feATURES

- Gain Bandwidth Product: 80MHz
- Input Common Mode Range Includes Both Rails
- Output Swings Rail-to-Rail
- Low Quiescent Current: 2mA Max
- Input Offset Voltage: 350 $\mu \mathrm{V}$ Max
- Input Bias Current: 250nA Max
- Low Voltage Noise: $8.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Slew Rate: 25V/us
- Common Mode Rejection: 105dB
- Power Supply Rejection: 97dB
- Open-Loop Gain: 85V/mV
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Available in the 8 -Pin S0 and 5-Pin Low Profile (1mm) ThinSOT ${ }^{\text {TM }}$ Packages

APPLICATIONS

- Low Voltage, High Frequency Signal Processing
- Driving A/D Converters
- Rail-to-Rail Buffer Amplifiers
- Active Filters
- Video Line Driver

The LT ${ }^{\circledR 1800 ~ i s ~ a ~ l o w ~ p o w e r, ~ h i g h ~ s p e e d ~ r a i l-t o-r a i l ~ i n p u t ~ a n d ~}$ output operational amplifier with excellentDC performance. The LT1800 features reduced supply current, lower input offset voltage, lower input bias current and higher DC gain than other devices with comparable bandwidth.

The LT1800 has an input range that includes both supply rails and an output that swings within 20 mV of either supply rail to maximize the signal dynamic range in low supply applications.

The LT1800 maintains its performance for supplies from 2.3 V to 12.6 V and is specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output.

The LT1800 is available in the 8-pin S0 package with the standard op amp pinout and in the 5-pin TSOT-23 package. For dual and quad versions of the LT1800, see the LT1801/LT1802 data sheet. The LT1800 can be used as a plug-in replacement for many op amps to improve input/output range and performance.
$\boldsymbol{\Omega T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Single Supply 1A Laser Driver Amplifier

Laser Driver Amplifier 500mA Pulse Response

ABSOLUTE MAXImUM RATINGS (Note 1)

Total Supply Voltage ($\mathrm{V}^{\text {- }}$ to $\mathrm{V}^{+}{ }^{+}$)12.6V	Specified Temperature Range (Note 5) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Input Current (Note 2)..................................... $\pm 10 \mathrm{~mA}$	Junction Temperature $150^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3) Indefinite	Storage Temperature Range................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature Range (Note 4).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

pIn CONFIGURATION

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT1800CS8\#PBF	LT1800CS8\#TRPBF	1800	8 -Lead Plastic S0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1800IS8\#PBF	LT1800IS8\#TRPBF	18001	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1800CS5\#PBF	LT1800CS5\#TRPBF	LTRN	5-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1800IS5\#PBF	LT1800IS5\#TRPBF	LTRP	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 V \\ & V_{C M}=0 V(S O T-23) \\ & V_{C M}=V_{S} \\ & V_{C M}=V_{S}(S O T-23) \end{aligned}$	$\begin{gathered} 75 \\ 300 \\ 0.5 \\ 0.7 \end{gathered}$	$\begin{gathered} 350 \\ 750 \\ 3 \\ 3.5 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5 \mathrm{~V}$	20	180	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S} \end{aligned}$	$\begin{gathered} 25 \\ 500 \end{gathered}$	$\begin{gathered} \hline 250 \\ 1500 \end{gathered}$	nA nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S} \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	nA $n A$
	Input Noise Voltage	0.1 Hz to 10 Hz	1.4		$\mu \mathrm{V}$ P-P

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
e_{n}	Input Noise Voltage Density	$f=10 \mathrm{kHz}$		8.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$		2		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { at } V_{S} / 2 \\ & V_{S}=5 \mathrm{~V}, V_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { at } V_{S} / 2 \\ & V_{S}=3 V, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { at } V_{S} / 2 \end{aligned}$	$\begin{aligned} & 35 \\ & 3.5 \\ & 30 \end{aligned}$	$\begin{gathered} 85 \\ 8 \\ 85 \end{gathered}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 85 \\ & 78 \end{aligned}$	$\begin{gathered} 105 \\ 97 \end{gathered}$		dB dB
	Input Common Mode Range		0		$\mathrm{V}_{\text {S }}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	80	97		dB
	Minimum Supply Voltage (Note 6)			2.3	2.5	V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 7)	No Load $I_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$		$\begin{gathered} 12 \\ 80 \\ 225 \end{gathered}$	$\begin{gathered} 50 \\ 160 \\ 450 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{array}{\|l\|} \hline \text { No Load } \\ l_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=20 \mathrm{~mA} \\ \hline \end{array}$		$\begin{gathered} 16 \\ 120 \\ 450 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 250 \\ 850 \\ \hline \end{gathered}$	mV mV mV
$\mathrm{I}_{\text {SC }}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$		mA mA
IS	Supply Current per Amplifier			1.6	2	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}$	40	80		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	13	25		V/ $/ \mathrm{s}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$		2		MHz
HD	Harmonic Distortion	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{P-P}, \mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$		-75		dBc
ts_{s}	Settling Time	$0.01 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		250		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=+2, R_{L}=150 \Omega$		0.35		\%
$\Delta \theta$	Differential Phase (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=+2, R_{L}=150 \Omega$		0.4		Deg

The \bullet denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}$; $V_{C M}=V_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 V \\ & V_{C M}=0 V(S O T-23) \\ & V_{C M}=V_{S} \\ & V_{C M}=V_{S}(S O T-23) \end{aligned}$			$\begin{aligned} & 125 \\ & 300 \\ & 0.6 \\ & 0.7 \end{aligned}$	$\begin{gathered} 500 \\ 1250 \\ 3.5 \\ 3.75 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}}-1.5 \mathrm{~V}$	\bullet		30	275	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)		\bullet		1.5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 50 \\ 550 \end{gathered}$	$\begin{gathered} 300 \\ 1750 \end{gathered}$	nA nA
los	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	nA nA
AvoL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { at } V_{S} / 2 \\ & V_{S}=5 V, V_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { at } V_{S} / 2 \\ & V_{S}=3 V, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { at } V_{S} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} \hline 30 \\ 3 \\ 25 \end{gathered}$	$\begin{gathered} 75 \\ 6 \\ 75 \end{gathered}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 82 \\ & 74 \end{aligned}$	$\begin{gathered} 101 \\ 93 \end{gathered}$		dB dB
							1800fa
www.BDTIC.com/Linear							

ELECTRICAL CHARACTERISTICS The demones the speefiriations which ppply vere the emperature arave of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Input Common Mode Range		\bullet	0		V_{S}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	74	91		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.3	2.5	V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 7)	No Load $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 14 \\ 100 \\ 300 \end{gathered}$	$\begin{gathered} 60 \\ 200 \\ 550 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 25 \\ 150 \\ 600 \end{gathered}$	$\begin{gathered} 80 \\ 300 \\ 1000 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Is	Supply Current per Amplifier		\bullet		2	2.75	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	35	75		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}_{P-P}$	\bullet	11	22		V/us

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V_{S^{-}} \\ & V_{C M}=V_{S}(S O T-23) \\ & V_{C M}=V_{S^{+}} \\ & V_{C M}=V_{S^{+}}(S O T-23) \end{aligned}$		$\begin{gathered} 150 \\ 400 \\ 0.7 \\ 1 \end{gathered}$	$\begin{gathered} 500 \\ 1000 \\ 3.5 \\ 4.5 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$V_{C M}=V_{S}{ }^{-}$to $V_{S}{ }^{+}-1.5 \mathrm{~V}$		30	475	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{S^{-}}+1 \mathrm{~V} \\ & V_{C M}=V_{S^{+}} \end{aligned}$		$\begin{aligned} & 25 \\ & 400 \end{aligned}$	$\begin{gathered} 350 \\ 1500 \end{gathered}$	nA
los	Input Offset Current	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}^{-}}+1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}^{+}} \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	nA
	Input Noise Voltage	0.1 Hz to 10 Hz		1.4		$\mu \mathrm{V}$ P-P
e_{n}	Input Noise Voltage Density	$f=10 \mathrm{kHz}$		8.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$f=100 \mathrm{kHz}$		2		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 V \text { to } 4 V, R_{L}=1 \mathrm{k} \\ & V_{0}=-2 V \text { to } 2 V, R_{L}=100 \Omega \end{aligned}$	$\begin{aligned} & 25 \\ & 2.5 \end{aligned}$	$\begin{gathered} 70 \\ 7 \end{gathered}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to 3.5 V	85	109		dB
	Input Common Mode Range		V_{S}		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}{ }^{-}=0 \mathrm{~V}$	80	97		dB
V_{OL}	Output Voltage Swing Low (Note 7)	No Load $I_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=20 \mathrm{~mA}$		$\begin{aligned} & 15 \\ & 85 \\ & 225 \end{aligned}$	$\begin{gathered} 60 \\ 170 \\ 450 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=20 \mathrm{~mA}$		$\begin{gathered} 17 \\ 130 \\ 450 \end{gathered}$	$\begin{gathered} 70 \\ 260 \\ 900 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current		30	50		mA
IS	Supply Current per Amplifier			1.8	2.75	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}$		70		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}= \pm 4 \mathrm{~V}$, Measured at $\mathrm{V}_{0}= \pm 2 \mathrm{~V}$		23		$\mathrm{V} / \mathrm{\mu}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{0}=8 \mathrm{~V}_{\text {P-P }}$		0.9		MHz
HD	Harmonic Distortion	$\mathrm{A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{\text {P-P, }}, \mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$		-75		dBC
t_{5}	Settling Time	$0.01 \%, V_{\text {STEP }}=5 \mathrm{~V}, \mathrm{~A}_{V}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		300		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$A_{V}=+2, R_{L}=150 \Omega$		0.35		\%
$\Delta \theta$	Differential Phase (NTSC)	$A_{V}=+2, R_{L}=150 \Omega$		0.2		Deg

The \bullet denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V_{S^{-}} \\ & V_{C M}=V_{S}^{-}(S O T-23) \\ & V_{C M}=V_{S^{+}} \\ & V_{C M}=V_{S^{+}}(S O T-23) \\ & \hline \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \hline \end{aligned}$		$\begin{gathered} 200 \\ 450 \\ 0.75 \\ 1 \end{gathered}$	$\begin{gathered} 800 \\ 1500 \\ 4 \\ 5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Shift	$V_{C M}=V_{S}{ }^{-}$to $V_{S^{+}}-1.5 \mathrm{~V}$	\bullet		45	675	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)		\bullet		1.5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{S^{-}}+1 V \\ & V_{C M}=V_{S^{+}}-0.2 V \end{aligned}$	\bullet		$\begin{gathered} 30 \\ 450 \end{gathered}$	$\begin{gathered} 400 \\ 1750 \end{gathered}$	$\begin{aligned} & \overline{\mathrm{nA}} \\ & \mathrm{nA} \end{aligned}$

ELECTRICAL CHARACTERISTICS The • denotes the speciifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{O U T}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=V_{S}{ }^{-}+1 \mathrm{~V} \\ & V_{C M}=V_{S^{+}}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 V \text { to } 4 V, R_{L}=1 \mathrm{k} \\ & V_{0}=-2 V \text { to } 2 V, R_{L}=100 \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \end{gathered}$	$\begin{gathered} 55 \\ 5 \end{gathered}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {S }}{ }^{\text {to }} 3.5 \mathrm{~V}$	\bullet	82	105		dB
	Input Common Mode Range		\bullet	$\mathrm{V}_{S}{ }^{-}$		$\mathrm{V}_{S}{ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	\bullet	74	91		dB
VOL	Output Voltage Swing Low (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=20 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 17 \\ 105 \\ 250 \end{gathered}$	$\begin{gathered} 70 \\ 210 \\ 575 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{aligned} & \text { No Load } \\ & \text { ISOURCE }=5 \mathrm{~mA} \\ & \text { ISOURCE }=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 25 \\ 150 \\ 600 \end{gathered}$	$\begin{gathered} 90 \\ 310 \\ 1100 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
ISC	Short-Circuit Current		\bullet	25	45		mA
I_{S}	Supply Current per Amplifier		\bullet		2.4	3.5	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet		70		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}= \pm 4 \mathrm{~V}$, Measured at $\mathrm{V}_{0}= \pm 2 \mathrm{~V}$	\bullet		20		V / Ms

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0 U T}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V_{S^{-}} \\ & V_{\text {CM }}=V_{S^{-}}(\text {SOT-23 }) \\ & V_{C M}=V_{S^{+}} \\ & V_{\text {CM }}=V_{S^{+}}(S O T-23) \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 350 \\ 500 \\ 0.75 \\ 1 \end{gathered}$	$\begin{gathered} 900 \\ 2250 \\ 4.5 \\ 5.5 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$V_{C M}=V_{S}{ }^{-}$to $\mathrm{V}^{+}-1.5 \mathrm{~V}$	\bullet		50	750	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)		\bullet		1.5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{S^{-}}+1 \mathrm{~V} \\ & V_{C M}=V_{S^{+}}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 50 \\ 450 \end{gathered}$	$\begin{gathered} 450 \\ 2000 \end{gathered}$	nA nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V_{S^{-}}+1 \mathrm{~V} \\ & V_{C M}=V_{S^{+}}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-1 \mathrm{~V} \text { to } 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \hline \end{aligned}$	\bullet	$\begin{gathered} 16 \\ 2 \end{gathered}$	$\begin{gathered} 55 \\ 5 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$V_{C M}=V_{S}{ }^{-}$to 3.5 V	\bullet	81	104		dB
	Input Common Mode Range		\bullet	V_{S}		$\mathrm{V}^{+}{ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{\text {+ }}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	-	73	90		dB
VOL	Output Voltage Swing Low (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=10 \mathrm{~mA}$	\bullet		$\begin{gathered} 15 \\ 105 \\ 170 \end{gathered}$	$\begin{gathered} 80 \\ 220 \\ 400 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	No Load $\text { ISOURCE }=5 \mathrm{~mA}$ $\text { ISOURCE }=10 \mathrm{~mA}$	$\bullet \bullet$		$\begin{gathered} 25 \\ 150 \\ 300 \end{gathered}$	$\begin{aligned} & 100 \\ & 350 \\ & 700 \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		\bullet	12.5	30		mA
Is	Supply Current per Amplifier		-		2.6	4	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet		65		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}= \pm 4 \mathrm{~V}$, Measured at $\mathrm{V}_{0}= \pm 2 \mathrm{~V}$	\bullet		15		V/ $/ \mathrm{s}$

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The inputs are protected by back-to-back diodes and by ESD diodes to the supply rails. If the differential input voltage exceeds 1.4 V or either input goes outside the rails, the input current should be limited to less than 10mA.
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

Note 4: The LT1800C/LT1800I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: The LT1800C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1800C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT18001 is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

1800607

1800 G10

Minimum Supply Voltage

1800 G11

Output Saturation Voltage
vs Load Current (Output Low)

Output Short-Circuit Current vs Power Supply Voltage

1800 G 12

1800 G13

Open-Loop Gain

Open-Loop Gain

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

1800623

800 G25

Power Supply Rejection Ratio vs Frequency

Common Mode Rejection Ratio vs Frequency

1800 G27
Output Impedance vs Frequency

Series Output Resistor vs Capacitive Load

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS InFORMATION

Circuit Description

The LT1800 has an input and output signal range that covers from the negative power supply to the positive power supply. Figure 1 depicts a simplified schematic of the amplifier. The input stage is comprised of two differential amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4 that are active over the different ranges of common mode inputvoltage. The PNP differential pair is active between the negative supply to approximately 1.2 V below the positive supply. As the input voltage moves closer toward the positive supply, the transistor $Q 5$ will steer the tail current I_{1} to the current mirror Q6/Q7, activating the NPN differential pair and the PNP pair becomes inactive for the rest of the input common mode range up to the positive supply. Also at the input stage, devices Q17 to Q19 act to cancel the bias current of the PNP input pair. When Q1-Q2 are active, the current in Q16 is controlled to be the same as the current in Q1-Q2, thus the base current of Q16 is nominally equal to the base current of the input devices. The base current of Q16 is then mirrored by devices Q17-Q19 to cancel the base current of the input devices Q1-Q2.

A pair of complementary common emitter stages Q14/Q15 that enable the output to swing from rail to rail constructs the output stage. The capacitors C2 and C3 form the local feedback loops that lower the output impedance at high frequency. These devices are fabricated on Linear Technology's proprietary high speed complementary bipolar process.

Power Dissipation

The LT1800 amplifier is offered in a small package, SOT-23, which has a thermal resistance of $250^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JA}}$. So there is a need to ensure that the die's junction temperature should not exceed $150^{\circ} \mathrm{C}$. Junction temperature T_{j} is calculated from the ambient temperature T_{A}, power dissipation P_{D} and thermal resistance θ_{JA} :

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \bullet \theta_{\mathrm{JA}}\right)
$$

The power dissipation in the IC is the function of the supply voltage, output voltage and the load resistance. For a given supply voltage, the worst-case power dissipation PDMAX Occurs at the maximum supply current and the

Figure 1. LT1800 Simplified Schematic Diagram

APPLICATIONS IOFORMATION

output voltage is at half of either supply voltage (or the maximum swing is less than $1 / 2$ supply voltage). PDMAX is given by:

$$
P_{\text {DMAX }}=\left(V_{S} \bullet I_{S M A X}\right)+\left(V_{S} / 2\right)^{2} / R_{L}
$$

Example: AnLT1800 in a SOT-23 package operating on $\pm 5 \mathrm{~V}$ supplies and driving a 50Ω load, the worst-case power dissipation is given by:

$$
P_{\text {DMAX }}=(10 \cdot 4 \mathrm{~mA})+(2.5)^{2} / 50=0.04+0.125=0.165 \mathrm{~W}
$$

The maximum ambient temperature that the part is allowed to operate is:

$$
\begin{aligned}
T_{A} & =T_{J}-\left(P_{D M A X} \cdot 250^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =150^{\circ} \mathrm{C}-\left(0.165 \mathrm{~W} \cdot 250^{\circ} \mathrm{C} / \mathrm{W}\right)=108^{\circ} \mathrm{C}
\end{aligned}
$$

Input Offset Voltage

The offset voltage will change depending upon which input stage is active. The PNP input stage is active from the negative supply rail to 1.2 V of the positive supply rail, then the NPN input stage is activated for the remaining input range up to the positive supply rail during which the PNP stage remains inactive. The offset voltage is typically less than $75 \mu \mathrm{~V}$ in the range that the PNP input stage is active.

Input Bias Current

The LT1800 employs a patent-pending technique to trim the input bias current to less than 250nA for the input common mode voltage of 0.2 V above negative supply rail to 1.2 V of the positive rail. The low input offset voltage and low input bias current of the LT1800 provide the precision performance especially for high source impedance applications.

Output

The LT1800 can deliver a large output current, so the shortcircuit current limit is set around 50 mA to prevent damage to the device. Attention must be paid to keep the junction temperature of the IC below the absolute maximum rating of $150^{\circ} \mathrm{C}$ (refer to the Power Dissipation section) when the output is continuously short-circuited. The output of the
amplifier has reverse-biased diodes connected to each supply. If the output is forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to several hundred mA , and the total supply voltage is less than 12.6 V , the absolute maximum rating, no damage will occur to the device.

Overdrive Protection

When the input voltage exceeds the power supplies, two pairs of crossing diodes D1 to D4 will prevent the output from reversing polarity. If the input voltage exceeds either power supply by 700 mV , diode D1/D2 or D3/D4 will turn on to keep the output at the proper polarity. For the phase reversal protection to perform properly, the input current must be limited to less than 10 mA . If the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current.

The LT1800's input stages are also protected against a large differential input voltage of 1.4 V or higher by a pair of back-back diodes D5/D8 to prevent the emitter-base breakdown of the input transistors. The current in these diodes should be limited to less than 10 mA when they are active. The worst-case differential input voltage usually occurs when the input is driven while the output is shorted to ground in a unity gain configuration. In addition, the amplifier is protected against ESD strikes up to 3 kV on all pins by a pair of protection diodes on each pin that are connected to the power supplies as shown in Figure 1.

Capacitive Load

The LT1800 is optimized for high bandwidth, low power and precision applications. It can drive a capacitive load of about 75pF in a unity gain configuration, and more for higher gain. When driving a larger capacitive load, a resistor of 10Ω to 50Ω should be connected between the output and the capacitive load to avoid ringing or oscillation. The feedback should still be taken from the output so that the resistor will isolate the capacitive load to ensure stability. Graphs on capacitive loads indicate the transient response of the amplifier when driving capacitive load with a specified series resistor.

APPLICATIONS INFORMATION

Feedback Components

When feedback resistors are used to set up gain, care must be taken to ensure that the pole formed by the feedback resistors and the total capacitance at the inverting input does not degrade stability. For instance, the LT1800 in a noninverting gain of 2 , set up with two 5 k resistors and
a capacitance of 5 pF (part plus PC board) will probably ring in transient response. The pole is formed at 12.7 MHz that will reduce phase margin by 32 degrees when the crossover frequency of the amplifier is around 20 MHz . A capacitor of 5 pF or higher connected across the feedback resistor will eliminate any ringing or oscillation.

TYPICAL APPLICATIONS

Single Supply 1A Laser Driver Amplifier

The circuit in the front page of this data sheet shows the LT1800 used in a 1A laser driver application. One of the reasons the LT1800 is well suited to this control task is that its 2.3 V operation ensures that it will be awake during power-up and operated before the circuit can otherwise cause significant current to flow in the 2.1 V threshold laser diode. Driving the noninverting input of the LT1800 to a voltage $\mathrm{V}_{\text {IN }}$ will control the turning on of the high current NPN transistor, FMMT619 and the laser diode. A current equal to $\mathrm{V}_{\text {IN }} / R 1$ flows through the laser diode. The LT1800 low offset voltage and low input bias current allows it to control the current that flows through the laser diode precisely. The overall circuit is a 1A per volt V-to-I converter. Frequency compensation components R2 and C1 are selected for fast but zero-overshoot time domain response to avoid overcurrent conditions in the laser. The
time domain response of this circuit, measured at R1 and given a 500 mV 230 ns input pulse, is also shown in the graphic on the front page. While the circuit is capable of 1 A operation, the laser diode and the transistor are thermally limited due to power dissipation, so they must be operated at low duty cycles.

Fast 1A Current Sense Amplifier

A simple, fast current sense amplifier in Figure 2 is suitable for quickly responding to out-of-range currents. The circuit amplifies the voltage across the 0.1Ω sense resistor by a gain of 20 , resulting in a conversion gain of $2 \mathrm{~V} / \mathrm{A}$. The -3 dB bandwidth of the circuit is 4 MHz , and the uncertainty due to $V_{O S}$ and I_{B} is less than 4 mA . The minimum output voltage is 60 mV , corresponding to 30 mA . The large-signal response of the circuit is shown in Figure 3.

Figure 3. Current Sense Amplifier Large-Signal Response

TYPICAL APPLICATIONS

Single 3V Supply, 1MHz, 4th Order Butterworth Filter
The circuit shown in Figure 4 makes use of the low voltage operation and the wide bandwidth of the LT1800 to create a DC accurate 1 MHz 4 th order lowpass filter powered from a 3 V supply. The amplifiers are configured in the inverting mode for the lowest distortion and the output can swing
rail-to-rail for maximum dynamic range. Figure 5 displays the frequency response of the filter. Stopband attenuation is greater than 100 dB at 50 MHz . With a 2.25 V p-p, 250 kHz input signal, the filter has harmonic distortion products of less than -85 dBc . Worst-case output offset voltage is less than 6 mV .

Figure 4. 3V, 1MHz, 4th Order Butterworth Filter

Figure 5. Frequency Response of Filter

LT1800

PACKAGE DESCRIPTION

S5 Package

5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

PACKAGG DESCRIPTION
S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

TYPICAL APPLICATION

Low Power High Voltage Amplifier

Certain materials used in optical applications have characteristics that change due to the presence and strength of a DC electric field. The voltage applied across these materials should be precisely controlled to maintain desired properties, sometimes as high as 100 's of volts. The materials are not conductive and represent a capacitive load.
The circuit of Figure 6 shows the LT1800 used in an amplifier capable of a 250 V output swing and providing precise

Figure 6. Low Power, High Voltage Amplifier

DC output voltage. When no signal is present, the op amp output sits at about mid-supply. Transistors Q1 and Q3 create bias voltages for Q2 and Q4, which are forced into a low quiescent current by degeneration resistors R4 and R5. When a transient signal arrives at V_{IN}, the op amp output moves and causes the current in Q2 or Q4 to change depending on the signal polarity. The current, limited by the clipping of the LT1800 output and the $3 \mathrm{k} \Omega$ of total emitter degeneration, is mirrored to the output devices to drive the capacitive load. The LT1800 output then returns to near mid-supply, providing the precise DC output voltage to the load. The attention to limit the current of the output devices minimizes power dissipation thus allowing for dense layout, and inherits better reliability. Figure 7 shows the time domain response of the amplifier providing a 200 V output swing into a 100pF load.

Figure 7. Large-Signal Time Domain Response of the Amplifier

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1399	Triple 300MHz Current Feedback Amplifier	0.1 dB Gain Flatness to 150MHz, Shutdown
LT1498/LT1499	Dual/Quad 10MHz, 6V μ s Rail-to-Rail Input and Output C-Load'm $0 p$ Amps	High DC Accuracy, $475 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}, 4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ Max Drift, Max Supply Current 2.2 mA per Amp
LT1630/LT1631	Dual/Quad 30MHz, 10V/us Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $525 \mu \mathrm{~V} \mathrm{~V}_{0 S(\mathrm{MAX})}, 70 \mathrm{~mA}$ Output Current, Max Supply Current 4.4mA per Amplifier
LT1801/LT1802	80MHz, 25V/us Low Power Rail-to-Rail Input/Output Precision Op Amps	Dual/Quad Version of the LT1800
LT1806/LT1807	Single/Dual 325MHz, 140V/us Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $550 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Low Noise $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, Low Distortion -80dB at 5MHz, Power-Down (LT1806)
LT1809/LT1810	Single/Dual 180MHz Rail-to-Rail Input/Output Op Amps	350V/us Slew Rate, Low Distortion -t at 5MHz, Power-Down (LT1809)

C-Load is a trademark of Linear Technology Corporation.

