feATURES

- Withstands Transient Voltages Up to 200V/-200V
- Requires No Precision External Components
- Independently Monitors Two -48V Supplies for
- Undervoltage Faults: $-38.5 \mathrm{~V} \pm 1 \mathrm{~V}_{\mathrm{MAX}}$
- Overvoltage Faults: $-70 \mathrm{~V} \pm 1.5 \mathrm{~V}_{\text {MAX }}$
- Accurately Detects Undervoltage Fault Recovery: $-43 \mathrm{~V} \pm 0.5 \mathrm{~V}_{\text {max }}$
- Monitors Two External Fuses
- Operates from -10 V to -80 V
- Tolerates DC Faults to -100V
- Tolerates Accidental Supply Reversal to 100 V
- Small Footprint: 8-Lead MSOP Package
- Specified from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

- Telecom Backplanes or Switch Cards
- Networking Backplanes or Switch Cards
- High Voltage Fuse Monitoring

DESCRIPTIOn

The LTC ${ }^{\circledR} 1921$ monitors two independent -48 V supplies, including their fuses, and drives up to three optoisolators to indicate status, in accordance with standard backplane specifications. Requiring only three noncritical resistors and optoisolators, the LTC1921 replaces multiple voltage comparators, a voltage reference and several precision resistors.

The monitor features dual supply overvoltage and undervoltage detection circuits. The preset trip thresholds include overvoltage, undervoltage and undervoltage recovery that are guaranteed over temperature and meet or exceed common backplane specifications. Additional built-in circuitry detects the condition of supply fuses. Overvoltage and undervoltage detectors ignore fast supply transients, eliminating false detection. The LTC1921 operates from -10 V to -80 V with a typical power dissipation of less than 10 mW .
The LTC1921 is available in 8-pin MSOP and SOIC packages.

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS

Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Operating Temperature Range (Note 3)
LTC1921C/LTC1921I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$LTC1921C/LTC1921I
Specified Temperature Range (Note 4)LTC1921C/LTC1921I
\qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\qquadLTC1921C/LTC1921I
Storage Temperature Range
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
.......... $300^{\circ} \mathrm{C}$

.

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LTC1921CMS8 LTC1921IMS8		LTC1921CS8 LTC1921IS8
	MS8 PART MARKING		S8 PART MARKING
	$\begin{aligned} & \text { LTZV } \\ & \text { LTZU } \end{aligned}$		$\begin{aligned} & 1921 \\ & 19211 \end{aligned}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

The © denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5) RTN $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=-48 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=-48 \mathrm{~V}$, FUSE $\mathrm{A}=-48 \mathrm{~V}$, FUSE $B=-48 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply						
Supply Voltage Range (RTN - V_{A}, RTN - V_{B})		\bullet	10		80	V
Supply Current ($\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}$)		\bullet		-160	$\begin{aligned} & -250 \\ & -300 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Monitor						
Undervoltage Threshold		\bullet	-39.5		-37.5	V
Undervoltage Recovery Threshold		\bullet	-43.5		-42.5	V
Overvoltage Threshold		\bullet	-71.5		-68.5	V
Overvoltage Threshold Hysteresis		\bullet	1		1.6	V
Fuse Monitor						
Input Resistance, FUSE A, FUSE B				11		$\mathrm{M} \Omega$
Fuse Comparison Threshold $\left\|V_{\text {FUSEA }}-V_{\text {A }}\right\|$, $\left\|V_{\text {FUSEB }}-\mathrm{V}_{\mathrm{B}}\right\|$	$\begin{aligned} & \text { LTC1921C } \\ & \text { LTC1921I } \end{aligned}$	\bullet	$\begin{aligned} & 0.9 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	V V V
Output						
Propagation Delay	$\mathrm{C}_{\text {OUT }}=100 \mathrm{pF}$, Overdrive $=1 \mathrm{~V}$			220		$\mu \mathrm{S}$
Output Switch Resistance, OUT F, OUT A, OUT B	$\begin{aligned} & V_{A}=V_{B}=-35 \mathrm{~V}, V_{\text {FUSEA }}=V_{\text {FUSEB }}=0 \mathrm{~V} \\ & I_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$	\bullet		25	50	ת
						1921 f

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5) RTN $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=-48 \mathrm{~V}, \mathrm{~V}_{B}=-48 \mathrm{~V}$, FUSE $\mathrm{A}=-48 \mathrm{~V}$, FUSE $B=-48 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Switch Off Leakage				500		pA
Output Switch Resistance in Undervoltage Lockout, OUT F, OUT A, OUT B	$\begin{aligned} & V_{A}=V_{B}=-10 \mathrm{~V}, I_{\text {OUT }}=10 \mathrm{~mA} \\ & V_{A}=-10 \mathrm{~V}, V_{B}=0 \mathrm{~V}, I_{\text {OUT }}=10 \mathrm{~mA} \\ & V_{A}=0 \mathrm{~V}, V_{B}=-10 \mathrm{~V}, I_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$			60 80 80	Ω Ω Ω

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Transient voltage for less than $10 \mu \mathrm{~s}$. This parameter is not 100% tested. Voltage should not exceed 200V between any two pins.
Note 3: The LTC1921C and LTC1921I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 4: The LTC1921C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LTC1921C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LTC1921I is guaranteed to meet specified performance from -40 t0 $85^{\circ} \mathrm{C}$.
Note 5: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to RTN unless otherwise specified.

TYPICAL PGRFORMANCE CHARACTERISTICS

Undervoltage Recovery Threshold vs Temperature

Supply Current vs Temperature

Overvoltage Threshold vs Temperature

Undervoltage Threshold vs Temperature

1921604

Overvoltage Hysteresis vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

1921 Go

Fuse Window Negative Threshold vs Temperature

Output $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Temperature

Undervoltage Response Time

Overvoltage Response Time

PIn functions

V_{A} (Pin 1): Supply to be Monitored. The voltage at this pin is compared to the valid supply voltage window and the result is output at OUT A (Pin 5). Supply current is drawn from V_{A} as well as from V_{B} (Pin 8).
FUSE A (Pin 2): This pin monitors the state of a fuse by comparing the voltage at this pin to the voltage at V_{A} (Pin 1). The result is output at OUT F (Pin 4).
RTN (Pin 3): Supply Return Reference. This pin must be at an equal or higher potential than the other pins and should be wired to the -48 V return.

OUT F (Pin 4): This pin indicates the state of the external fuses by ORing the comparisons made to the FUSE A and FUSE B pins. If $V_{\text {FUSEA }} \cong V_{A}\left(V_{\text {FUSEA }}\right.$ is within the specified window around V_{A}) and $V_{\text {FUSEB }} \cong V_{B}$, then OUT F will exhibit a high internal impedance to the RTN pin. If $V_{\text {FUSEA }} \neq V_{A}$ or $V_{\text {FUSEB }} \neq V_{B}$, then OUT F is shorted internally to the RTN pin and can shunt enough current to turn off an optoisolator or LED wired between these pins. OUT F should be clamped externally so that it cannot be driven more than 8 V below RTN. This is done automatically by the optoisolator or LED diodes shown in the application circuits.

OUT A (Pin 5): Indicates the state of V_{A}. If V_{A} is within the specified voltage window (neither undervoltage nor overvoltage), OUTA will exhibit a high internal impedance to the

OUT F pin. If V_{A} is outside the specified overvoltage or undervoltage limits, then OUT A is shorted internally to the OUT F pin and can shunt enough current to turn off an optoisolator or LED wired between these pins. OUTA should be clamped externally so that it cannot be driven more than 8 V below RTN. This is done automatically by the optoisolator or LED diodes shown in the application circuits.
OUT B (Pin 6): Indicates the state of V_{B}. If V_{B} is within the specified voltage window (neither undervoltage nor overvoltage), OUT B will exhibit a high internal impedance to the OUT A pin. If V_{B} is outside the specified overvoltage or undervoltage limits, then OUT B is shorted internally to the OUT A pin and can shunt enough current to turn off an optoisolator or LED wired between these pins. OUTB should be clamped externally so that it cannot be driven more than 8 V below RTN. This is done automatically by the optoisolator or LED diodes shown in the application circuits.
FUSE B (Pin 7): This pin monitors the state of a fuse by comparing the voltage at this pin to the voltage at V_{B} (Pin 8). The result is output at OUT F (Pin 4).
V_{B} (Pin 8): Supply to be Monitored. The voltage at this pin is compared to the valid supply voltage window and the result is output at OUT B (Pin 6). Supply current is drawn from V_{B} as well as from $V_{A}($ Pin 1$)$.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

Supply Monitoring

The LTC1921 is designed to monitor dual -48 V power supplies. This is accomplished with precision window comparators and an accurate bandgap reference, as well as internal level shifting circuitry. The comparators are preset to standard voltage thresholds in order to accurately verify the status of each supply. These comparators also include precision hysteresis which allows accurate determination of voltage recovery. Status of the two supplies are indicated by the OUT A and OUT B pins.

The supply window comparison works in a straightforward way (Figure 1). As long as each supply magnitude remains in the valid supply window (38.5 V to 70 V), the outputs will indicate a valid supply condition by exhibiting a high internal impedance. If a supply magnitude falls below the undervoltage threshold (38.5 V), then its respective output will short internally (OUT A to OUT F or OUT B to OUT A) until that supply reaches the undervoltage recovery threshold, which is preset to -43 V . At this time, the output will return to a high impedance state. If a supply magnitude rises above the overvoltage threshold (70V), then its respective output will short internally, just as with an undervoltage condition. The output will return to its nominal state when the supply overcomes the overvoltage hysteresis.

Monitoring for each supply, V_{A} and V_{B}, is independent of the condition of the other supply. The LTC1921 can be powered equally from either V_{A}, V_{B} or both supplies. This allows the LTC1921 to provide correct information at its outputs as long as at least one supply is functional, whether or not the fuses are intact (see Figure 2).

Undervoltage Lockout

If both supplies are active and their magnitude falls below 13 V , or if only one supply is active and its magnitude falls below 19V, the LTC1921 will lock all outputs into a fault condition by closing all three output switches. This state will be held until one supply magnitude is driven above 19 V or both are driven above 13 V .

Fuse Monitoring

In addition to monitoring two supplies, the LTC1921 can monitor the condition of two supply fuses via the FUSE A (Pin 2) and FUSE B (Pin 7) inputs. Fuse monitoring is accomplished by comparing the potential at FUSE A to the potential at supply V_{A} and comparing the potential at FUSE B to the potential at supply V_{B}. If $\mathrm{V}_{\text {FUSEA }}$ is within the specified voltage window around V_{A} and $V_{\text {FUSEB }}$ is within the specified voltage window around V_{B}, the OUT Fpin will indicate that the fuses are intact by exhibiting a high

Figure 1. Supply Comparison

APPLICATIONS InFORMATION

internal impedance to the return (RTN) pin. The application must be designed so that an open fuse condition will force the fuse input (FUSE A or FUSE B) to be outside the specified window around the supply pins, such as with a weak pull-up resistor to RTN, so that the LTC1921 can properly indicate a fault at OUT F. If supply diodes that exhibit high reverse leakage, such as Schottky diodes, are used, then the values of the pull-up resistors must be reduced accordingly.

The FUSE A and FUSE B pins may also be used in conjunction with V_{A} and V_{B} for simple window comparison, provided that one of the circuit nodes to be compared can provide the small amount of supply current required to bias the IC. The LTC1921 is ideally suited for comparison functions in a circuit where only high supply voltages are available.

Output Pins

The output pins in the LTC1921 are designed to shunt external optoisolator diodes or LEDs during a supply or fuse fault condition. Up to three diodes may be used in
series, one for each output. In this configuration (Figure 2), a diode connected between OUT F and RTN will indicate the condition of both fuses. A diode connected between OUT A and OUT F will indicate the condition of supply $A\left(V_{A}\right)$ and a diode connected between OUT B and OUT A will indicate the condition of supply $B\left(V_{B}\right)$. A resistor connected from OUT B to the negative supply is required to bias the diodes. The LTC1921 is designed to allow the current from this resistor to flow through the diodes during normal supply conditions and intact fuses, and will shunt this current away from the proper diodes during a fault condition. These diodes will further clamp the output pin potentials to RTN in order to keep the outputs within rated voltages. If LEDs are used instead of optoisolators, they should be green since they will be lit when the supplies are within the proper voltage range.
The LTC1921 may be connected in such a way as to OR various outputs to allow the use of fewer optocouplers or LEDs (Figures 3a and 3b). One and two diode circuits are shown.

$\mathbf{V}_{\mathbf{A}}$	$\mathbf{V}_{\mathbf{B}}$	SUPPLY A STATUS	SUPPLY \mathbf{B} STATUS
OK	OK	0	0
OK	UV OR OV	0	1
UV OR OV	OK	1	0
UV OR OV	UV OR OV	1	1
OK: WITHIN SPECIFICATION			
OV: OVERVOLTAGE			
UV: UNDERVOLTAGE			

$V_{\text {FUSE }}$	$V_{\text {FUSE }} \boldsymbol{B}$	FUSE STATUS
$=V_{A}$	$=V_{B}$	0
$=V_{A}$	$\neq V_{B}$	1
$\neq V_{A}$	$=V_{B}$	1
$\neq V_{A}$	$\neq V_{B}$	1^{*}

0: LED/PHOTODIODE ON
1: LED/PHOTODIODE OFF
*IF BOTH FUSES (F1 AND F2) ARE OPEN,
ALL STATUS OUTPUTS WILL BE HIGH
SINCE R3 WILL NOT BE POWERED

Figure 2.

APPLICATIONS INFORMATION

$V_{\text {FUSE }}$	$V_{\text {FUSE }} \boldsymbol{B}$	FUSE STATUS
$=V_{A}$	$=V_{B}$	0
$=V_{A}$	$\neq V_{B}$	1
$\neq V_{A}$	$=V_{B}$	1
$\neq V_{A}$	$\neq V_{B}$	1^{\star}

0: LED/PHOTODIODE ON
1: LED/PHOTODIODE OFF
*IF BOTH FUSES (F1 AND F2) ARE OPEN, ALL STATUS OUTPUTS WILL BE HIGH SINCE R3 WILL NOT BE POWERED

Figure 3a. Combined Supply Status

Figure 3b. All Outputs Combined
www.BDTIC.com/Linear

TYPICAL APPLICATIONS

Hot Swap is a trademark of Linear Technology Corporation

PACKAGE DESCRIPTION

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660)

2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED $0.152 \mathrm{~mm}\left(.006{ }^{\prime \prime}\right)$ PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE $0.102 \mathrm{~mm}\left(.004^{\prime \prime}\right)$ MAX

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

TYPICAL APPLICATIONS

Single 48V Supply Monitor

Single -48V Supply Monitor

Voltage and Fuse Monitor with LED Outputs

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT4250	-48V Hot Swap Controller in S0-8 Package	Active Current Limiting, Supplies from -20V to -80V
LTC4251	-48V Hot Swap Controller in SOT-23 Package	Fast Active Current Limiting, Supplies from -15V (Floating)
LTC4252	-48V Hot Swap Controller in MSOP Package	Fast Active Current Limiting, Floating Supply, PWRGD Output
LTC4253	-48V Hot Swap Controller with Sequencer	Similar to LTC4252, Sequences Three DC/DC Converters

