feATURES

- Slew Rate: 100V/us
- Gain Bandwidth Product: 85MHz
- Input Common Mode Range Includes Both Rails
- Output Swings Rail-to-Rail
- Low Quiescent Current: 3mA Max per Amplifier
- Large Output Current: 42mA
- Voltage Noise: $21 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Power Supply Rejection: 90dB
- Open-Loop Gain: 60V/mV
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Single Available in the 8 -Pin S0 and 5 -Pin Low Profile (1mm) SOT-23 (ThinSOT ${ }^{\text {TM }}$) Package
- Dual Available in 8-Lead DFN and SO Packages
- Quad Available in the 14-Pin Narrow SO Package

APPLICATIONS

- Low Voltage, High Frequency Signal Processing
- Driving A/D Converters
- Rail-to-Rail Buffer Amplifiers
- Active Filters
- Video Line Driver
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.

DESCRIPTIOn

The LT1803/LT1804/LT1805 are single/dual/quad, low power, high speed rail-to-rail input and output operational amplifiers with excellent DC performance. The LT1803/ LT1804/LT1805 feature reduced supply current, lower input offset voltage, lower input bias current and higher DC gain than other devices with comparable bandwidth and slew rate.

Typically, the LT1803/LT1804/LT1805 have an input offset voltage of $350 \mu \mathrm{~V}$, an input bias current of 125 nA and an open-loop gain of $60 \mathrm{~V} / \mathrm{mV}$.
The LT1803/LT1804/LT1805 have an input range that includes both supply rails and an output that swings within 20 mV of either supply rail to maximize the signal dynamic range in low supply applications.

The LT1803/LT1804/LT1805 are specified at 3V, 5V and $\pm 5 \mathrm{~V}$ supplies and typically maintain their performance for supplies from 2.3 V to 12.6 V . The inputs can be driven beyond the supplies without damage or phase reversal of the output.
The LT1803 is available in the 8 -pin SO package with the standard op amp pinout and in the 5 -pin SOT-23 package. The LT1804 is available in 8 -pin DFN and SO packages with the standard op amp pinouts. The LT1805 features the standard quad op amp configuration and is available in a 14 -pin plastic SO package.

TYPICAL APPLICATION

LT1803/LT1804/LT1805

ABSOLUTG MAXIMUM RATINGS
 (Note 1)

Total Supply Voltage $\left(\mathrm{V}^{+}\right.$to V^{-}) 12.6 V
Input Current (Note 2) $\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration (Note 3) Indefinite
Operating Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 5) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$

Maximum Junction Temperature (DD Package) .. $125^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Storage Temperature Range (DD Package) $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.
*The temperature grades are identified by a label on the shipping container.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { (DD Package) } \\ & V_{C M}=0 \mathrm{~V} \text { (SOT-23 Package) } \\ & V_{C M}=V_{S} \end{aligned}$		$\begin{aligned} & 0.35 \\ & 1.00 \\ & 1.00 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 8 \end{aligned}$	mV mV mV mV
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to $\mathrm{V}_{S}-2 \mathrm{~V}$		0.125	0.50	mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{\text {CM }}=0 \mathrm{~V} \\ & V_{\mathrm{CM}}=0 \mathrm{~V} \text { (DD Package) } \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S} \end{aligned}$		$\begin{gathered} 125 \\ 3 \end{gathered}$	$\begin{aligned} & 750 \\ & 5.5 \\ & \hline \end{aligned}$	$n A$ $\mu \mathrm{~A}$
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S} \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1500 \end{aligned}$	nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S} \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	nA
	Input Noise Voltage	0.1 Hz to 10 Hz		4		$\mu V_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		21		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		2.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, V_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, R_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\begin{gathered} 20 \\ 2 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 60 \\ & 4.5 \\ & 45 \\ & \hline \end{aligned}$		V / mV V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 75 \\ & 66 \end{aligned}$	$\begin{aligned} & 96 \\ & 90 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 69 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 91 \\ & 85 \end{aligned}$		dB dB
	Input Common Mode Range		0		V_{S}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	68	90		dB
	PSRR Match (Channel-to-Channel) (Note 9)	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	62	90		dB
	Minimum Supply Voltage (Note 6)			2.3	2.5	V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing Low (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=15 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 17 \\ 80 \\ 180 \end{gathered}$	$\begin{gathered} 60 \\ 150 \\ 300 \end{gathered}$	$m V$ $m V$ $m V$
V_{OH}	Output Voltage Swing High (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=15 \mathrm{~mA}$		$\begin{gathered} 17 \\ 125 \\ 350 \end{gathered}$	$\begin{gathered} 60 \\ 250 \\ 600 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current (Note 3)	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 42 \\ & 34 \end{aligned}$		mA mA
Is	Supply Current per Amplifier			2.7	3	mA
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}=5 \mathrm{~V}$, Frequency $=2 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to 2.5 V	50	85		MHz
SR	Slew Rate	$\begin{aligned} & V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \text { Measured at } \mathrm{V}_{0}=1.5 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	65	100		V/ $/ \mathrm{s}$
FPBW	Full Power Bandwidth (Note 10)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{~V}_{0}=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to $\mathrm{V}_{\mathrm{S}} / 2$		8		MHz
HD	Harmonic Distortion	$V_{S}=5 \mathrm{~V}, A_{V}=1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{P-P}, \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$		-75		dBC
t_{s}	Settling Time	$0.01 \%, \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1, \mathrm{R}_{L}=1 \mathrm{k}$		350		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=2, R_{L}=150 \Omega$		0.15		\%
$\Delta \theta$	Differential Phase (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=2, R_{L}=150 \Omega$		1		Deg
						${ }^{180345}$
www.BDTIC.com/Linear						3

LT1803/LT1804/LT1805

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { (DD Package) } \\ & V_{C M}=0 \mathrm{~V} \text { (SOT-23 Package) } \\ & V_{C M}=V_{S} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \hline \end{aligned}$		$\begin{aligned} & 0.50 \\ & 1.25 \\ & 1.25 \\ & 1.60 \end{aligned}$	$\begin{gathered} 3.5 \\ 5 \\ 6 \\ 8.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to $\mathrm{V}_{S}-2 \mathrm{~V}$	\bullet		0.05	0.8	mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=0 V \\ & V_{C M}=0 V \text { (DD Package) } \end{aligned}$	\bullet		$\begin{aligned} & 0.75 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)		\bullet		10	35	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 150 \\ & 3.2 \end{aligned}$	$\begin{gathered} 1100 \\ 6 \end{gathered}$	$n A$ $\mu \mathrm{~A}$
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1500 \\ & 1800 \\ & \hline \end{aligned}$	nA $n A$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 100 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1400 \\ & 1400 \\ & \hline \end{aligned}$	nA $n A$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & 15 \\ & 1.4 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 3.7 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 1 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 71 \\ & 61 \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 1 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 65 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 85 \\ & \hline \end{aligned}$		dB dB
	Input Common Mode Range		\bullet	0		V_{S}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	65	87		dB
	PSRR Match (Channel-to-Channel) (Note 9)	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	59	87		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.3	2.5	V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing Low (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=15 \mathrm{~mA} \\ & \hline \end{aligned}$	$\bullet \bullet$		$\begin{gathered} \hline 19 \\ 100 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ 225 \\ 450 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & \hline \end{aligned}$	$\bullet \bullet$		$\begin{gathered} \hline 19 \\ 150 \\ 450 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ 350 \\ 900 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current (Note 3)	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \end{aligned}$		mA mA
I_{S}	Supply Current per Amplifier		\bullet		3	3.75	mA
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}=5 \mathrm{~V}$, Frequency $=2 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to 2.5 V	\bullet	45	82		MHz
SR	Slew Rate	$\begin{aligned} & V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \text { Measured at } \mathrm{V}_{0}=1.5 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	\bullet	45	93		V/ $/ \mathrm{s}$

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{O} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { (DD Package) } \\ & V_{C M}=0 \mathrm{~V} \text { (SOT-23 Package) } \\ & V_{C M}=V_{S} \end{aligned}$			$\begin{aligned} & 0.7 \\ & 1.5 \\ & 1.5 \\ & 1.7 \end{aligned}$	$\begin{gathered} 4 \\ 6.5 \\ 7 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to $\mathrm{V}_{S}-2 \mathrm{~V}$	\bullet		0.125	1.00	mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{\text {CM }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { (DD Package) } \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 6.5 \\ 9 \end{gathered}$	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)		\bullet		10	35	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 3.4 \end{aligned}$	$\begin{gathered} 1500 \\ 6.5 \end{gathered}$	$n A$ $\mu \mathrm{~A}$
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}}-0.2 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \hline \end{array}$		$\begin{aligned} & \hline 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2000 \\ & 2200 \\ & \hline \end{aligned}$	nA
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 1600 \\ & 1600 \end{aligned}$	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} \hline 12 \\ 1.3 \\ 8 \end{gathered}$	$\begin{aligned} & 48 \\ & 4.8 \\ & 35 \end{aligned}$		V / mV V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 69 \\ & 60 \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 63 \\ & 54 \end{aligned}$	$\begin{aligned} & 90 \\ & 85 \\ & \hline \end{aligned}$		dB dB
	Input Common Mode Range		\bullet	0		V_{S}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	64	86		dB
	PSRR Match (Channel-to-Channel) (Note 9)	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	58	86		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.3	2.5	V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=10 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 20 \\ 100 \\ 170 \end{gathered}$	$\begin{gathered} 90 \\ 250 \\ 350 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=10 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 20 \\ 170 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ 400 \\ 600 \\ \hline \end{gathered}$	mV mV mV
$I_{S C}$	Short-Circuit Current (Note 3)	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 35 \\ & 27 \end{aligned}$		mA mA
IS	Supply Current per Amplifier		\bullet		3.1	4.25	mA
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}=5 \mathrm{~V}$, Frequency $=2 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to 2.5V	\bullet	40	77		MHz
SR	Slew Rate	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \text { Measured at } \mathrm{V}_{0}=1.5 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	\bullet	30	70		V/ $/ \mathrm{s}$

LT1803/LT1804/LT1805

ELECTRICAL CHARACTERIST|CS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \text { (DD Package) } \\ & V_{C M}=-5 \mathrm{~V} \text { (SOT-23 Package) } \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.35 \\ & 1.50 \\ & 1.50 \\ & 1.50 \end{aligned}$	$\begin{gathered} 2.5 \\ 3.5 \\ 6 \\ 8 \end{gathered}$	$m V$ $m V$ $m V$ $m V$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to 3 V		0.3	1	mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V}(\mathrm{DD} \text { Package }) \end{aligned}$		$\begin{gathered} 0.5 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 5.5 \end{gathered}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 125 \\ & 2.5 \end{aligned}$	$\begin{gathered} 750 \\ 5.5 \end{gathered}$	$n A$ μ
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1500 \end{aligned}$	nA $n A$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	nA
	Input Noise Voltage	0.1 Hz to 10 Hz		4		$\mu \mathrm{V}$ P-P
e_{n}	Input Noise Voltage Density	$f=10 \mathrm{kHz}$		21		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		2.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$		2		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{gathered} 20 \\ 2 \end{gathered}$	$\begin{gathered} 55 \\ 5 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to 3 V	78	96		dB
	CMRR Match (Channel-to-Channel) (Note 9)	$\mathrm{V}_{C M}=-5 \mathrm{~V}$ to 3 V	72	96		dB
	Input Common Mode Range		$\mathrm{V}_{S}{ }^{-}$		$\mathrm{V}^{+}{ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S^{+}}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{S^{+}} / 2$	68	90		dB
	PSRR Match (Channel-to-Channel) (Note 9)	$\mathrm{V}^{+}{ }^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+} / 2$	62	90		dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing Low (Note 7)	No Load $\begin{aligned} & \mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 17 \\ 85 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 150 \\ 300 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=15 \mathrm{~mA} \\ \hline \end{array}$		$\begin{gathered} 17 \\ 125 \\ 350 \end{gathered}$	$\begin{gathered} \hline 60 \\ 250 \\ 600 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current (Note 3)		25	50		mA
I_{S}	Supply Current per Amplifier			2.5	3	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		83		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V} \\ & \text { Measured at } \mathrm{V}_{0}= \pm 2 \mathrm{~V} \end{aligned}$		88		V/ $/ \mathrm{s}$
FPBW	Full Power Bandwidth (Note 10)	$\mathrm{V}_{0}=8 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}, A_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		4		MHz
HD	Harmonic Distortion	$A_{V}=1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{P-P}, \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$		-75		dBc
ts	Settling Time	$0.01 \%, \mathrm{~V}_{\text {STEP }}=5 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		500		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$A_{V}=2, R_{L}=150 \Omega$		0.75		\%
$\Delta \theta$	Differential Phase (NTSC)	$A_{V}=2, R_{L}=150 \Omega$		0.8		Deg

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \text { (DD Package) } \\ & V_{C M}=-5 \mathrm{~V} \text { (SOT-23 Package) } \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 0.5 \\ & 1.5 \\ & 1.5 \\ & 1.4 \end{aligned}$	$\begin{gathered} 3.5 \\ 5 \\ 7 \\ 8.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to 3 V	\bullet		0.35	1.5	mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{\text {CM }}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V}(\text { DD Package }) \end{aligned}$	\bullet		$\begin{aligned} & 0.75 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)		\bullet		10	35	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 175 \\ & 2.5 \end{aligned}$	$\begin{gathered} 1000 \\ 6 \end{gathered}$	$n A$ $\mu \mathrm{~A}$
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 175 \\ & 175 \end{aligned}$	$\begin{aligned} & \hline 1500 \\ & 1800 \\ & \hline \end{aligned}$	nA
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 1400 \\ & 1400 \end{aligned}$	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 15 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to 3V	\bullet	74	95		dB
	CMRR Match (Channel-to-Channel) (Note 9)	$V_{C M}=-5 \mathrm{~V}$ to 3 V	\bullet	68	95		dB
	Input Common Mode Range		\bullet	$\mathrm{V}_{S}{ }^{-}$		$\mathrm{V}_{S}{ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+} / 2$	\bullet	65	87		dB
	PSRR Match (Channel-to-Channel) (Note 9)	$\mathrm{V}^{\text {+ }}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+} / 2$	\bullet	59	87		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=15 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 19 \\ 100 \\ 220 \end{gathered}$	$\begin{gathered} 80 \\ 225 \\ 475 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 19 \\ 150 \\ 460 \end{gathered}$	$\begin{gathered} 80 \\ 350 \\ 900 \\ \hline \end{gathered}$	mV mV mV
$I_{\text {SC }}$	Short-Circuit Current (Note 3)		\bullet	20	46		mA
Is	Supply Current per Amplifier		\bullet		2.8	3.75	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet		80		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measured at } \mathrm{V}_{0}= \pm 2 \mathrm{~V} \end{aligned}$	\bullet		84		V/us

ELECTRIGL CHARFCTERISTGS The \bullet denotes specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V}(\text { DD Package }) \\ & V_{C M}=-5 \mathrm{~V} \text { (SOT-23 Package) } \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 4.0 \\ 6.5 \\ 8 \\ 9 \end{gathered}$	mV mV mV mV
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Shift	$V_{\text {CM }}=-5 \mathrm{~V}$ to 3 V	\bullet		0.4	1.7	mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & \left.V_{C M}=-5 \mathrm{~V} \text { (DD Package }\right) \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)		\bullet		10	35	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 250 \\ & 2.5 \end{aligned}$	$\begin{gathered} 1200 \\ 6.5 \end{gathered}$	$n A$ $\mu \mathrm{~A}$
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2200 \end{aligned}$	nA
l OS	Input Offset Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 1600 \\ & 1600 \end{aligned}$	nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 V \text { to } 4 V, R_{L}=1 \mathrm{k} \\ & V_{0}=-1 V \text { to } 1 V, R_{L}=100 \Omega \end{aligned}$	\bullet	$\begin{aligned} & 12 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 45 \\ & 5.3 \\ & \hline \end{aligned}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$V_{C M}=-5 \mathrm{~V}$ to 3 V	\bullet	73	95		dB
	CMRR Match (Channel-to-Channel) (Note 9)	$V_{C M}=-5 \mathrm{~V}$ to 3 V	\bullet	67	95		dB
	Input Common Mode Range		\bullet	$\mathrm{V}_{S}{ }^{-}$		$\mathrm{V}^{+}{ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S^{+}}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}^{+} / 2}$	\bullet	64	86		dB
	PSRR Match (Channel-to-Channel) (Note 9)	$\mathrm{V}^{+}{ }^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{S^{+}} / 2$	\bullet	58	86		dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing Low (Note 7)	No Load $\begin{aligned} & I_{\mathrm{SINK}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=10 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 20 \\ 110 \\ 170 \end{gathered}$	$\begin{gathered} 90 \\ 250 \\ 350 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 20 \\ 170 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ 400 \\ 600 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current (Note 3)		\bullet	12.5	34		mA
I_{S}	Supply Current per Amplifier		\bullet		2.9	4.25	mA
GBW	Gain Bandwidth Product	Frequency $=2 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet		75		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measured at } \mathrm{V}_{0}= \pm 2 \mathrm{~V} \end{aligned}$	\bullet		65		$\mathrm{V} / \mathrm{\mu s}$

Note 1: Absolute Maximium Ratings are those values beyond which the life of the device may be impaired.
Note 2: The inputs are protected by back-to-back diodes and by ESD diodes to supply rails. If the differential input voltage exceeds 1.4 V , or if an input is driven beyond the supply rails, the input current should be limited to less than 10 mA . This parameter is not tested; however it is guaranteed by characterization.
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT1803C/LT1803I, LT1804C/LT1804I and LT1805C/LT1805I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.
Note 5: The LT1803C/LT1804C/LT1805C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1803C/LT1804C/LT1805C are designed, characterized and expected to meet specified performance from
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT1803I/LT1804I/LT1805I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.
Note 9: Matching parameters are the difference between amplifiers A and D and between B and C on the LT1805; between the two amplifiers on the LT1804.
Note 10: Full power bandwidth is based on slew rate:
FPBW $=S R / 2 \pi V_{P}$

TYPICAL PGRFORmANCE CHARACTERISTICS

LT1803/LT1804/LT1805

TYPICAL PERFORMANCE CHARACTERISTICS

Open-Loop Gain

180345 G13

Offset Voltage Change vs Output Current

180345 G11

Output Short-Circuit Current vs Power Supply Voltage

180345 G12

Warm-Up Drift vs Time (LT1804S8)

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1803/LT1804/LT1805

TYPICAL PGRFORmANCE CHARACTERISTICS

Overshoot and Series Output Resistor vs Capacitive Load $\left(A_{V}=2\right)$

Power Supply Rejection Ratio vs Frequency

180345 G29

Overshoot and Series Output Resistor vs Capacitive Load ($A_{V}=1$)

Distortion vs Frequency ($A_{V}=2$)

5V Small-Signal Response

TYPICAL PGRFORMANCE CHARACTGRISTICS

APPLICATIONS InFORMATION

Circuit Description

The LT1803/LT1804/LT1805 have input and output signal ranges from the negative power supply to the positive power supply. Figure 1 depicts a simplified schematic of one amplifier. The input stage is comprised of two differential amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/ Q4 that are active over the different ranges of the common mode input voltage. The PNP differential pair is active between the negative supply and approximately 1.3 V below the positive supply. As the input voltage moves toward the positive supply, the transistor Q5 will steer the tail current I_{1} to the current mirror Q6/Q7 activating the NPN differential pair. The PNP pair becomes inactive for the rest of the input common mode range up to the positive supply. Also at the input stage, devices Q18 and Q19 act to cancel the bias current of the PNP input pair. When Q1 and Q2 are active, the current in Q16 is controlled to be the same as the current in Q1 and Q2; therefore, the base current of Q16 is nominally equal to the base current of the input devices. The base current of Q16 is then mirrored by devices Q17 through Q19 to cancel the base current of the input devices Q1 and Q2.

A pair of complementary common emitter stages Q14/ Q15 that enable the output to swing from rail-to-rail constructs the output stage. The capacitors C1 and C2 form the local feedback loops that lower the output impedance at high frequency. The LT1803/LT1804/LT1805 are fabricated on Linear Technology's proprietary high speed complementary bipolar process.

Power Dissipation

There is a need to ensure that the die's junction temperature does not exceed $150^{\circ} \mathrm{C}$. Junction temperature T_{j} is calculated from the ambient temperature T_{A}, power dissipation P_{D} and thermal resistance θ_{JA} :

$$
T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right)
$$

The power dissipated in the IC is a function of the supply voltage, amplifier current, output voltage and output current. For a given supply voltage, the worst-case power dissipation, PDMAX, occurs when the output current and voltage drop in the amplifier product is maximized. For example, if the amplifier is sourcing a constant current then the $P_{\text {DMAX }}$ occurs when the output voltage is at about $V_{S}{ }^{-}$. On the other hand, for a given load resistance to ground, the $\mathrm{P}_{\mathrm{DMAX}}$ will occur when the output voltage is at half of either supply voltage. $\mathrm{P}_{\text {DMAX }}$ for a given resistance to ground is given by:

$$
P_{\text {DMAX }}=\left(V_{S^{+}}-V_{S}^{-}\right) I_{S M A X}+\left(V_{S} / 2\right)^{2} / R_{L}
$$

Example: An LT1804 in an S0-8 package operating on $\pm 5 \mathrm{~V}$ supplies and driving a 100Ω load to ground, the $\mathrm{P}_{\text {DMAX }}$ per amplifier is given by:

$$
\begin{aligned}
P_{\text {DMAX }} & =(10 \cdot 3.25 \mathrm{~mA})+(2.5)^{2} / 100=0.0425+0.0625 \\
& =0.095 \mathrm{~W}
\end{aligned}
$$

$I_{\text {SMAX }}$ is approximated for a typical part from the Supply Currrent vs Supply Voltage graph.
www.BDTIC.com/Linear

APPLICATIONS InFORMATION

Figure 1. LT1803/LT1804/LT1805 Simplified Schematic Diagram

If both amplifiers are loaded simultaneously, then the total power dissipation is 0.19 W .
The maximum ambient temperature that the part is allowed to operate is:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{A}} & =\mathrm{T}_{J}-\left(\mathrm{P}_{\mathrm{DMAX}} \cdot 190^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =150^{\circ} \mathrm{C}-\left(0.190 \mathrm{~W} \cdot 190^{\circ} \mathrm{C} / \mathrm{W}\right)=113.9^{\circ} \mathrm{C}
\end{aligned}
$$

Similar calculations can be carried out for specific packages and conditions.
Also worth noting, the DD package includes a low θ_{JA} underside metal which is internally connected to V^{-}. If the underside metal is properly soldered to a PCB, the θ_{JA} of the part will be close to $50^{\circ} \mathrm{C} / \mathrm{W}$. This θ_{JA} is significantly less than leaving the underside metal unattached and can be useful for certain applications.

Input Offset Voltage

The input offset voltage will change greatly based upon which input stage is active. The PNP input stage is active from the negative supply voltage to about 1.3 V below the positive supply rail, then the NPN input stage is activated for the remaining input range up to the positive supply rail during which the PNP stage remains inactive. The offset
voltage is typically less than $1000 \mu V$ in the range the PNP input stage is active.

Input Bias Current

The LT1803/LT1804/LT1805 employ a patent-pending technique to reduce the input bias current to less than $1 \mu \mathrm{~A}$ for the input common mode voltage range of 0.2 V above the negative supply rail to 1.75 V below the positive rail. The low input offset voltage and low input bias current provide precision performance in high source impedance applications.

Output

The LT1803/LT1804/LT1805 can deliver a large output current, so the short-circuit current limit is set around 50 mA to prevent damage to the device. Attention must be paid to keep the junction temperature of the IC below the absolute maximum rating of $150^{\circ} \mathrm{C}$ (refer to the Power Dissipation section) when the output is continuously short circuited. The output of the amplifier has reverse-biased diodes connected to each supply. If the output is forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to less than 100 mA and the total supply voltage is less than

APPLICATIONS INFORMATION

12.6 V , the absolute maximum rating, no damage will occur to the device.

Overdrive Protection

When the input voltage exceeds the power supplies, two pairs of crossing diodes D1 through D4 will prevent the output from reversing polarity. If the input voltage exceeds either power supply by 700 mV , diode D1/D2 or D3/D4 will turn on to keep the output at the proper polarity. For the phase reversal protection to perform properly, the input current must be limited to less than 10 mA . If the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current.

The LT1803/LT1804/LT1805's input stages are also protected against a large differential input voltage of 1.4 V or higher by a pair of back-to-back diodes D5 through D8 to prevent the emitter-base breakdown of the input transistors. The current in these diodes should be limited to less than 10 mA when they are active. The worst-case differential input voltage usually occurs when the input is driven while the output is shorted to ground in a unity gain configuration. In addition, the amplifier is protected against ESD strikes up to 3 kV on all pins by a pair of protection diodes on each pin that is connected to the power supplies as shown in Figure 1.

Capacitive Load

The LT1803/LT1804/LT1805 are optimized for wide bandwidth, low power and precision applications. They can drive a capacitive load of about 20pF in a unity-gain configuration, and more for higher gain. When driving a larger capacitive load, a resistor of 10Ω to 50Ω should be connected between the output and the capacitive load to avoid ringing or oscillation. The feedback should still be taken from the output so that the resistor will isolate the capacitive load to ensure stability. Graphs on capacitive load indicate the transient response of the amplifier when driving a capacitive load with a specified resistor.

Feedback Components

When feedback resistors are used to set up gain, care must be taken to ensure that the pole formed by the feedback resistors and the total capacitance at the inverting input does not degrade stability. For instance, the LT1803/ LT1804/LT1805 in a noninverting gain of 2 setup with two 5 k resistors and a capacitance of 5 pF (part plus PC board) will probably oscillate. The pole formed at 12.7 MHz , reduces phase margin by about 58 degrees when the crossover frequency of the amplifier is around 20 MHz . A capacitor of 5 pF or higher connected across the feedback resistor will eliminate any ringing or oscillation.

PACKAGE DESCRIPTION

S5 Package

5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

PACKAGE DESCRIPTION
DD Package
8-Lead Plastic DFN (3mm $\times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD
NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

S Package
14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

NOTE:

1. DIMENSIONS IN $\frac{\text { INCHES }}{\text { (MILLIMETERS) }}$
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

LT1803/LT1804/LT1805

TYPICAL APPLICATION

LED Array Driver

500 mA Pulse Response of LED Array Driver

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1399	Triple 300MHz Current Feedback Amplifier	0.1 dB Gain Flatness to 150MHz, Shutdown
LT1498/LT1499	Dual/Quad 10MHz, 6V $\mu \mathrm{s}$ Rail-to-Rail Input and Output C-Load ${ }^{\text {TM }}$ Op Amps	High DC Accuracy, $475 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}, 4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max Drift, Max Supply Current 2.2mA per Amp
LT1630/LT1631	Dual/Quad 30MHz, 10V/ s s Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $525 \mu \mathrm{~V} \mathrm{~V}_{0 S(\mathrm{MAX})}, 70 \mathrm{~mA}$ Output Current, Max Supply Current 4.4mA per Amplifier
LT1800/LT1801 LT1802	Single/Dual/Quad 80MHz, 25V/us Low Power Rail-to-Rail Input/Output Precision Op Amps	High DC Accuracy, $350 \mu \mathrm{~V} \mathrm{~V}_{0 S(\text { MAX }), ~ M a x ~ S u p p l y ~ C u r r r e n t ~}$ 2mA per Amplifier
LT1806/LT1807	Single/Dual 325MHz, 140V/us Rail-to-Rail Input/Output Amps	High DC Accuracy, $550 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Low Noise $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, Low Distortion -80dB at 5MHz, Power-Down (LT1806)
LT1809/LT1810	Single/Dual 180MHz Rail-to-Rail Input/Output Op Amps	$350 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, Low Distortion -90dB at 5MHz, Power-Down (LT1809)
LT6200/LT6201	Single/Dual Ultralow Noise Rail-to-Rail Amplifier	0.95nV/Hz, 165MHz Gain Bandwidth, 44V/ $\mu \mathrm{s}$
LT6200-5	Single Ultralow Noise Rail-to-Rail Amplifier	$0.95 \mathrm{nV} / \mathrm{Hz}, 800 \mathrm{MHz}$ Gain Bandwidth, $210 \mathrm{~V} / \mu \mathrm{s}, \mathrm{A}_{V} \geq 5$
LT6200-10	Single Ultralow Noise Rail-to-Rail Amplifier	$0.95 \mathrm{nV} / \mathrm{Hz}, 1.6 \mathrm{GHz}$ Gain Bandwidth, $340 \mathrm{~V} / \mu \mathrm{s}, \mathrm{A}_{\mathrm{V}} \geq 10$
$\begin{aligned} & \text { LT6202/LT6203 } \\ & \text { LT6204 } \end{aligned}$	Single/Dual/Quad 90MHz, 24V/us Rail-to-Rail Input/Output, Ultralow $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, Low Power Op Amps	High DC Accuracy, $500 \mu \mathrm{~V} \mathrm{~V}_{0 S(\mathrm{MAX})}$, Max Supply Currrent 3mA per Amplifier

C-Load is a trademark of Linear Technology Corporation.

