	Update web address	Aug. 5, 2003
D	Update 1.0 Scope description.	16 Jul. 2007
E	Update header/footer \& add to 1.0 Scope description.	14 Feb. 2008
F	Adjust header/footer and remove part description on pgs.2-5 header	28 Feb. 2008
G	Add Junction Temperature ($\left.\mathrm{T}_{\mathrm{J}}\right) \ldots . .150^{\circ} \mathrm{C}$ to 3.3 Absolute Max. Ratings	March 28, 2008
H	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	5-JUN-2009

