LT3462/LT3462A Inverting $1.2 \mathrm{MHz} / 2.7 \mathrm{MHz}$ DC/DC Converters with Integrated Schottky in ThinSOT

feATURES

- Integrated Schottky Rectifier
- Fixed Frequency 1.2MHz/2.7MHz Operation
- Very Low Noise: 1mVp-p Output Ripple
- Low V ${ }_{\text {CESAT }}$ Switch: 270 mV at 250 mA
- -5 V at 100 mA from 5 V Input
- -12 V at 30 mA from 3.3 V Input
- Low Input Bias Current GND Based FB Input
- Low Impedance (40) 1.265V Reference Output
- High Output Voltage: Up to -38V
- Wide Input Range: 2.5V to 16 V
- Uses Tiny Surface Mount Components
- Low Shutdown Current: < $10 \mu \mathrm{~A}$
- Low Profile (1mm) SOT-23 (ThinSOT ${ }^{\text {TM }}$) Package

APPLICATIONS

- CCD Bias
- LCD Bias
- GaAs FET Bias
- General Purpose Negative Voltage Supply
©ヲ, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 3462 / \mathrm{LT} 3462 \mathrm{~A}$ are general purpose fixed frequency current mode inverting DC/DC converters. Both devices feature an integrated Schottky and a low $\mathrm{V}_{\text {CESAT }}$ switch allowing a small converter footprint and lower parts cost. The LT3462 switches at 1.2 MHz while the LT3462A switches at 2.7 MHz . These high speeds enable the use of tiny, low cost and low height capacitors and inductors.
The LT3462/LT3462A operate in a dual inductor inverting topology that filters both the input and output currents. Very low output voltage ripple approaching $1 \mathrm{mV} V_{\text {p-p }}$ can be achieved when ceramic capacitors are used. Fixed frequency switching ensures a clean output free from low frequency noise typically present with charge pump solutions. The 40 V switch allows a $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ differential of up to 38 V for dual inductor topologies.

Both devices provide a low impedance 1.265 V reference output to supply the feedback resistor network. A ground referenced, high impedance FB input allows high feedback resistor values without compromising output accuracy.

The LT3462/LT3462A are available in a 6-lead SOT-23 package.

TYPICAL APPLICATION

5 V to $\mathbf{- 5 V}$, 100mA Inverting DC/DC Converter

Efficiency

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Input Voltage (VIN) ... 16V
SW Voltage .. 40V
D Voltage ... 40 V
SDREF, FB Voltage .. 2.5V
Operating Ambient
Temperature Range (Note 3)...............$~$ $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature $125^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec)................... $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	$\begin{aligned} & \text { LT3462ES6 } \\ & \text { LT3462AES6 } \end{aligned}$
	S6 PART MARKING
	$\begin{aligned} & \text { LTBBV } \\ & \text { LTBGB } \end{aligned}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICPL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=3 \mathrm{~V}$, unless otherwise noted.| PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Operating Voltage | | | 2.5 | | | V |
| Maximum Operating Voltage | | | | | 16 | V |
| SDREF Voltage | $10 \mu \mathrm{~A}>I_{\text {SDREF }} \geq-80 \mu \mathrm{~A}$ | \bullet | 1.245 | 1.265 | 1.285 | V |
| FB Pin Bias Current (Note 2) | | | | 15 | 50 | nA |
| SDREF Minus FB Voltage | $10 \mu \mathrm{~A}>\mathrm{I}_{\text {SDREF }} \geq-80 \mu \mathrm{~A}$ | \bullet | 1.235 | 1.263 | 1.285 | V |
| Error Amp Offset Voltage | | | -12 | | 12 | mV |
| SDREF Reference Source Current | SDREF $>1.2 \mathrm{~V}$ | \bullet | 120 | 180 | | $\mu \mathrm{A}$ |
| Supply Current | $\begin{aligned} & \mathrm{FB}=-0.05 \mathrm{~V}, \text { Not Switching } \\ & \text { SDREF }=0 \mathrm{~V}, \mathrm{FB}=\text { Open, } \mathrm{V}_{I N}=5 \mathrm{~V} \end{aligned}$ | | | $\begin{aligned} & 2.9 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 3.6 \\ & 10 \end{aligned}$ | $\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$ |
| SDREF Line Regulation | | | | 0.007 | | \%/V |
| Switching Frequency (LT3462) | | \bullet | 0.8 | 1.2 | 1.6 | MHz |
| Switching Frequency (LT3462A) | | \bullet | 2.0 | 2.7 | 3.5 | MHz |
| Maximum Duty Cycle (LT3462) | | \bullet | 90 | | | \% |
| Maximum Duty Cycle (LT3462A) | | \bullet | 77 | | | \% |
| Switch Current Limit | | | 300 | 420 | | mA |
| Switch V CESAT | $\mathrm{I}_{\text {SW }}=250 \mathrm{~mA}$ | | | 270 | 350 | mV |
| Switch Leakage Current | $\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$ | | | 0.01 | 1 | $\mu \mathrm{A}$ |
| Rectifier Leakage Current | $\mathrm{V}_{\mathrm{D}}=-40 \mathrm{~V}$ | | | 0.03 | 4 | $\mu \mathrm{A}$ |
| Rectifier Forward Drop | $I_{\text {SCHOTTKY }}=250 \mathrm{~mA}$ | | | 800 | 1100 | mV |
| SDREF Voltage Low | | \bullet | | | 0.20 | V |
| SDREF Off-State Pull-Up Current | | | 1 | 2 | 3 | $\mu \mathrm{A}$ |
| SDREF Turn-Off Current | | | -300 | -200 | | $\mu \mathrm{A}$ |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Current flows out of the pin.

Note 3: The LT3462E is guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

TYPICAL PERFORMAOCE CHARACTERISTICS

PIn functions

SW (Pin 1): Switch Pin. Connect to external inductor L1 and positive terminal of transfer cap.
GND (Pin 2): Ground. Tie directly to local ground plane.
FB (Pin 3): Feedback Pin. Connect resistive divider tap here. Set R1 according to R1 $=$ R2 • (VOUT/1.265V). In shutdown, a proprietary shutdown bias current cancellation circuit allows the internal $3 \mu A$ source to pull up the SDREF pin, even with residual negative voltage on $\mathrm{V}_{\text {оut }}$.
SDREF (Pin 4): Dual Function Shutdown and 1.265 V Reference Output Pin. Pull to GND with external N-FET to
turn regulator off. Turn-off pull-down and a $2 \mu \mathrm{~A}$ internal source will pull SDREF up to turn-on the regulator. At turnon, a $180 \mu \mathrm{~A}$ internal source pulls the pin to the regulation voltage. The SDREF pin can supply up to $80 \mu \mathrm{~A}$ at 1.265 V to bias the feedback resistor divider. An optional soft-start circuit capacitor connects from this pin to $-V_{\text {Out }}$.
D (Pin 5): Anode Terminal of Integrated Schottky Diode. Connect to negative terminal of transfer cap and external inductor L2.
$V_{I N}$ (Pin 6): Input Supply Pin. Must be locally bypassed.

LT3462/LT3462A

BLOCK DIAGRAM

Figure 1. Block Diagram

OPERATION

The LT3462 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the Block Diagram in Figure 1. At the start of each oscillator cycle, the SR latch is set, turning on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator. When this voltage exceeds the voltage at the output of the EAMP, the SR latch is reset, turning off the power switch. The level at the output of the EAMP is simply an amplified version of the difference between the feedback voltage and GND. In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is taken from the output; if it decreases, less current is taken. One function not shown in Figure 1 is the current limit. The switch current is constantly monitored and not allowed to exceed the nominal value of 400 mA . If the switch current reaches 400 mA , the $S R$ latch is reset regardless of the
output state of the PWM comparator. This current limit cell protects the power switch as well as various external components connected to the LT3462.
SDREF is a dual function input pin. When driven low it shuts the part down, reducing quiescent supply current to less than $10 \mu A$. When notdriven low, the SDREF pin has an internal pull-up current that turns the regulator on. Once the part is enabled, the SDREF pin sources up to $180 \mu \mathrm{~A}$ nominally at a fixed voltage of 1.265 V through external resistor R2 to FB. If there is no fault condition present, FB will regulate to OV , and $\mathrm{V}_{\text {Out }}$ will regulate to $1.265 \mathrm{~V} \cdot(-\mathrm{R} 1 / \mathrm{R} 2)$. An optional soft-start circuit uses the fixed SDREF pull-up current and a capacitor from SDREF to $\mathrm{V}_{\text {Out }}$ to set the $\mathrm{dV} / \mathrm{dt}$ on $\mathrm{V}_{\text {OUT }}$. In shutdown, an FB bias current cancellation circuit supplies up to $150 \mu \mathrm{~A}$ biasing current to external resistor R 1 while $\mathrm{V}_{\text {OUT }}$ is lower than FB . This function eliminates R2 loading of SDREF during shutdown. As a result, supply current in shutdown may exceed $10 \mu \mathrm{~A}$ by the amount of current flowing in R1.

APPLICATIONS INFORMATION

Inrush Current

The LT3462 has a built-in Schottky diode. When supply voltage is applied to the $\mathrm{V}_{\text {IN }}$ pin, the voltage difference between $V_{I_{N}}$ and V_{D} generates inrush current flowing from input through the inductor and the Schottky diode to charge the flying capacitor to V_{IN}. The maximum nonrepetitive surge current the Schottky diode in the LT3462 can sustain is 1.5A. The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1.5A. The peak inrush current can be calculated as follows:

$$
I_{P}=\frac{V_{\mathbb{I N}}-0.6}{\sqrt{\frac{L}{C}-1}} \exp \left(-\frac{\pi}{2 \sqrt{\frac{L}{C}-1}}\right)
$$

where L is the inductance between supply and SW, and C is the capacitance between SW and D.

Table 3 gives inrush peak currents for some component selections.

Table 3. Inrush Peak Current

$\mathrm{V}_{\text {IN }}(\mathrm{V})$	$\mathrm{L}(\mu \mathrm{H})$	$\mathrm{C}(\mu \mathrm{F})$	$\mathrm{I}_{\mathrm{P}}(\mathrm{A})$
5	22	1	0.70
5	33	1	0.60
12	47	1	1.40

Inductor Selection

Each of the two inductors used with LT3462 should have a saturation current rating (where inductance is approximately 70% of zero current inductance) of approximately 0.25 A or greater. If the device is used in the charge pump mode, where there is only one inductor, then its rating should be 0.35A or greater. DCR of the inductors should be less than 1Ω. For LT3462, a value of $22 \mu \mathrm{H}$ is suitable if using a coupled inductor such as Sumida CLS62-220. If using two separate inductors, increasing the value to $47 \mu \mathrm{H}$ will result in the same ripple current. For LT3462A, a value of $10 \mu \mathrm{H}$ for the coupled inductor and $22 \mu \mathrm{H}$ for two inductors will be acceptable for most applications.

Capacitor Selection

Ceramic capacitors are recommended. An X7R or X5R dielectric should be used to avoid capacitance decreasing severely with applied voltage and at temperature limits. The "flying" capacitor between the SW and D pins should be a ceramic type of value $1 \mu \mathrm{~F}$ or more. When used in the dual inductor or coupled inductor topologies the flying capacitor should have a voltage rating that is more than the difference between the input and output voltages. For the charge pump inverter topology, the voltage rating should be more than the output voltage. The output capacitor should be a ceramic type. Acceptable output capacitance varies from $1 \mu \mathrm{~F}$ for high $\mathrm{V}_{\text {OUT }}(-36 \mathrm{~V})$, to $10 \mu \mathrm{~F}$ for low $\mathrm{V}_{\text {OUT }}$ $(-5 \mathrm{~V})$. The input capacitor should be a $1 \mu \mathrm{~F}$ ceramic type and be placed as close as possible to the LT3462/LT3462A.

Layout Hints

The high speed operation of the LT3462 demands careful attention to board layout. You will not get advertised performance with careless layout. Figure 2 shows the recommended component placement. A ceramic capacitor of $1 \mu \mathrm{~F}$ or more must be placed close to the IC for input supply bypassing.

Figure 2. Suggested Layout

TYPICAL APPLICATIONS

3.3V to - 12 V with Soft-Start Circuit

$V_{\text {OUT }}$ Reaches -12 V in $750 \mu \mathrm{~s}$; Input Current Peaks at 300 mA without $\mathrm{C}_{\mathrm{S} 1}$

Li+ to -8V Supply

-12V Efficiency

$\mathrm{V}_{\text {OUT }}$ Reaches -12 V in 7.5 ms ; Input Current Peaks at 125 mA with $\mathrm{C}_{\mathrm{S} 1}=100 \mathrm{nF}$

TYPICAL APPLICATIONS

5V to -5V Supply (LT3462A)

Switching Waveform

PACKAGE DESCRIPTION
S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

LT3462/LT3462A

TYPICAL APPLICATIONS

12V to -36V DC/DC Converter

-36V Efficiency

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1617/LT1617-1	$350 \mathrm{~mA} / 100 \mathrm{~mA}$ (Isw) High Efficiency Micropower Inverting DC/DC Converter	$\begin{aligned} & \mathrm{V}_{\text {IN: }} 1.2 \mathrm{~V} \text { to } 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=-34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \\ & \text { ThinSOT Package } \end{aligned}$
LT1931/LT1931A	1A (Isw), 1.2MHz/2.2MHz, High Efficiency Micropower Inverting DC/DC Converter	$\mathrm{V}_{\text {IN: }}: 2.6 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=-34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=5.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$ ThinSOT Package
LT1945	Dual Output, Boost/Inverter, 350 mA (Isw), Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\begin{aligned} & \text { VIN: }^{1.2 \mathrm{~V} \text { to } 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A},} \\ & \text { MS10 Package } \end{aligned}$
LT1946/LT1946A	1.5A (Isw), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN: }}$: 2.45 V to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$ MS8 Package
LT3463	Dual Output, Boost/Inverter, 250mA (Isw), Constant Off-Time, High Efficiency Step-Up DC/DC Converter with Integrated Schottky Diodes	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 2.3 \mathrm{~V} \text { to } 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }(\mathrm{MAX})}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \\ & \text { DFN Package } \end{aligned}$
LT3464	85mA (Isw), High Efficiency Step-Up DC/DC Converter with Integrated Schottky and PNP Disconnect	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 2.3 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX })}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=25 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \\ & \text { ThinSOT Package } \end{aligned}$

