

LTC1383

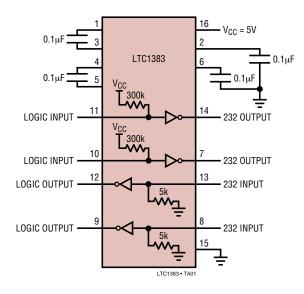
5V Low Power RS232 Transceiver

FEATURES

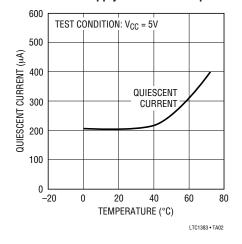
- Operates from a Single 5V Supply
- Low Supply Current: I_{CC} = 220µA
- ESD Protection Over ±10kV
- Available in 16-Pin SOIC Narrow Package
- Uses Small Capacitors: 0.1µF
- Operates to 120kBaud
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1181A and MAX232A

APPLICATIONS

- Notebook Computers
- Palmtop Computers


DESCRIPTION

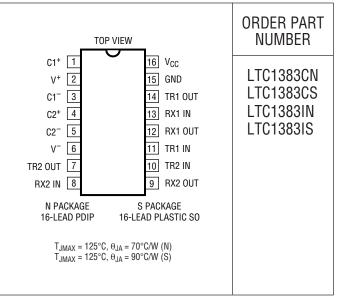
The LTC[®]1383 is an ultra-low power 2-driver/2-receiver RS232 transceiver that operates from a single 5V supply. The charge pump requires only four space-saving 0.1μ F capacitors. The supply current (I_{CC}) of the transceiver is only 220 μ A with driver outputs unloaded.


The LTC1383 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120kbaud with a 2500pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage and can survive multiple $\pm 10kV$ ESD strikes.

T, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Quiescent Supply Current vs Temperature



www.BDTIC.com/Linear

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 6V Input Voltage
Driver $-0.3V$ to V _{CC} + 0.3V
Receiver – 25V to 25V
Digital Input $-0.3V$ to V _{CC} + 0.3V
Output Voltage
Driver – 25V to 25V
Receiver $-0.3V$ to V _{CC} + 0.3V
Short-Circuit Duration
V ⁺
V ⁻
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range
LTC1383C
LTC1383I – 40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTERISTICS

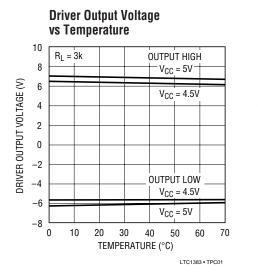
DC ELECTRICHL CHHRHCIERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 5V, C1 = C2 = C3 = C4 = 0.1µF, unless noted.

PARAMETER	CONDITIONS			MIN	ТҮР	MAX	UNITS
Any Driver							
Output Voltage Swing	3k to GND	Positive Negative	•	5.0 -5.0	7.0 -6.5		V V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2.0	1.4 1.4	0.8	V V
Logic Input Current	$V_{IN} = V_{CC}$ $V_{IN} = 0V$		•		-20	5 -40	μΑ μΑ
Output Short-Circuit Current	$V_{OUT} = 0V$			±9	±12		mA
Any Receiver							
Input Voltage Thresholds	Input Low Threshold Input High Threshold		•	0.8	1.3 1.7	2.4	V V
Hysteresis			•	0.1	0.4	1	V
Input Resistance	$-10V \le V_{IN} \le 10V$			3	5	7	kΩ
Output Voltage	Output Low, I _{OUT} = -1.6mA (V _{CC} = Output High, I _{OUT} = 160µA (V _{CC} = 5		•	3.0	0.2 3.2	0.4	V V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC} Sourcing Current V _{OUT} = 0V			-15 10	-40 20		mA mA
Power Supply Generator	· ·						
V ⁺ Output Voltage	I _{OUT} = 0mA I _{OUT} = 8mA				8.0 7.5		V V
V ⁻ Output Voltage	I _{OUT} = 0mA I _{OUT} = -8mA				-8.0 -7.0		V V

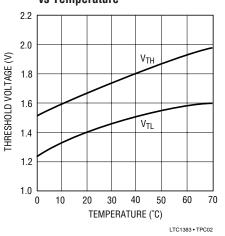
Ι

DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 5V, C1 = C2 = C3 = C4 = 0.1 µF, unless noted.

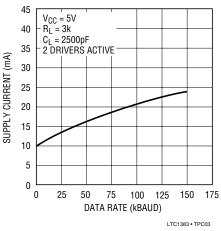
PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Power Supply						
V _{CC} Supply Current	No Load (Note 2), 0°C to 70°C	•		0.22	0.5	mA
	No Load (Note 2), -40°C to 85°C	•		0.35	1.0	mA
Digital Input Threshold Low		•		1.4	0.8	V
Digital Input Threshold High		•	2.0	1.4		V


AC CHARACTERISTICS AC CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 5V, C1 = C2 = C3 = C4 = 0.1µF, unless noted.

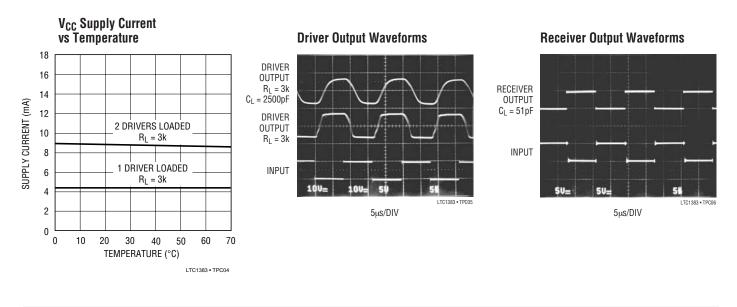
PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Slew Rate	$R_{L} = 3k, C_{L} = 51pF$			8	30	V/µs
	$R_{L} = 3k, C_{L} = 2500pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to RS232)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(RS232 to TTL)	t _{LHR} (Figure 2)	•		0.3	0.8	μS


Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Note 2: Supply current is measured with driver and receiver outputs unloaded.


TYPICAL PERFORMANCE CHARACTERISTICS

Receiver Input Thresholds vs Temperature



Supply Current vs Data Rate

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

 V_{CC} : 5V Input Supply Pin. This pin should be decoupled with a 0.1 μF ceramic capacitor.

GND: Ground Pin.

V⁺: Positive Supply Output (RS232 Drivers). V⁺ $\cong 2V_{CC} - 2V$. This pin requires an external capacitor C = 0.1μ F for charge storage. The capacitor may be tied to ground or V_{CC}. With multiple devices, the V⁺ and V⁻ pins may share a common capacitor. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). V⁻ \approx -(2V_{CC} - 2V). This pin requires an external capacitor C = 0.1µF for charge storage.

C1⁺, C1⁻, C2⁺, C2⁻: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu$ F: one from C1⁺ to C1⁻ and another from C2⁺ to C2⁻. To maintain

charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω .

TR IN: RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to V_{CC} are included on chip.

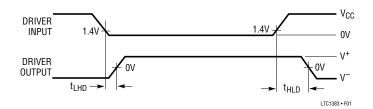
TR OUT: Driver Outputs at RS232 Voltage Levels. The driver outputs are protected against ESD to ± 10 kV for human body model discharges.

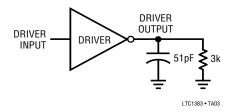
RX IN: Receiver Inputs. These pins can be forced to $\pm 25V$ without damage. The receiver inputs are protected against ESD to $\pm 10kV$ for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

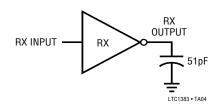
RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels.

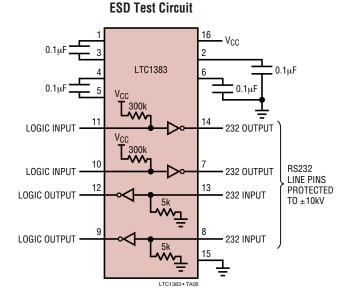
1383fa

SWITCHING TIME WAVEFORMS



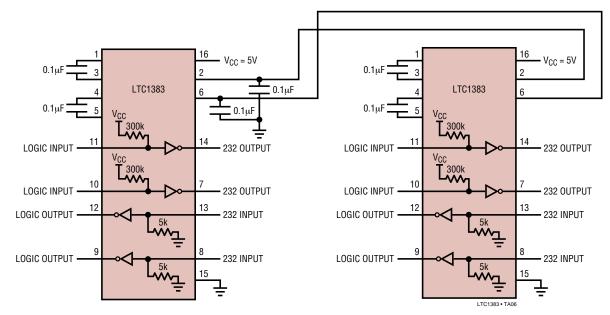

Figure 1. Driver Propagation Delay Timing


Figure 2. Receiver Propagation Delay Timing


TEST CIRCUITS

Driver Timing Test Load

Receiver Timing Test Load



T LINEAR TECHNOLOGY

www.BDTIC.com/Linear

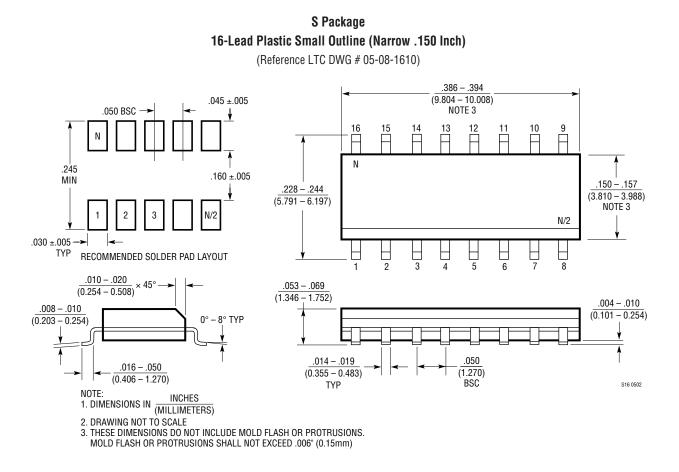
1383fa

TYPICAL APPLICATIONS

Paralleling Power Supply Generator with Common Storage Capacitors

1383fa

PACKAGE DESCRIPTION


(Reference LTC DWG # 05-08-1510) .770* (19.558) MAX 16 15 14 13 12 11 10 9 .255 ± .015* (6.477 ± 0.381) 1 6 8 2 3 4 5 7 .300 – .325 .130 ± .005 .045 – .065 (7.620 - 8.255) $(\overline{3.302 \pm 0.127})$ (1.143 – 1.651) ۲ .020 (0.508) MIN ۷ .065 .008 – .015 (1.651) $(\overline{0.203 - 0.381})$ TYP .325 ^{+.035} -.015 .120 .100 .018 ± .003 8.255^{+0.889} -0.381 (3.048) (2.54) (0.457 ± 0.076) MIN BSC NOTE: INCHES 1. DIMENSIONS ARE MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. N16 1002

N Package 16-Lead PDIP (Narrow .300 Inch)

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

RELATED PARTS

PART NUMBER DESCRIPTION		COMMENTS			
LT1780/LT1781	5V, 2 Driver, 2 Receiver RS232 Transeivers	±15kV ESD per IEC 1000-4			
LTC1382	5V, 2 Driver, 2 Receiver RS232 Transceiver	220µA Supply Current, 0.2µA in Shutdown			
LTC1384	5V, 2 Driver, 2 Receiver RS232 Transceiver	220µA Supply Current, 2 Receivers Active in Shutdown			
LTC1385	3.3V, 2 Driver, 2 Receiver RS562 Transceiver	220µA Supply Current, 2 Receivers Active in Shutdown			
LTC1386	3.3V, 2 Driver, 2 Receiver RS562 Transceiver	220µA Supply Current, Narrow 16-pin SO			

8

Linear Technology, Corporation DTIC.com/Linear 1630 McCarthy Blvd., Milphas, CA95035-7 BDTIC.com/Linear (408) 432-1900 • FAX: (408) 434-0507 • linear.com