CTUNEAR

features

- Guaranteed Offset Voltage Drift on All Grades
- Guaranteed Slew Rate on All Grades
- Guaranteed Low Input Offset Current
- Guaranteed Low Input Bias Current 10pA Max. 50pA Max.
- Guaranteed High Slew Rate (156A/356A) 10V/ $\mu \mathrm{S}$ Min.
- Fast Settling to 0.01\%
$1.5 \mu \mathrm{~S}$

APPLICATIONS

- Output Amplifiers for D/A Converters
- Fast Sample and Hold Circuits
- High Speed Integrators
- Photocell Amplifiers
- High Input Impedance Buffers

DESCRIPTION

Linear Technology's LF155/156 series features several improvements compared to similar types from other manufacturers: offset voltage drift with temperature and slew rate are guaranteed on all grades, not just on the more expensive " A " grades. Other specifications such as voltage gain and high temperature bias and offset currents are also improved.

The industry standard LF155/156 devices exhibit phase
limit at the input is exceeded (i.e., from -12 V to -15 V with $\pm 15 \mathrm{~V}$ supplies). This can cause lock-up in servo systems. As shown below, Linear Technology's LF155/156 does not have this problem due to unique phase reversal protection circuitry. For applications requiring higher performance, see the LT1055 and LT1056 data sheets.

Voltage Follower with Input Exceeding the Negative Common-Mode Range

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
LF155A/155/355A,
LF156A/156/356A $\pm 22 V$

LF355/356 . $\pm 18 \mathrm{~V}$
Differential Input Voltage
LF155A/155/156A/156 $\pm 40 \mathrm{~V}$
LF355A/355/356A/356 $\pm 30 \mathrm{~V}$ Input Voltage (Note 1)

LF155A/155/156A/156 $\pm 20 \mathrm{~V}$
LF355A/355/356A/356 $\pm 16 \mathrm{~V}$
Output Short Circuit Duration Indefinite
Operating Temperature Range
LF155A/155/156A/156....... . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LF355A/355/356A/356 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Maximum Junction Temperature
LF155A/155/156A/156 $150^{\circ} \mathrm{C}$
LF355A/355/356A/356 $100^{\circ} \mathrm{C}$
Storage Temperature Range
All Devices $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS (Note 2)

SYMBOL	PARAMETER	CONDITIONS		LF155A/156A LF355A/356A			LF155/156			LF355/356			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V_{0}	Input Offset Voltage	$T_{A}=25^{\circ} \mathrm{C}$ Over Temperature 355A/356A	\bullet			$\begin{aligned} & 2 \\ & 2.5 \\ & 2.3 \end{aligned}$		2	$\begin{array}{r} 3.5 \\ 4.8 \end{array}$			8	$m V$ $m V$ $m V$
$\frac{\Delta \mathrm{V}_{0 S}}{\Delta \mathrm{~T}}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	\bullet		3	5			15			25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Change in Average TC with $V_{0 S}$ Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$ (Note 4)	\bullet		0.5			0.5			0.5		$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \text { per mV } \end{aligned}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \mathrm{T}_{\mathrm{j}} \leq 125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			3	$\begin{aligned} & 10 \\ & 9.7 \\ & 0.7 \end{aligned}$		3	\square		3	$\begin{gathered} 50 \\ 15 \end{gathered}$	PA $n A$ $n A$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{j}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & T_{j} \leq 125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$	\bullet		30	$\begin{aligned} & 50 \\ & 15 \\ & 0.9 \end{aligned}$		30	100 $\stackrel{15}{4}=$		30	$\begin{aligned} & 200 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			10^{12}			10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & V_{0}= \pm 10 \mathrm{~V}, R_{L}=2 \mathrm{k} \end{aligned}$ Over Temperature	-	35				200		$\begin{aligned} & 40 \\ & 25 \end{aligned}$	200		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$

ELECTRICAL CHARACTERISTICS (Note 2)

SYMBOL	PARAMETER	CONDITIONS		LF155A/156A LF355A/356A			LF155/156			LF355/356			UNITS
				MIN	TYP	MAX	MIN	TYP	MaX	MIN	TYP	MAX	
V_{0}	Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{L}=2 k \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		V
$V_{\text {CM }}$	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	-	± 11	$\begin{aligned} & +15.1 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15.1 \\ & -12 \\ & \hline \end{aligned}$		± 10	$\begin{aligned} & \pm 15.1 \\ & -12 \end{aligned}$		V
CMRR	Common-Mode Rejection Ratio		\bullet	. 85	100		85	100		80	100		dB
PSRR	Supply Voltage Rejection Ratio	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & V_{S}= \pm 10 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \end{aligned}$	0		100		85	100		$\overline{80}$	100		dB $d B$
Is	Supply Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & L F 155 / 355 \text { Series } \\ & \text { LF156/356 Series } \\ & \text { LF356A } \end{aligned}$						2 5 -	$\begin{aligned} & 4 \\ & 7 \\ & - \end{aligned}$			$\begin{aligned} & 4 \\ & 10 \\ & \hline \end{aligned}$	mA mA mA
SR	Slew Rate	$\begin{aligned} & A_{V}=+1 \\ & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & \text { LF } 155 / 355 \text { Series } \\ & \text { LF } 156 / 356 \text { Series } \end{aligned}$		3 $\frac{5}{2}=2$	12		59	12		$\frac{24}{4}$	5		$\begin{aligned} & V / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
GBW	Gain Bandwidth Product	$T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V}$ LF155/355 Series LF156/356 Series		$\overline{4}$	$\begin{aligned} & 2.5 \\ & 5 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 5 \\ & \hline \end{aligned}$		MHz MHz
$\mathrm{t}_{\text {S }}$	Settling Time to 0.01\%	$T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V}$ LF155 Series (Note 5) LF156 Series			$\begin{aligned} & 4 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 4 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 4 \\ & 1.5 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & f=100 \mathrm{~Hz} \\ & \text { LF155 Series } \\ & \text { LF156 Series } \end{aligned}$			$\begin{aligned} & 25 \\ & 15 \end{aligned}$			$\begin{aligned} & 25 \\ & 15 \end{aligned}$			$\begin{aligned} & 25 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
		$\begin{aligned} & \mathrm{f}=1000 \mathrm{~Hz} \\ & \text { LF155 Series } \\ & \text { LF156 Series } \end{aligned}$			$\begin{aligned} & 20 \\ & 12 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 12 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 12 \\ & \hline \end{aligned}$		$\begin{aligned} & n V / \sqrt{H z} \\ & n V / \sqrt{H z} \end{aligned}$
i_{n}	Input Noise Current Density	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
$\overline{C_{1 N}}$	Input Capacitance		\bullet		3			3			3		pF

The denotes the specifications which apply over the full operating temperature range. The shaded electrical specifications indicate those parameters which have been improved or guaranteed test limits provided for the first time.
For MIL-STD components, please refer to LTC 883C data sheet for test listing and parameters.
Note 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Unless otherwise stated, these test conditions apply:

	LF155A/156A LF155/156	LF355A/356A	LF355/356
Supply Voltage, V_{S}	$\pm 15 \mathrm{~V} \leq V_{S} \leq \pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq V_{S} \leq \pm 18 \mathrm{~V}$	$V_{S}= \pm 15 \mathrm{~V}$
T_{A}	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$

and $V_{O S}, I_{B}$ and $I_{O S}$ are measured at $V_{C M}=0$.

Note 3: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{J A} P_{D}$ where $\theta_{J A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 4: The temperature coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
Note 5: Settling time is defined here for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter.

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs Temperature

Inverter Settling Time

LF156 Large Signal Response

$\mathrm{A}_{V}=+1, C_{L}=100 \mathrm{pF}, 1 \mu \mathrm{~S} / \mathrm{DV}$

Normalized Slew Rate vs Temperature

LF156 Small Signal Response

$\mathrm{A}_{V}=+1, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 0.2 \mu \mathrm{SEC} / \mathrm{DIV}$

PRCKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.

H Package Metal Can

N8 Package 8 Lead Plastic

$\mathrm{T}_{\mathrm{j} \text { max }}$	$\theta_{\text {ja }}$
$100^{\circ} \mathrm{C}$	$130^{\circ} \mathrm{C} / \mathrm{W}$

