LT1011/LT1011A
Voltage Comparator

feATURES

- Pin Compatible with LM111 Series Devices
- Guaranteed Max 0.5mV Input Offset Voltage
- Guaranteed Max 25nA Input Bias Current
- Guaranteed Max 3nA Input Offset Current
- Guaranteed Max 250ns Response Time
- Guaranteed Min 200,000 Voltage Gain
- 50mA Output Current Source or Sink
- $\pm 30 \mathrm{~V}$ Differential Input Voltage
- Fully Specified for Single 5V Operation
- Available in 8-Lead PDIP and SO Packages

APPLICATIONS

- SAR A/D Converters
- Voltage-to-Frequency Converters
- Precision RC Oscillator
- Peak Detector
- Motor Speed Control
- Pulse Generator
- Relay/Lamp Driver

DESCRIPTIOn

The LT^{-1011} is a general purpose comparator with significantly better input characteristics than the LM111. Although pin compatible with the LM111, it offers four times lower bias current, six times lower offset voltage and five times higher voltage gain. Offset voltage drift, a previously unspecified parameter, is guaranteed at $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Additionally, the supply current is lower by a factor of two with no loss in speed. The LT1011 is several times faster than the LM111 when subjected to large overdrive conditions. It is also fully specified for DC parameters and response time when operating on a single 5V supply. The LT1011 retains all the versatile features of the LM111, including single 3 V to $\pm 18 \mathrm{~V}$ supply operation, and a floating transistor output with 50 mA source/sink capability. It can drive loads referenced to ground, negative supply or positive supply, and is specified up to 50 V between V^{-}and the collector output. A differential input voltage up to the full supply voltage is allowed, even with $\pm 18 \mathrm{~V}$ supplies, enabling the inputs to be clamped to the supplies with simple diode clamps.
$\boldsymbol{\varnothing}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

10us 12-Bit A/D Converter

Response Time vs Overdrive

LT1011/LT1011A

ABSOLUTE MAXIMUM RATIOGS

(Note 1)
Supply Voltage (Pin 8 to Pin 4)36V
Output to Negative Supply (Pin 7 to Pin 4)
LT1011AC, LT1011C

LT1011AI, LT1011I 40V

LT1011AM, LT1011M (OBSOLETE) 50 V
Ground to Negative Supply (Pin 1 to Pin 4) 30V
Differential Input Voltage $\pm 36 \mathrm{~V}$
Voltage at STROBE Pin (Pin 6 to Pin 8) 5 V
Input Voltage (Note 2)

\qquad
Equal to Supplies Output Short-Circuit Duration 10 sec
Operating Temperature Range (Note 3) LT1011AC, LT1011C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1011AI, LT1011I
$.40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1011AM, LT1011M (OBSOLETE).... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)$300^{\circ} \mathrm{C}$

pIn CONFIGURATIOn

LT1011/LT1011A

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1011ACN8\#PBF	N/A	LT1011	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1011CN8\#PBF	N/A	LT1011	8-Lead Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1011AIS8\#PBF	LT1011AIS8\#TRPBF	1011AI	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1011CS8\#PBF	LT1011CS8\#TRPBF	1011	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1011IS8\#PBF	LT1011IS8\#TRPBF	10111	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
OBSOLETE PACKAGES				
LT1011ACH\#PBF	N/A		8-Lead TO-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1011CH\#PBF	N/A		8-Lead T0-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1011AMH\#PBF	N/A		8-Lead TO-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1011MH\#PBF	N/A		8-Lead TO-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1011ACJ8\#PBF	N/A		8-Lead CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1011CJ8\#PBF	N/A		8-Lead CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1011AMJ8\#PBF	N/A		8-Lead CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1011MJ8\#PBF	N/A		8-Lead CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECARARL CHPRACIERISTICS The © denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\mathrm{GND}}=-15 \mathrm{~V}$, output at pin 7 unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1011AC/AI/AM			LT1011C///M			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 4)	\bullet		0.3	$\begin{gathered} 0.5 \\ 1 \end{gathered}$		0.6	$\begin{gathered} 1.5 \\ 3 \end{gathered}$	mV mV
	*Input Offset Voltage	$\mathrm{R}_{S} \leq 50 \mathrm{k}$ (Note 5)	-			$\begin{aligned} & \hline 0.75 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 2 \\ & 3 \end{aligned}$	mV mV
Ios	*Input Offset Current	(Note 5)	\bullet		0.2	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		0.2	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	nA
I_{B}	Input Bias Current	(Note 4)			15	25		20	50	nA
	*Input Bias Current	(Note 5)	\bullet		20	$\begin{aligned} & 35 \\ & 50 \end{aligned}$		25	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	nA
$\frac{\Delta V_{0 S}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T} \leq \mathrm{T}_{\text {MAX }}$	\bullet		4	15		4	25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
AVOL	*Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { Connected to } 15 \mathrm{~V}, \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 14.5 \mathrm{~V} \\ & \hline \end{aligned}$		200	500		200	500		V / mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega \text { Connected to } 5 \mathrm{~V}, \\ & \mathrm{~V}_{S}=\text { Single } 5 \mathrm{~V}, \mathrm{~V}_{G N D}=0 \mathrm{~V}, \\ & 0.5 \mathrm{~V} \leq \mathrm{V}_{0 \mathrm{UT}} \leq 4.5 \mathrm{~V} \end{aligned}$		50	300		50	300		V / mV
CMRR	Common Mode Rejection Ratio			94	115		90	115		dB
	*Input Voltage Range (Note 9)	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & V_{S}=\text { Single } 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} -14.5 \\ 0.5 \end{gathered}$		$\begin{gathered} 13 \\ 3 \\ \hline \end{gathered}$	$\begin{array}{\|c} -14.5 \\ 0.5 \end{array}$		$\begin{gathered} 13 \\ 3 \end{gathered}$	V
t_{D}	*Response Time	(Note 7)			150	250		150	250	ns
V_{OL}	*Output Saturation Voltage, $V_{G N D}=0$	$\begin{aligned} & V_{\text {IN }}=-5 \mathrm{mV}, I_{\text {IINK }}=8 \mathrm{~mA}, T_{J} \leq 100^{\circ} \mathrm{C} \\ & V_{\text {IN }}=-5 \mathrm{mV}, I_{\text {SINK }}=8 \mathrm{~mA} \\ & V_{\text {IN }}=-5 \mathrm{mV}, I_{\text {SINK }}=50 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 0.25 \\ 0.25 \\ 0.7 \\ \hline \end{gathered}$	$\begin{gathered} 0.4 \\ 0.45 \\ 1.5 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 0.25 \\ & 0.25 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.4 \\ 0.45 \\ 1.5 \\ \hline \end{gathered}$	V V V
	*Output Leakage Current	$\begin{aligned} & V_{\text {IN }}=5 \mathrm{mV}, V_{\text {GND }}=-15 \mathrm{~V}, \\ & V_{\text {OUT }}=20 \mathrm{~V} \end{aligned}$	\bullet		0.2	$\begin{gathered} 10 \\ 500 \end{gathered}$		0.2	$\begin{gathered} 10 \\ 500 \end{gathered}$	nA $n A$
	*Positive Supply Current	$V_{G N D}=0$			3.2	4		3.2	4	mA
	*Negative Supply Current	$\mathrm{V}_{\mathrm{GND}}=0$			1.7	2.5		1.7	2.5	mA
	*Strobe Current (Note 8)	Minimum to Ensure Output Transistor is Off, $V_{G N D}=0$		500			500			$\mu \mathrm{A}$
	Input Capacitance				6			6		pF

*Indicates parameters which are guaranteed for all supply voltages, including a single 5 V supply. See Note 5.

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Inputs may be clamped to supplies with diodes so that maximum input voltage actually exceeds supply voltage by one diode drop. See Input Protection in the Applications Information section.
Note 3: $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}$.
Note 4: Output is sinking 1.5 mA with $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$.
Note 5: These specifications apply for all supply voltages from a single 5 V to $\pm 15 \mathrm{~V}$, the entire input voltage range, and for both high and low output states. The high state is $\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=\left(\mathrm{V}^{+}-1 \mathrm{~V}\right)$ and the low state is $I_{\text {SINK }}=8 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=0.8 \mathrm{~V}$. Therefore, this specification
defines a worst-case error band that includes effects due to common mode signals, voltage gain and output load.
Note 6: Drift is calculated by dividing the offset voltage difference measured at min and max temperatures by the temperature difference.
Note 7: Response time is measured with a 100 mV step and 5 mV overdrive. The output load is a 500Ω resistor tied to 5 V . Time measurement is taken when the output crosses 1.4 V .
Note 8: Do not short the STROBE pin to ground. It should be current driven at 3 mA to 5 mA for the shortest strobe time. Currents as low as $500 \mu \mathrm{~A}$ will strobe the LT1011A if speed is not important. External leakage on the STROBE pin in excess of $0.2 \mu \mathrm{~A}$ when the strobe is "off" can cause offset voltage shifts.
Note 9: See graph "Input Offset Voltage vs Common Mode Voltage."

TYPICAL PERFORMANCE CHARACTERISTICS

Common Mode Limits

Transfer Function (Gain)

Collector Output Saturation

 Voltage

LT1011/LT1011A

TYPICAL PERFORMANCE CHARACTERISTICS

Output Saturation-

 Ground Output

Response Time vs Input Step Size

TYPICAL PERFORMANCE CHARACTERISTICS

PIn fUnCTIOnS

GND (Pin 1): Ground.
+IN (Pin 2): Non-inverting Input of Comparator.
-IN (Pin 3): Inverting Input of Comparator.
V^{-}(Pin 4): Positive Supply Voltage.
OUT (Pin 5): Open-Collector Output of Comparator.
BALANCE (Pin 6): Balance Input. This input can be used to adjust the input voltage offset. See Offset Balancing circuit in the Typical Applications. This input can also be used to add DC hysteresis by connecting a resistor from this pin to the output. See Figure 1 for an example. If offset balancing or hysteresis is not used, the BALANCE pin should be connected to a $0.1 \mu \mathrm{~F}$ capacitor to ground.

BALANCE/STROBE (Pin 7): Strobe Input Pin. Using this pin, the output transistor can be forced to an "off" state, giving a "hi" output at the collector (Pin 7). The LT1011 can be strobed by pulling current out of the STROBE pin. Currents as low as $250 \mu \mathrm{~A}$ will cause strobing, but at low strobe currents, strobe delay will be 200 ns to 300 ns . If strobe current is increased to 3 mA , strobe delay drops to about 60 ns. The voltage at the STROBE pin is about 150 mV below V^{+}at zero strobe current and about 2 V below V^{+} for 3 mA strobe current. Do not ground the STROBE pin. It must be current driven. Figure 4 shows a typical strobe circuit. When strobing is not used, current into this pin must be kept very low $(<0.2 \mu \mathrm{~A})$ to prevent input offset voltage shifts.
V^{+}(Pin 8): Positive Supply Voltage.

APPLLCATIONS InFORmATION

Preventing Oscillation Problems

Oscillation problems in comparators are nearly always caused by stray capacitance between the output and inputs or between the output and other sensitive pins on the comparator. This is especially true with high gain bandwidth comparators like the LT1011, which are designed for fast switching with millivolt input signals. The gain bandwidth product of the LT1011 is over 10 GHz . Oscillation problems tend to occur at frequencies around 5 MHz , where the LT1011 has a gain of ≈ 2000. This implies that attenuation of output signals must be at least 2000:1 at 5 MHz as measured at the inputs. If the source impedance is $1 \mathrm{k} \Omega$, the effective stray capacitance between output and input must have a reactance of more than $(2000)(1 \mathrm{k} \Omega)=$ $2 \mathrm{M} \Omega$, or less than 0.02 pF . The actual interlead capacitance between input and output pins on the LT1011 is less than 0.002 pF when cutto printed circuit mountlength. Additional stray capacitance due to printed circuit traces must be minimized by routing the output trace directly away from input lines and, if possible, running ground traces next to input traces to provide shielding. Additional steps to ensure oscillation-free operation are:

1. Bypass the STROBE/BALANCE pins with a $0.01 \mu \mathrm{~F}$ capacitor connected from Pin 5 to Pin 6. This eliminates stray capacitive feedback from the output to the BALANCE pins, which are nearly as sensitive as the inputs.
2. Bypass the negative supply ($\operatorname{Pin} 4$) with a $0.1 \mu \mathrm{~F}$ ceramic capacitor close to the comparator. $0.1 \mu \mathrm{~F}$ can also be used for the positive supply (Pin 8) if the pull-up load is tied to a separate supply. When the pull-up load is tied directly to Pin 8 , use a $2 \mu \mathrm{~F}$ solid tantalum bypass capacitor.
3. Bypass any slow moving or DC input with a capacitor $(\geq 0.01 \mu \mathrm{~F})$ close to the comparator to reduce high frequency source impedance.
4. Keep resistive source impedance as low as possible. If a resistor is added in series with one input to balance source impedances for DC accuracy, bypass it with a capacitor. The low input bias current of the LT1011 usually eliminates any need for source resistance balancing. A $5 \mathrm{k} \Omega$ imbalance, for instance, will create only 0.25 mV DC offset.
5. Use hysteresis. This consists of shifting the input offset voltage of the comparator when the output changes state. Hysteresis forces the comparator to move quickly through its linear region, eliminating oscillations by "overdriving" the comparator under all input conditions. Hysteresis may be either AC or DC. AC techniques do not shift the apparent offset voltage of the compara tor, but require a minimum input signal slew rate to be effective. DC hysteresis works for all input slew rates, but creates a shift in offset voltage dependent on the previous condition of the input signal. The circuit shown in Figure 1 is an excellent compromise between AC and DC hysteresis.

Figure 1. Comparator with Hysteresis

APPLICATIONS InFORMATION

This circuit is especially useful for general purpose comparator applications because it does not force any signals directly back onto the input signal source. Instead, it takes advantage of the unique properties of the BALANCE pins to provide extremely fast, clean output switching even with low frequency input signals in the millivolt range. The $0.003 \mu \mathrm{~F}$ capacitor from Pin 6 to Pin 8 generates AC hysteresis because the voltage on the BALANCE pins shifts slightly, depending on the state of the output. Both pins move about 4 mV . If one pin (6) is bypassed, AC hysteresis is created. It is only a few millivolts referred to the inputs, but is sufficient to switch the output at nearly the maximum speed of which the comparator is capable. To prevent problems from low values of input slew rate, a slight amount of DC hysteresis is also used. The sensitivity of the BALANCE pins to current is about 0.5 mV input referred offset for each microampere of BALANCE pin current. The 15M resistor tied from OUTPUT to Pin 5 generates 0.5 mV DC hysteresis. The combination of AC and DC hysteresis creates clean oscillation-free switching with very small input errors. Figure 2 plots input referred error versus switching frequency for the circuit as shown.

Note that at low frequencies, the error is simply the DC hysteresis, while at high frequencies, an additional error is created by the AC hysteresis. The high frequency error can be reduced by reducing C_{H}, but lower values may not provide clean switching with very low slew rate input signals.

Input Protection

The inputs to the LT1011 are particularly suited to general purpose comparator applications because large differential and/or common mode voltages can be tolerated without damage to the comparator. Either or both inputs can be raised 40 V above the negative supply, independent of the positive supply voltage. Internal forward biased diodes will conduct when the inputs are taken below the negative supply. In this condition, input current must be limited to 1 mA . If very large (fault) input voltages must be accommodated, series resistors and clamp diodes should be used (see Figure 3).

Figure 2. Input Offset Voltage vs Time to Last Transition

**SELECT ACCORDING TO ALLOWABLE
FAULT CURRENT AND POWER DISSIPATION
Figure 3. Limiting Fault Input Currents

APPLICATIONS InFORMATION

The input resistors should limitfaultcurrentto a reasonable value (0.1 mA to 20 mA). Power dissipation in the resistors must be considered for continuous faults, especially when the LT1011 supplies are off. One final caution: lightly loaded supplies may be forced to higher voltages by large fault currents flowing through D1-D4.
R3 and R4 limit input current to the LT1011 to less than 1 mA when the input signals are held below V^{-}. They may be eliminated if R1 and R2 are large enough to limit fault current to less than 1 mA .

Input Slew Rate Limitations

The response time of a comparator is typically measured with a 100 mV step and a 5 mV to 10 mV overdrive. Unfortunately, this does not simulate many real world situations where the step size is typically much larger and overdrive can be significantly less. In the case of the LT1011, step size is important because the slew rate of internal nodes will limit response time for input step sizes larger than 1 V . At 5 V step size, for instance, response time increases from 150ns to 360 ns. See the curve "Response Time vs Input Step Size for more detail.

If response time is critical and large input signals are expected, clamp diodes across the inputs are recommended. The slew rate limitation can also affect performance when differential input voltage is low, but both inputs must slew quickly. Maximum suggested common mode slew rate is 10V/us.

Strobing

The LT1011 can be strobed by pulling current out of the STROBE pin. The output transistor is forced to an "off" state, giving a "hi" output at the collector (Pin 7). Currents as low as $250 \mu \mathrm{~A}$ will cause strobing, but at low strobe currents, strobe delay will be 200 ns to 300 ns . If strobe current is increased to 3mA, strobe delay drops to about 60 ns . The voltage at the STROBE pin is about 150 mV below V^{+}at zero strobe current and about 2 V below V^{+}for 3 mA strobe current. Do not ground the STROBE pin. It must be current driven. Figure 4 shows a typical strobe circuit.

Note that there is no bypass capacitor between Pins 5 and 6 . This maximizes strobe speed, but leaves the comparator more sensitive to oscillation problems for slow, low

Figure 4. Typical Strobe Circuit
level inputs. A 1 pF capacitor between the output and Pin 5 will greatly reduce oscillation problems without reducing strobe speed.

DC hysteresis can also be added by placing a resistor from output to Pin 5. See step 5 under "Preventing Oscillation Problems."

The pin (6) used for strobing is also one of the offset adjust pins. Current flow into or out of Pin 6 must be kept very low $(<0.2 \mu \mathrm{~A})$ when not strobing to prevent input offset voltage shifts.

Output Transistor

The LT1011 output transistor is truly floating in the sense that no current flows into or out of either the collector or emitter when the transistor is in the "off" state. The equivalent circuit is shown in Figure 5.

Figure 5. Output Transistor Circuitry

APPLICATIONS InFORMATION

In the "off" state, I_{1} is switched off and both Q1 and Q2 turn off. The collector of Q2 can be now held at any voltage above V^{-}without conducting current, including voltages above the positive supply level. Maximum voltage above V^{-}is 50 V for the LT1011M and 40 V for the LT1011C/I. The emitter can be held at any voltage between V^{+}and V^{-}as long as it is negative with respect to the collector.
In the "on" state, I_{1} is connected, turning on Q1 and Q2. Diodes D1 and D2 prevent deep saturation of Q2 to improve speed and also limit the drive current of Q1. The R1/R2 divider sets the saturation voltage of Q2 and provides turnoff drive. Either the collector or emitter pin can be held at a voltage between V^{+}and V^{-}. This allows the remaining pin to drive the load. In typical applications, the emitter is connected to V^{-}or ground and the collector drives a load tied to V^{+}or a separate positive supply.

When the emitter is used as the output, the collector is typically tied to V^{+}and the load is connected to ground or V^{-}. Note that the emitter output is phase reversed with respect to the collector output so that the " + " and "-" input designations must be reversed. When the collector
is tied to V^{+}, the voltage at the emitter in the "on" state is about 2 V below V^{+}(see curves).

Input Signal Range

The common mode input voltage range of the LT1011 is about 300 mV above the negative supply and 1.5 V below the positive supply, independent of the actual supply voltages (see curve in the Typical Performance Characteristics). This is the voltage range over which the output will respond correctly when the common mode voltage is applied to one input and a higher or lower signal is applied to the remaining input. If one input is inside the common mode range and one is outside, the output will be correct. If the inputs are outside the common mode range in opposite directions, the output will still be correct. If both inputs are outside the common mode range in the same direction, the output will not respond to the differential input; for temperatures of $25^{\circ} \mathrm{C}$ and above, the output will remain unconditionally high (collector output), for temperatures below $25^{\circ} \mathrm{C}$, the output becomes undefined.

TYPICAL APPLICATIONS

Driving Load Referenced to Positive Supply

V^{++}CAN BE GREATER OR LESS THAN V^{+}

Driving Load Referenced to Negative Supply

*INPUT POLARITY IS REVERSED WHEN USING PIN 1 AS OUTPUT

LT1011/LT1011A

TYPICAL APPLICATIONS

NOTE: DO NOT GROUND STROBE PIN

Driving Ground Referred Load

*INPUT POLARITY IS REVERSED WHEN USING PIN 1 AS OUTPUT ** V^{++}MAY BE ANY VOLTAGE ABOVE V^{-}. PIN 1 SWINGS TO WITHIN $\approx 2 V$ OF V ${ }^{++}$

Window Detector

Using Clamp Diodes to Improve Frequency Response*

*SEE CURVE, "RESPONSE TIME vs INPUT STEP SIZE"

Noise Immune 60Hz Line Sync**

High Efficiency** Motor Speed Controller

TYPICAL APPLICATIONS

Combining Offset Adjust and Strobe

Direct Strobe Drive When CMOS* Logic Uses Same ${ }^{+}$Supply as LT1011

*MYLAR
**SELECT FOR REQUIRED RESET TIME CONSTANT

Combining Offset Adjustment and Hystersis

Low Drift R/C Oscillator ${ }^{\dagger}$

Negative Peak Detector

LT1011/LT1011A

TYPICAL APPLICATIONS

4-Digit (10,000 Count) A/D Converter

Capacitance to Pulse Width Converter

${ }^{*} P W=(R 2+R 3)(C)\left(\frac{R 1+R 4}{R 1}\right)$, INPUT CAPACITANCE OF
LT1011 IS $\approx 6 p F$. THIS IS AN OFFSET TERM.
**TYPICAL 2 SECTIONS OF 365pF VARIABLE
CAPACITOR WHEN USED AS SHAFT ANGLE INDICATION
${ }^{\dagger}$ THESE COMPONENTS MAY BE ELIMINATED IF NEGATIVE SUPPLY IS AVAILABLE (-1V TO -15V)

TYPICAL APPLICATIONS

Fast Settling* Filter

LT1011/LT1011A

sCHEmATIC DIAGRAM

LT1011/LT1011A

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

J8 Package
 8-Lead CERDIP (Narrow . 300 Inch, Hermetic)
 (Reference LTC DWG \# 05-08-1110)
 OBSOLETE PACKAGE

www.BDTIC.com/Linear

LT1011/LT1011A

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

N8 Package

8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254 mm)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

RECOMMENDED SOLDER PAD LAYOUT

REVISION HISTORY (Revision history begins at Rev D)

REV	DATE	DESCRIPTION	PAGE NUMBER
D	$10 / 12$	Update to Product Description	1
		Addition of Order Information Addition of Pin Function Information Correction to Positive Peak Detector Circuit	2,3
		7	

LT1011/LT1011A

TYPICAL APPLICATION

10Hz to 100 kHz Voltage to Frequency Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1016	UltraFasTTM Precision Comparator	Industry Standard 10ns Comparator
LT1116	12ns Single Supply Ground-Sensing Comparator	Single Supply Version of the LT1016
LT1394	UltraFast Single Supply Comparator	7ns, 6mA Single Supply Comparator
LT1671	60ns, Low Power Comparator	450

UltraFast is a trademark of Linear Technology Corporation.

