1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.

The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. http://www.analog.com/aerospace

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/SW201
2.0 Part Number. The complete part number(s) of this specification follow:

Part Number

SW201-803Q
SW201-813Q

2.1 Case Outline.

Letter Descriptive designator Case Outline (Lead Finish per MIL-PRF-38535)
Q GDIP1-T16 \quad 16-Lead ceramic dual-in-line/package (CERDIP)
2.1 Figure 1 - Terminal connections.

2.1.1 SW201 Logic Table:

Control Logic	
Logic Input	Switch State
0	ON
1	OFF

3.0 Absolute Maximum Ratings. $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)
Operating Temperature Range .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
.900 mW
Lead Temperature (Soldering, 60 sec.) ... $+300^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J}) ... $150^{\circ} \mathrm{C}$
V+ Supply to V- Supply ..36V
V+ Supply to Ground..36V
Logic Input Voltage Range ... (-4V or V-) to V+ Supply
Analog Input Voltage
Continuous
V- Supply to V+ Supply +20 V
1\% Duty Cycle and Driving all 4 inputs with 500μ S pulse \qquad V- Supply -15 V to $\mathrm{V}+$ Supply +20 V
Maximum Current Through Any Pin
30 mA

3.1 Thermal Characteristics:

Thermal Resistance, Q (cerdip) Package
Junction-to-Case $\left(\Theta_{\mathrm{JC}}\right)=29^{\circ} \mathrm{C} / \mathrm{W}$ Max
Junction-to-Ambient $\left(\Theta_{\mathrm{JA}}\right)=91^{\circ} \mathrm{C} / \mathrm{W}$ Max

4.0 Electrical Table:

TABLE I						
Parameter See notes at end of table	Symbol	$\mathrm{VS}=\begin{gathered}\text { Conditions } \\ \pm 15 \mathrm{~V} \text { Unless otherwise } \\ \text { specified }\end{gathered}$	$\begin{aligned} & \text { Sub- } \\ & \text { group } \end{aligned}$	$\begin{array}{\|c} \hline \text { Limit } \\ \text { Min } \end{array}$	$\begin{aligned} & \hline \text { Limit } \\ & \text { Max } \end{aligned}$	Units
Positive Supply Current	I+	All channels OFF or ON	$\begin{gathered} \hline 1 \\ 2,3 \\ \hline \end{gathered}$		$\begin{gathered} \hline 9 \\ 13.5 \end{gathered}$	mA
Negative Supply Current	I-	All Channels OFF or ON	$\begin{gathered} 1 \\ 2,3 \end{gathered}$		$\begin{aligned} & 6.0 \\ & 8.5 \\ & \hline \end{aligned}$	
Ground Current	$\mathrm{I}_{\text {G }}$	All Channels OFF or ON	$\begin{gathered} 1 \\ 2,3 \end{gathered}$		$\begin{aligned} & 4 \\ & 6 \end{aligned}$	
Logic " 0 " Input Current	$\mathrm{I}_{\text {IL }}$		$\begin{gathered} 1 \\ 2,3 \\ \hline \end{gathered}$		$\begin{gathered} \hline 5 \\ 10 \\ \hline \end{gathered}$	$\mu \mathrm{A}$
Logic "1" Input Current (Note 1)	I_{H}		$\begin{gathered} 1 \\ 2,3 \end{gathered}$		$\begin{gathered} \hline 5 \\ 10 \end{gathered}$	
"ON" Resistance	$\mathrm{R}_{\text {ON }}$	$\mathrm{V}_{\mathrm{A}}=-10 \mathrm{~V}$ to $10 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	$\begin{gathered} 1 \\ 2,3 \end{gathered}$		$\begin{gathered} 80 \\ 110 \end{gathered}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$ vs. $\mathrm{V}_{\text {A }}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\mathrm{A}} \leq 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	1		15	\%
R_{ON} Match Between Switches (Note 3)	$\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { (Match) } \end{gathered}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	$\begin{gathered} 1 \\ 2,3 \end{gathered}$		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	
Analog Current Range (Note 2)	IA	$\mathrm{VS}= \pm 10 \mathrm{~V}$	$\begin{gathered} 1 \\ 2,3 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 7 \\ \hline \end{gathered}$		mA
Analog Voltage Range (Note 2)	VA	IS $=1 \mathrm{~mA}$	1,2,3	± 10		V

4.0 Electrical Table: (Cont'd)

See notes at end of table	Symbol	Conditions $\mathrm{VS}= \pm 15 \mathrm{~V}$ Unless otherwise specified	Sub- group	Limit Min	Limit Max	Units			
Source Current "OFF" Condition	$\mathrm{I}_{\mathrm{S}(\mathrm{OFF})}$	$\mathrm{VS}=+10 \mathrm{~V}, \mathrm{VD}=-10 \mathrm{~V}$	1		2	nA			
			2	60			$	$	2
:---:									

Table I notes:
1 Current Tested/at $V I N=2 \mathrm{~V}$ (worst case condition) $C \bigcirc \cap \cap A D$
$2 \mathrm{~V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ is verified by leakage and R_{ON} tests.
$3 R_{\text {ON }}$ Match specified as a percentage of $R_{\text {average }}$ where $R_{\text {average }}=\underline{R_{\text {ON } 1}+R_{\text {ON } 2}+R_{\text {on } 3}+R_{\text {ON4 }}}$

4.1 Electrical Test Requirements:

Table II	
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)
Interim Electrical Parameters	1
Final Electrical Parameters	$1,2,3 \quad \underline{1 /} \underline{2 /}$
Group A Test Requirements	$1,2,3,9$
Group C end-point electrical parameters	$1 \underline{2 /}$
Group D end-point electrical parameters	1
Group E end-point electrical parameters	1

1/ PDA applies to Subgroup 1. Exclude delta's from PDA.
2/ See Table III for delta parameters. See Table I for test conditions.
4.2 Table III. Burn-in test delta limits.

Table III			
TEST	ENDPOINT LIMIT	DELTA LIMIT	UNITS
$\mathrm{R}_{\text {ON }}$	80	± 15	ohm

5.0 Life Test/Burn-In Circuit:

5.1 HTRB is not applicable for this drawing.
5.2 Burn-in is per MIL-STD-883 Method 1015 test condition C.
5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
A	Initiate	July 12, 2000
B	Update web site address. Under max ratings change TJ to T_{J}. For RON conditions, change $I_{D}=1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$. RON (Match), change subgroups from 1,2 to 2,3 . Break before make specification must a minimum. Add subgroup 9 to Group A requirements on Table II. Change BI circuit from condition A to Condition C.	20-Dec-01
C	Delete subgroups 4, 5, 6 from Table II, they are not used in Table I. Change paragraph 5.2 from cond. B to Cond. C (BI circuit not changed).	Feb. 21, 2002
D	Update web address. Delete burn-in circuit	June 20, 2003
E	Update header/footer \& add to 1.0 Scope description.	Feb. 22,2008

umw. BDTI C. com/ADI

