Dual $125 \mathrm{~mA}, 50 \mathrm{MHz}$ Current Feedback Amplifier

feATURES

- Minimum Output Current: $\pm 125 m A$
- Maximum Supply Current per Amp: $7 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
- Bandwidth: $50 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- Slew Rate: $900 \mathrm{~V} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- Wide Supply Range: $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Enhanced $\theta_{\mathrm{JA}} 16$-Pin SO Package)
- Enhanced θ_{JA} SO-8 Package for $\pm 5 \mathrm{~V}$ Operation
- 0.02\% Differential Gain: $A_{V}=2, R_{L}=150 \Omega$
- 0.015° Differential Phase: $A_{V}=2, R_{L}=150 \Omega$
- $\pm 13 \mathrm{~V}$ Output Swing: $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}, \mathrm{~V}_{S}= \pm 15 \mathrm{~V}$
- $\pm 3.1 \mathrm{~V}$ Output Swing: $I_{L}=100 \mathrm{~mA}, V_{S}= \pm 5 \mathrm{~V}$
- 55 ns Settling Time to 0.1%, 10 V Step
- Thermal Shutdown Protection

APPLICATIONS

- Twisted-Pair Drivers
- Video Amplifiers
- Cable Drivers
- Test Equipment Amplifiers
- Buffers

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1497$ dual current feedback amplifier features low power, high output drive, excellent video characteristics and outstanding distortion performance. From a low 7 mA maximum supply current per amplifier, the LT1497 drives $\pm 100 \mathrm{~mA}$ with only 1.9 V of headroom. Twisted pairs can be driven differentially with -70 dBc distortion up to 1 MHz for $\pm 40 \mathrm{~mA}$ peak signals.

The LT1497 is available in a low thermal resistance 16-pin SO package for operation with supplies up to $\pm 15 \mathrm{~V}$. For $\pm 5 \mathrm{~V}$ operation the device is also available in a low thermal resistance SO-8 package. The device has thermal and current limit circuits that protect against fault conditions.

The LT1497 is manufactured on Linear Technology's complementary bipolar process. The device has characteristics that bridge the performance between the LT1229 and LT1207 dual current feedback amplifiers. The LT1229 has 30 mA output drive, 100 MHz bandwidth and 12 mA supply current. The LT1207 has 250 mA output drive, 60 MHz bandwidth and 40 mA supply current.
$\overline{\mathbf{1 7}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

2nd and 3rd Harmonic Distortion of HDSL2 Single Pair Line Driver

ABSOLUTE MAXImUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) LT1497CS8
LT1497CS.. 36V
Noninverting Input Current $\pm 2 \mathrm{~mA}$
Output Short-Circuit Duration (Note 1)Continuous

Operating Temperature Range (Note 2) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Specified Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Maximum Junction Temperature (See Below) $150^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
OUTA $1 \square 8 \mathrm{~V}^{+}$	LT1497CS8	NC 2 2 15 NC	LT1497CS
	S8 PART MARKING	6^{6} -	
$\mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\text {JA }}=80^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE)		S PACK	
		$\mathrm{T}_{\text {Jmax }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=40^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE 3$)$	

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$V_{C M}=0 V, \pm 2.5 \mathrm{~V} \leq V_{S} \leq \pm 15 \mathrm{~V}$ (LT1497CS), $\pm 2.5 \mathrm{~V} \leq V_{S} \leq \pm 5 \mathrm{~V}$ (LT1497CS8), pulse tested unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		± 3	$\begin{aligned} & \pm 10 \\ & \pm 15 \end{aligned}$	mV mV
	Input Offset Voltage Matching	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		± 1	$\begin{aligned} & \pm 3.5 \\ & \pm 5.0 \end{aligned}$	mV mV
	Input Offset Voltage Drift		\bullet		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$1{ }_{1 \times}{ }^{+}$	Noninverting Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		± 1	$\begin{gathered} \pm 3 \\ \pm 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Noninverting Input Current Matching	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		± 0.3	$\begin{aligned} & \pm 1.0 \\ & \pm 1.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
1N-	Inverting Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		± 7	$\begin{aligned} & \pm 20 \\ & \pm 40 \end{aligned}$	μA μA
	Inverting Input Current Matching	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		± 3	$\begin{aligned} & \pm 10 \\ & \pm 15 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{G}}=10 \Omega, \mathrm{R}_{S}=0 \Omega$			3		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$+i_{n}$	Noninverting Input Noise Current Density	$f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{G}}=10 \Omega, \mathrm{R}_{S}=10 \mathrm{k}$			2		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$-i_{n}$	Inverting Input Noise Current Density	$f=1 \mathrm{kHz}, \mathrm{R}_{F}=1 \mathrm{k}, \mathrm{R}_{G}=10 \Omega, \mathrm{R}_{S}=10 \mathrm{k}$			20		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
R_{IN}	Input Resistance	$\begin{aligned} & V_{\text {IN }}= \pm 13 \mathrm{~V}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {IN }}= \pm 3 \mathrm{~V}, \mathrm{~V}_{S}= \pm 5 \mathrm{~V} \\ & V_{\text {IN }}= \pm 0.5 \mathrm{~V}, V_{S}= \pm 2.5 \mathrm{~V} \end{aligned}$	\bullet	1.5 1.5 1.5	$\begin{gathered} 10 \\ 8 \\ 8 \\ \hline \end{gathered}$		$\mathrm{M} \Omega$ $\mathrm{M} \Omega$ $\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance				3		pF

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{OV}, \pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ (LT1497CS), $\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 5 \mathrm{~V}$ (LT1497CS8), pulse tested unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Input Voltage Range	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}= \pm 2.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 13 \\ & \pm 3.0 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 4.0 \\ & \pm 1.5 \end{aligned}$		V V V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & 55 \\ & 53 \end{aligned}$	62		dB dB
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}= \pm 3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & 54 \\ & 52 \end{aligned}$	60		dB dB
		$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & 52 \\ & 50 \end{aligned}$	56		dB dB
	Inverting Input Current Common Mode Rejection	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 13 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 3 \mathrm{~V} \\ & V_{S}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A} N$ $\mu \mathrm{A} N$ $\mu \mathrm{A} N$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	76		dB dB
		$\mathrm{V}_{S}= \pm 2 \mathrm{~V}$ to $\pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	76		dB dB
	Noninverting Input Current Power Supply Rejection	$\begin{aligned} & V_{S}= \pm 2 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & V_{S}= \pm 2 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} / \mathrm{V} \\ & \mathrm{nA} / \mathrm{V} \end{aligned}$
	Inverting Input Current Power Supply Rejection	$\begin{aligned} & V_{S}= \pm 2 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & V_{S}= \pm 2 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 66 \\ & 66 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 80 \\ & 80 \\ & \hline \end{aligned}$		dB dB dB
R_{OL}	Transresistance, $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{I}_{\text {IN }}{ }^{-}$	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{~V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{S}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 300 \end{aligned}$		$\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $\mathrm{k} \Omega$
$\overline{V_{\text {OUT }}}$	Maximum Output Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{L}=150 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & \pm 12.80 \\ & \pm 12.60 \end{aligned}$	± 13.15		V
		$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}= \pm 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & \pm 12.65 \\ & \pm 12.55 \end{aligned}$	± 13.0		V
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & \pm 3.20 \\ & \pm 3.10 \end{aligned}$	± 3.45		V
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~L}_{\mathrm{L}}= \pm 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & \pm 2.75 \\ & \pm 2.65 \end{aligned}$	± 3.10		V
		$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & \pm 1.25 \\ & \pm 1.15 \end{aligned}$	± 1.45		V
		$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}= \pm 50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & \pm 1.00 \\ & \pm 0.90 \end{aligned}$	± 1.15		V
Iout	Maximum Output Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 125 \\ & \pm 125 \end{aligned}$	$\begin{aligned} & \pm 220 \\ & \pm 220 \\ & \pm 140 \\ & \hline \end{aligned}$		mA $m A$ $m A$
I_{S}	Supply Current per Amplifier	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		6.0	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	mA mA
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet		7.0	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	mA
	Channel Separation	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	\bullet	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 120 \\ & 115 \\ & \hline \end{aligned}$		dB dB

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CM}}=\mathbf{0 V}, \pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ (LT1497CS), $\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 5 \mathrm{~V}$ (LT1497CS8), pulse tested unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)	\bullet	500 400	900		V/us $\mathrm{V} / \mathrm{\mu s}$
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)	\bullet	200 150	350		V/ $/ \mathrm{S}$
BW	Small-Signal Bandwidth	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=560 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=560 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & V_{S}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=560 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$			$\begin{aligned} & 50 \\ & 35 \\ & 30 \end{aligned}$		MHz MHz MHz
$\mathrm{tr}_{\text {r }}$	Small-Signal Rise Time	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{F}=R_{G}=560 \Omega, R_{L}=100 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, R_{F}=R_{G}=560 \Omega, R_{L}=100 \Omega \\ & V_{S}= \pm 2.5 \mathrm{~V}, R_{F}=R_{G}=560 \Omega, R_{L}=100 \Omega \end{aligned}$			$\begin{aligned} & 7.5 \\ & 9.5 \\ & 11 \end{aligned}$		ns ns ns
	Overshoot	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{F}=R_{G}=560 \Omega, R_{L}=100 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, R_{F}=R_{G}=560 \Omega, R_{L}=100 \Omega \\ & V_{S}= \pm 2.5 \mathrm{~V}, R_{F}=R_{G}=560 \Omega, R_{L}=100 \Omega \end{aligned}$			$\begin{aligned} & 15 \\ & 12 \\ & 10 \\ & \hline \end{aligned}$		\% $\%$ $\%$
	Propagation Delay	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{F}=R_{G}=560 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{F}=\mathrm{R}_{\mathrm{G}}=560 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & V_{S}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=560 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$			$\begin{aligned} & 6.8 \\ & 8.4 \\ & 9.7 \end{aligned}$		ns ns ns
$\mathrm{t}_{\text {s }}$	Settling Time	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, 10 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & V_{S}= \pm 5 \mathrm{~V}, 5 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \end{aligned}$			$\begin{aligned} & 55 \\ & 50 \end{aligned}$		ns
	Differential Gain (Note 5)	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{F}=R_{G}=510 \Omega, R_{L}=150 \Omega \\ & V_{S}= \pm 15 V, R_{F}=R_{G}=510 \Omega, R_{L}=50 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, R_{F}=R_{G}=510 \Omega, R_{L}=150 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, R_{F}=R_{G}=510 \Omega, R_{L}=50 \Omega \end{aligned}$			$\begin{aligned} & 0.02 \\ & 0.19 \\ & 0.08 \\ & 0.41 \end{aligned}$		\% $\%$ $\%$ $\%$
	Differential Phase (Note 5)	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & V_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$			$\begin{aligned} & 0.015 \\ & 0.235 \\ & 0.045 \\ & 0.310 \end{aligned}$		Deg Deg Deg Deg

The denotes specifications which apply over the full operating temperature range.
Note 1: Applies to short circuits to ground only. A short circuit between the output and either supply may damage the part when operated on supplies greater than $\pm 10 \mathrm{~V}$
Note 2: The LT1497 is designed, characterized and expected to operate over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, but is not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. Guaranteed industrial grade parts are available, consult factory.
Note 3: Thermal resistance varies depending upon the amount of PC board metal attached to the device. θ_{JA} is specified for a $2500 \mathrm{~mm}^{2}$ test board covered with $20 z$ copper on both sides.

Note 4: Slew rate is measured between $\pm 5 \mathrm{~V}$ on a $\pm 10 \mathrm{~V}$ output signal while operating on $\pm 15 \mathrm{~V}$ supplies with $R_{F}=453 \Omega, R_{G}=49.9 \Omega$ and $R_{L}=150 \Omega$. On $\pm 5 \mathrm{~V}$ supplies slew rate is measured between $\pm 1 \mathrm{~V}$ on a $\pm 3 \mathrm{~V}$ output signal. The slew rate is much higher when the input is overdriven and when the amplifier is operated inverting. See the Applications Information section.
Note 5: NTSC composite video with an amplifier output level of 2 V peak.

SMALL-SIGNAL BANDUIDTH

$V_{S}= \pm 15 \mathrm{~V}$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\mathbf{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	-3dB BW (MHz)
-1	150	560	560	59.2
	50	560	560	43.1
	20	620	620	30.0
1	150	560	-	57.0
	50	560	-	42.7
	20	560	-	30.3
2	150	510	510	59.1
	50	560	560	41.7
	20	620	620	20.7
10	150	270	30	43.4
	50	270	30	30.9
	20	270	30	19.0

$V_{S}= \pm 5 V$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\boldsymbol{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	-3dB BW (MHz)
-1	150	510	510	45.0
	50	560	560	32.0
	20	560	560	23.2
1	150	510	-	44.3
	50	560	-	31.7
	20	560	-	22.9
2	150	510	510	41.7
	50	560	560	30.4
	20	560	560	21.9
10	150	270	30	28.1
	50	270	30	21.9
	20	270	30	14.6

TYPICAL PERFORMANCE CHARACTERISTICS

Voltage Gain and Phase vs Frequency, Gain = 6dB

1497 G01

Voltage Gain and Phase
 vs Frequency, Gain = 20dB

497 G04
-3dB Bandwidth
vs Supply Voltage

1497 G02

> -3dB Bandwidth
> vs Supply Voltage

-3dB Bandwidth vs Supply Voltage

1497 G03

$$
\begin{aligned}
& \text {-3dB Bandwidth } \\
& \text { vs Supply Voltage }
\end{aligned}
$$

1497 G05
1497 G06
www.BDTIC.com/Linear

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORmANCE CHARACTERISTICS

APPLLCATIONS INFORMATION

The LT1497 is a dual current feedback amplifier with high output current drive capability. Bandwidth is maintained over a wide range of voltage gains by the appropriate choice of feedback resistor. These amplifiers will drive low impedance loads such as cables with excellent linearity at high frequencies.

Feedback Resistor Selection

The optimum value for the feedback resistor is a function of the operating conditions of the device, the load impedance and the desired flatness of frequency response. The Small-Signal Bandwidth table gives the values which result in the highest bandwidth with less than 1dB of peaking for various gains, loads and supply voltages. If this level of flatness is not required, a higher bandwidth can be obtained by use of a lower feedback resistor. The characteristic curves of Bandwidth vs Supply Voltage indicate feedback resistors for peaking up to 5dB. These curves use a solid line when the response has less than 1 dB of peaking and a dashed line when the response has 1 dB to 5 dB of peaking. Note that in a gain of 10 peaking is always under 1dB for the resistor ranges shown. Reducing the feedback resistor further than 270Ω in a gain of 10 will increase the bandwidth, but it also loads the amplifier and reduces the maximum current available to drive the load.

Capacitive Loads

The LT1497 can drive capacitive loads directly when the proper value of feedback resistor is used. The graph of Maximum Capacitive Load vs Feedback Resistor should be used to select the appropriate value. The graph shows feedback resistor values for 5 dB frequency peaking when driving a 1 k load at a gain of 2 . This is a worst-case condition. The amplifier is more stable at higher gains and driving heavier loads (smaller load resistors). Alternatively, a small resistor (10Ω to 20Ω) can be put in series with the output to isolate the capacitive load from the amplifier output. This has the advantage in that the amplifier bandwidth is only reduced when the capacitive load is present, and the disadvantage that the gain is a function of the load resistance.

Capacitance on the Inverting Input

Current feedback amplifiers require resistive feedback from the output to the inverting input for stable operation. Take care to minimize the stray capacitance between the output and the inverting input. Capacitance on the inverting input to ground will cause peaking in the frequency response (and overshoot in the transient response), but it does not degrade the stability of the amplifier.

Power Supplies

The LT1497 will operate on single or split supplies from $\pm 2 \mathrm{~V}$ (4 V total) to $\pm 15 \mathrm{~V}$ (30 V total). It is not necessary to use equal value split supplies, however, the offset voltage and inverting input bias current will change. The offset voltage changes about 1 mV per volt of supply mismatch. The inverting bias current can change as much as $10 \mu \mathrm{~A}$ per volt of supply mismatch, though typically the change is less than $2.5 \mu \mathrm{~A}$ per volt.

Thermal Considerations

The LT1497 contains a thermal shutdown feature that protects against excessive internal (junction) temperature. If the junction temperature of the device exceeds the protection threshold, the device will begin cycling between normal operation and an off state. The cycling is not harmful to the part. The thermal cycling occurs at a slow rate, typically 10 ms to several seconds, depending upon the power dissipation and the thermal time constants of the package and the amount of copper on the board under the package. Raising the ambient temperature until the device begins thermal shutdown gives a good indication of how much margin there is in the thermal design.
For surface mount devices heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. Experiments have shown that the heat spreading copper layer does not need to be electrically connected to the leads of the device. The PCB material can be very effective at transmitting heat between the pad area attached to V^{-}pins of the device and a ground

APPLICATIONS INFORMATION

or power plane layer either inside or on the opposite side of the board. Copper board stiffeners and plated throughholes can also be used to spread the heat generated by the device. Table 1 lists the thermal resistance for several different board sizes and copper areas. All measurements were taken in still air on 3/32" FR-4 board with $20 z$ copper. This data can be used as a rough guideline in estimating thermal resistance. The thermal resistance for each application will be affected by thermal interactions with other components as well as board size and shape.
Table 1. Fused 16-lead and 8-lead SO Packages

COPPER AREA (20z) TOPSIDE		TOTAL BACKSIDE	θ_{JA} COPPER AREA	$\theta_{\text {JA }}$ (16-LEAD)
$2500 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$5000 \mathrm{~mm}^{2}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}$
$1000 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$3500 \mathrm{~mm}^{2}$	$46^{\circ} \mathrm{C} / \mathrm{W}$	$92^{\circ} \mathrm{C} / \mathrm{W}$
$600 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$3100 \mathrm{~mm}^{2}$	$48^{\circ} \mathrm{C} / \mathrm{W}$	$96^{\circ} \mathrm{C} / \mathrm{W}$
$180 \mathrm{~mm}^{2}$	$2500 \mathrm{~mm}^{2}$	$2680 \mathrm{~mm}^{2}$	$49^{\circ} \mathrm{C} / \mathrm{W}$	$98^{\circ} \mathrm{C} / \mathrm{W}$
$180 \mathrm{~mm}^{2}$	$1000 \mathrm{~mm}^{2}$	$1180 \mathrm{~mm}^{2}$	$56^{\circ} \mathrm{C} / \mathrm{W}$	$112^{\circ} \mathrm{C} / \mathrm{W}$
$180 \mathrm{~mm}^{2}$	$600 \mathrm{~mm}^{2}$	$780 \mathrm{~mm}^{2}$	$58^{\circ} \mathrm{C} / \mathrm{W}$	$116^{\circ} \mathrm{C} / \mathrm{W}$
$180 \mathrm{~mm}^{2}$	$300 \mathrm{~mm}^{2}$	$480 \mathrm{~mm}^{2}$	$59^{\circ} \mathrm{C} / \mathrm{W}$	$118^{\circ} \mathrm{C} / \mathrm{W}$
$180 \mathrm{~mm}^{2}$	$100 \mathrm{~mm}^{2}$	$280 \mathrm{~mm}^{2}$	$60^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$
$180 \mathrm{~mm}^{2}$	$0 \mathrm{~mm}^{2}$	$180 \mathrm{~mm}^{2}$	$61^{\circ} \mathrm{C} / \mathrm{W}$	$122^{\circ} \mathrm{C} / \mathrm{W}$

Calculating Junction Temperature

The junction temperature can be calculated from the equation:

$$
T_{J}=\left(P_{D}\right)\left(\theta_{J A}\right)+T_{A}
$$

$T_{J}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JA}}=$ Thermal Resistance (Junction-to-Ambient)
As an example, calculate the junction temperature for the circuit in Figure 1 assuming an $85^{\circ} \mathrm{C}$ ambient temperature.
The device dissipation can be found by measuring the supply currents, calculating the total dissipation and then subtracting the dissipation in the load and feedback network. Both amplifiers are in a gain of -1 .
The dissipation for each amplifier is:

$$
P_{D}=(1 / 2)(86.4 \mathrm{~mA})(30 \mathrm{~V})-(10 \mathrm{~V})^{2} /(200 \| 560)=0.62 \mathrm{~W}
$$

The total dissipation is 1.24 W . When a $2500 \mathrm{~mm}^{2} \mathrm{PC}$ board with $20 z$ copper on top and bottom is used, the
thermal resistance is $40^{\circ} \mathrm{C} / \mathrm{W}$. The junction temperature T_{j} is:

$$
\mathrm{T}_{J}=(1.24 \mathrm{~W})\left(40^{\circ} \mathrm{C} / \mathrm{W}\right)+85^{\circ} \mathrm{C}=135^{\circ} \mathrm{C}
$$

The maximum junction temperature for the LT1497 is $150^{\circ} \mathrm{C}$, so the heat sinking capability of the board is adequate for the application.
If the copper area on the PC board is reduced to $180 \mathrm{~mm}^{2}$ the thermal resistance increases to $61^{\circ} \mathrm{C} / \mathrm{W}$ and the junction temperature becomes:

$$
\mathrm{T}_{\mathrm{J}}=(1.24 \mathrm{~W})\left(61^{\circ} \mathrm{C} / \mathrm{W}\right)+85^{\circ} \mathrm{C}=161^{\circ} \mathrm{C}
$$

which is above the maximum junction temperature indicating that the heat sinking capability of the board is inadequate and should be increased.

Figure 1. Thermal Calculation Example

Slew Rate

Unlike a traditional op amp, the slew rate of a current feedback amplifier is not independent of the amplifier gain configuration. There are slew rate limitations in both the input stage and the output stage. In the inverting mode and for higher gains in the noninverting mode, the signal amplitude on the input pins is small and the overall slew rate is that of the output stage. The input stage slew rate is related to the quiescent current in the input devices.
Referring to the Simplified Schematic, for noninverting applications the two current sources in the input stage slew the parasitic internal capacitances at the bases of Q3 and Q4. Consider a positive going input at the base of Q1 and Q2. If the input slew rate exceeds the internal slew rate,

APPLICATIONS Information

the normally active emitter of Q2 will turn off as the entire current available from the current source is used to slew the base of Q3. The base of Q4 is driven by Q1 without slew limitation. When the differential input voltage exceeds two diode drops (about 1.4 V) the extra clamp emitter on Q1 turns on and drives the base of Q3 directly. Once the base of Q 3 has been driven within 1.4 V of its final value, the clamp emitter of Q1 turns off and the node must finish slewing using the current source.
This effect can be seen in Figure 2 which shows the large signal behavior in a gain of 1 on $\pm 15 \mathrm{~V}$ supplies. The clamping action enhances the slew rate beyond the input limitation, but always leads to slew overshoot after the clamps turn off. Figure 3 shows that for higher gain
configurations there is much less slew rate enhancement because the input only moves 2 V , barely enough to turn on the input clamps. In inverting configurations as shown in Figure 4 the noninverting input does not move so there is no input slew rate limitation. Slew overshoot is due to capacitance on the inverting input and can be reduced with a larger feedback resistor.

The output slew rate is set by the value of the feedback resistors and the internal capacitance. Larger feedback resistors will reduce the slew rate as will lower supply voltages, similar to the way the bandwidth is reduced. The larger feedback resistors will also cut back on slew overshoot.

Figure 2. Large-Signal Response

Figure 3. Large-Signal Response

Figure 4. Large-Signal Response

SIMPLIFIED SCHEmATIC

TYPICAL APPLICATIONS

Differential Input/Differential Output Power Amp ($\left.A_{V}=2\right)$

Paralleling Both Amplifiers for Guaranteed 250mA Output Drive

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

S Package
16-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)
 FLASH SHALL NOT EXCEED 0.010" (0.254 mm) PER SIDE

TYPICAL APPLICATION

$\pm 4 \mathrm{~A}$ Current Boosted Power Amp ($\mathrm{A}_{V}=10$)

Frequency Response of Current Boosted Power Amp

1497 TA06

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1206	Single 250mA, 60MHz Current Feedback Amplifier	Shutdown Function, Stable with $\mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$, $900 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
LT1207	Dual 250mA, 60MHz Current Feedback Amplifier	Dual Version of LT1206
LT1210	Single 1A, 30MHz Current Feedback Amplifier	Higher Output Version of LT1206
LT1229/LT1230	Dual/Quad 100MHz Current Feedback Amplifiers	30 mA Output Current, 1000V/ $\mu \mathrm{s}$ Slew Rate
LT1363/LT1364/LT1365	Single/Dual/Quad 70MHz, 1000V/ $/ \mathrm{ss}$, C-Load ${ }^{\text {TM }}$ Amplifiers	50 mA Output Current, $1.5 \mathrm{mV} \mathrm{Max} \mathrm{V} \mathrm{V}_{0 \mathrm{~S}}, 2 \mu \mathrm{~A} \mathrm{Max} \mathrm{IB}$

C-Load is a trademark of Linear Technology Corporation.

