7-Channel Configurable High Power PMIC

feATURES

- Four Monolithic Synchronous Buck DC/DCs (1A/1A/500mA/500mA)
- Buck DC/DCs Can Be Paralleled to Deliver Up to $2 \times$ Current with a Single Inductor
- Independent 1A Boost and 1A Buck-Boost DC/DCs
- Dual String I ${ }^{2}$ C Controlled 40V LED Driver
- $I^{2} \mathrm{C}$ Programmable Output Voltage, Operating Mode, and Switch Node Slew Rate for All DC/DCs
- $I^{2} C$ Read Back of DC/DC, LED Driver, Fault Status
- $I^{2} \mathrm{C}$ Slave Address Options: LTC3675 = 0001001X, LTC3675-1 = 0110100X
- Maskable Interrupts to Report DC/DC, $\mathrm{V}_{\text {IN }}$ and Die Temperature Faults
- Pushbutton ON/OFF/RESET
- Always-On 25mA LDO
- Low Quiescent Current: 16 $\mu \mathrm{A}$ (All DC/DCs Off)
- $4 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.75 \mathrm{~mm} 44$-Lead QFN Package

APPLICATIONS

- High Power (5W to 10W) Single Cell Li-Ion/Polymer Applications
- Portable Industrial Applications, Handy Terminals, Portable Instruments
- Multioutput Low Voltage Power Supplies
$\boldsymbol{\mathcal { O }}$, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks of Linear Technology Corporation and Hot Swap is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTIOn

The LTC®3675/LTC3675-1 are a digitally programmable high efficiency multioutput power supplies plus dual string LED driver ICs optimized for high power single cell Li-Ion/Polymer applications. The DC/DCs consist of four synchronous buckconverters ($1 \mathrm{~A} / 1 \mathrm{~A} / 500 \mathrm{~mA} / 500 \mathrm{~mA}$), one synchronous boost DC/DC (1A), and one buck-boost DC/ DC (1A) all powered from a 2.7 V to 5.5 V input. The 40 V LED driver can regulate up to 25 mA of current through two LED strings with up to 10 LEDs each. The LED driver may also be configured as a general purpose high voltage boost converter.

DC/DC enables, output voltages, switch slew rates and operating modes may all be independently programmed over $\mathrm{I}^{2} \mathrm{C}$ or used in standalone mode via simple I/O and power-up defaults. The buck DC/DCs may be used independently or paralleled to achieve higher output currents with a shared inductor. LED enable, 60 dB brightness control and up/down gradation are programmed using ${ }^{2} \mathrm{C}$. Alarm levels for low $\mathrm{V}_{\text {IN }}$ and high die temperature may also be programmed via $I^{2} \mathrm{C}$ with a maskable interrupt output to monitor DC/DC and system faults.
Pushbutton ON/OFF/RESET control and a power-on reset output provide flexible and reliable power-up sequencing. The LTC3675/LTC3675-1 are available in a low profile (0.75 mm), thermally enhanced 44 -lead $4 \mathrm{~mm} \times 7 \mathrm{~mm}$ QFN package.

TYPICAL APPLICATION

LTC3675/LTC3675-1

TABLE Of COOTEחTS

Features 1
Applications 1
Typical Application 1
Description 1
Absolute Maximum Ratings 3
Order Information 3
Pin Configuration 3
Electrical Characteristics 4
Typical Performance Characteristics 8
Pin Functions 14
Block Diagram 16
Operation 17
Buck Switching Regulator 17
Buck Regulators with Combined Power Stages 17
Boost Switching Regulator 18
Buck-Boost Switching Regulator 18
LED Driver 18
Pushbutton Interface and Power-Up Power-Down Sequencing 19
Power-Up and Power-Down via Pushbutton 19
Power-Up and Power-Down via Enable Pin or $I^{2} \mathrm{C}$ 21
LED Current Programming 21
${ }^{2}{ }^{2} \mathrm{C}$ Interface. 21
Error Condition Reporting via RSTB and IRQB Pins 24
Undervoltage and Overtemperature Functionality 25
Applications Information 26
Switching Regulator Output Voltage and Feedback Network 26
Buck Regulators 26
Combined Buck Regulators 26
Boost Regulator 27
Buck-Boost Regulator 28
LED Driver 28
Operating the LED Driver As a High Voltage Boost Regulator 29
Input and Output Decoupling Capacitor Selection 29
Choosing the C_{\top} Capacitor 30
Programming the UVOT Register 30
Programming the RSTB and IRQB Mask Registers 30
Status Byte Read Back 31
PCB Considerations 31
Typical Applications 33
Package Description 36
Revision History 37
Typical Application 38
Related Parts 38

ABSOLUTE MAXIMUM RATIOGS

(Note 1)
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT5 }}, \mathrm{V}_{\text {OUT6 }}$, FB1-6, LED_OV, EN1-4, ENBB, LED_ FS, CT, WAKE, PBSTAT, IRQB, RSTB, ONB, DV ${ }_{C C}$, SW5 \qquad -0.3 V to 6 V (Static) LDO_OUT, LDOFB... -0.3 V to Lesser of ($\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}$) or 6 V SCL, SDA -0.3 V to Lesser of (DV CC +0.3 V) or 6 V SW1, SW2, SW3, SW4, SWAB6
............................ -0.3 V to Lesser of $\left(\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$ or 6 V
SWCD6 -0.3 V to Lesser of $\left(\mathrm{V}_{\text {OUT6 }}+0.3 \mathrm{~V}\right)$ or 6 V
SW7 ...-0.3V to 45V
ISW1, ISW2 .. 1.4A
$I_{\text {SW3 }}$, ISW4 .. 700 mA
ISW5, ISWAB6, ISWCD6..2.4A
ISW7 ..2A
Operating Junction Temperature Range (Notes 2, 3)
... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

PIn CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC3675EUFF\#PBF	LTC3675EUFF\#TRPBF	3675	$44-L e a d ~(7 \mathrm{~mm} \times 4 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC3675EUFF-1\#PBF	LTC3675EUFF-1\#TRPBF	36751	$44-$ Lead $(7 \mathrm{~mm} \times 4 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LTC3675/LTC3675-1

ELECTRICAL CHARACTERISTICS The • denotes the speciitications which apply over the full operating junction temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathbb{N}}=3.6 \mathrm{~V}$. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Input Supply Range		\bullet	2.7		5.5	V
VIN_FALLING	Falling Undervoltage Threshold		\bullet	2.35	2.45	2.55	V
VIN_RISING	Rising Undervoltage Threshold		\bullet	2.45	2.55	2.65	V
VIN_WARN	Falling Undervoltage Warning Threshold	UV[2], UV[1], UV[0] = 000			2.7		V
		UV[2], UV[1], UV[0] = 001			2.8		V
		UV[2], UV[1], UV[0] = 010			2.9		V
		UV[2], UV[1], UV[0] = 011			3.0		V
		UV[2], UV[1], UV[0] = 100			3.1		V
		UV[2], UV[1], UV[0] = 101			3.2		V
		UV[2], UV[1], UV[0] = 110			3.3		V
		UV[2], UV[1], UV[0] = 111			3.4		V
VIn_HYS	$\mathrm{V}_{\text {IN }}$ Undervoltage Warning Hysteresis				50		mV
VIN_WARN(LSB)	Undervoltage Warning Threshold Step Size		\bullet	85	100	115	mV
OT	Overtemperature Shutdown				150		${ }^{\circ} \mathrm{C}$
OT_WARN	Overtemperature Warning Threshold; Die Temperature Below OT that Causes IRQB $=0$	$\begin{aligned} & \text { OT[1], OT[0] }=00 \\ & \text { OT[1], OT[0] }=01 \\ & \text { OT[1], OT[0] }=10 \\ & \text { OT[1], OT[0] }=11 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \end{aligned}$		${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
IVIn_ALLOFF	Input Supply Current	All Switching Regulators and LED Driver in Shutdown, ONB = HIGH; Sum of All VIN Currents			16	28	$\mu \mathrm{A}$
fosc	Voltage Regulator Switching Frequency	All Voltage Regulators	\bullet	1.8	2.25	2.7	MHz
$\mathrm{V}_{\text {PGOOD(FALL) }}$	Falling PGOOD Threshold Voltage	Full-Scale (1,1,1,1) Reference Voltage	\bullet	88	92	96	\%
VPGOOD(HYS)	PGOOD Hysteresis	All Regulators Except LED Driver			1		\%

1A Buck Regulator (Buck Regulators 1 and 2)

IVIN1,2	Pulse-Skipping Input Current Burst Mode ${ }^{\circledR}$ Operation Input Current	$\begin{aligned} & V_{F B 1}=V_{F B 2}=0.85 \mathrm{~V}(\text { (Notes 4, 5) } \\ & V_{F B 1}=V_{F B 2}=0.85 \mathrm{~V}(\text { (Notes 4, 5) } \end{aligned}$		$\begin{aligned} & 105 \\ & 20 \end{aligned}$	$\begin{gathered} 200 \\ 50 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {FWD1,2 }}$	PMOS Current Limit	(Note 6)		$2.25 \quad 2.8$	3.35	A
$\mathrm{V}_{\text {FB1,2(HIGH) }}$	Feedback Regulation Voltage	Pulse-Skipping Mode Full-Scale (1,1,1,1)	\bullet	780800	820	mV
$\mathrm{V}_{\text {FB1,2(LOW) }}$	Feedback Regulation Voltage	Pulse-Skipping Mode Full-Scale (0,0,0,0)	\bullet	405425	445	mV
$\mathrm{V}_{\text {LSB1,2 }}$	FB1, FB2 Regulation Voltage Step Size			25		mV
$\mathrm{I}_{\text {FB12 }}$	Feedback Leakage Current	$\mathrm{V}_{\text {FB1 }}=\mathrm{V}_{\text {FB2 }}=0.85 \mathrm{~V}$		-50	50	nA
$\mathrm{D}_{\text {MAX1,2 }}$	Maximum Duty Cycle	$\mathrm{V}_{\text {FB } 1}=\mathrm{V}_{\text {FB2 } 2}=0 \mathrm{~V}$	\bullet	100		\%
RPMOS1,2	PMOS On-Resistance	$I_{\text {SW1 }}=I_{\text {SW2 }}=100 \mathrm{~mA}$		265		$\mathrm{m} \Omega$
$\mathrm{R}_{\text {NMOS } 1,2}$	NMOS On-Resistance	$\mathrm{I}_{\mathrm{SW} 1}=\mathrm{I}_{\mathrm{SW} 2}=-100 \mathrm{~mA}$		280		$\mathrm{m} \Omega$
LEAKP1,2	PMOS Leakage Current	EN1 $=$ EN2 $=0$		-2	2	$\mu \mathrm{A}$
ILEAKN1,2	NMOS Leakage Current	EN1 $=$ EN2 $=0$		-2	2	$\mu \mathrm{A}$
$\mathrm{R}_{\text {SWPD1,2 }}$	Output Pull-Down Resistance in Shutdown	EN1 = EN2 = 0 (${ }^{2} \mathrm{C}$ Bit Set)		10		$\mathrm{k} \Omega$
$\mathrm{t}_{\mathrm{ss} 1,2}$	Soft-Start Time			500		$\mu \mathrm{S}$

500mA Buck Regulator (Buck Regulators 3 and 4)

$I_{\text {VIN3,4 }}$	Pulse-Skipping Input Current Burst Mode Operation Input Current	$V_{\text {FB3 }}=V_{\text {FB4 }}=0.85 \mathrm{~V}$ (Notes 4, 5) $V_{\text {FB3 }}=V_{\text {FB4 }}=0.85 \mathrm{~V}$ (Notes 4, 5)	105	200	$\mu \mathrm{~A}$
IFWD3,4	PMOS Current Limit	(Note 6)	20	50	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating
junction temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {FB3,4(HIGH) }}$	Feedback Regulation Voltage	Pulse-Skipping Mode Full-Scale ($1,1,1,1$)	\bullet	780	800	820	mV
$\mathrm{V}_{\text {FB3,4(LOW) }}$	Feedback Regulation Voltage	Pulse-Skipping Mode Full-Scale (0,0,0,0)	\bullet	405	425	445	mV
V ${ }_{\text {LSB3,4 }}$	FB3, FB4 Regulation Voltage Step Size				25		mV
$\mathrm{I}_{\text {FB3,4 }}$	Feedback Leakage Current	$\mathrm{V}_{\text {FB3 }}=\mathrm{V}_{\text {FB4 }}=0.85 \mathrm{~V}$		-50		50	nA
$\mathrm{D}_{\text {MAX } 3,4}$	Maximum Duty Cycle	$V_{\text {FB3 }}=V_{\text {FB4 }}=0 \mathrm{~V}$	\bullet	100			\%
$\mathrm{R}_{\text {PMOS } 3,4}$	PMOS On-Resistance	$\mathrm{I}_{\text {SW } 3}=\mathrm{I}_{\text {SW } 4}=100 \mathrm{~mA}$			500		$\mathrm{m} \Omega$
$\underline{\mathrm{R}_{\text {NMOS3,4 }}}$	NMOS On-Resistance	$\mathrm{I}_{\text {SW } 3}=\mathrm{I}_{\text {SW } 4}=-100 \mathrm{~mA}$			510		$\mathrm{m} \Omega$
LEEAKP3,4	PMOS Leakage Current	EN3 $=$ EN4 $=0$		-1		1	$\mu \mathrm{A}$
ILEAKN3,4	NMOS Leakage Current	EN3 $=$ EN4 $=0$		-1		1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {SWPD } 3,4}$	Output Pull-Down Resistance in Shutdown	EN3 $=$ EN4 $=0$ (${ }^{2} \mathrm{C}$ Bit Set)			10		$\mathrm{k} \Omega$
$\mathrm{t}_{\text {s }} \mathbf{3}, 4$	Soft-Start Time				500		$\mu \mathrm{S}$

Buck Regulators Combined

${ }_{\text {I FWD1+2 }}$	PMOS Current Limit	FB2 $=\mathrm{V}_{\text {IN }}($ (Note 6)	5.6	A
$\mathrm{I}_{\text {FWD2 } 23}$	PMOS Current Limit	FB3 $=\mathrm{V}_{\text {IN }}$ (Note 6)	4	A
$\mathrm{I}_{\text {FWD } 3+4}$	PMOS Current Limit	FB4 $=\mathrm{V}_{\text {IN }}($ Note 6)	2.4	A

1A Boost Regulator

IVIN5	PWM Mode Burst Mode Operation	$\begin{aligned} & V_{\text {FB5 }}=0.85 \mathrm{~V}(\text { Notes 4, 5) } \\ & V_{\text {FB5 } 5}=0.85 \mathrm{~V}(\text { Notes 4, 5) } \end{aligned}$			$\begin{gathered} 150 \\ 35 \end{gathered}$	$\begin{gathered} 300 \\ 60 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
V OUT5(MAX)	Maximum Regulated Output Voltage			5.35	5.55	5.75	V
$I_{\text {FWD }}$	Forward Current Limit	(Note 6)		2.5	3.15	3.9	A
$\mathrm{V}_{\text {FB5(HIGH) }}$	Feedback Regulation Voltage	PWM Mode Full-Scale (1,1,1,1)	\bullet	780	800	820	mV
$\mathrm{V}_{\text {FB5(LOW) }}$	Feedback Regulation Voltage	PWM Mode Full-Scale (0,0,0,0)	\bullet	405	425	445	mV
V LSB5	FB5 Regulation Voltage Step Size				25		mV
$\mathrm{I}_{\text {FB5 }}$	Feedback Leakage Current	$\mathrm{V}_{\text {FB5 }}=0.85 \mathrm{~V}$		-50		50	nA
$\mathrm{DC}_{\text {MAX5 }}$	Maximum Duty Cycle	NMOS Switch			90		\%
RPM0S5	PMOS On-Resistance				260		$\mathrm{m} \Omega$
$\underline{\mathrm{R}_{\text {NMOS5 }}}$	NMOS On-Resistance				275		$\mathrm{m} \Omega$
ILEAKP	PMOS Switch Leakage Current			-2		2	$\mu \mathrm{A}$
leakn	NMOS Switch Leakage Current			-2		2	$\mu \mathrm{A}$
$\underline{\text { RoutPD5 }}$	Output Pull-Down Resistance in Shutdown	Boost Regulator Off			10		$k \Omega$
$\mathrm{t}_{\text {S } 55}$	Soft-Start Time				500		$\mu \mathrm{s}$

1A Buck-Boost Regulator

LTC3675/LTC3675-1

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply ver the full operating junction temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }_{\text {IFB6 }}$	Feedback Leakage Current	$V_{\text {FB6 }}=0.85 \mathrm{~V}$		-50		50	nA
DC6BUCK(MAX)	Maximum Buck Duty Cycle	Duty Cycle of PMOS Switch A	\bullet	100			\%
DC6 ${ }_{\text {b00ST(MAX) }}$	Maximum Boost Duty Cycle	Duty Cycle of NMOS Switch C			75		\%
$\mathrm{R}_{\text {PMOS6 }}$	PMOS On-Resistance	Switches A and D			260		$\mathrm{m} \Omega$
$\mathrm{R}_{\text {NMOS6 } 6}$	NMOS On-Resistance	Switches B and C			275		$\mathrm{m} \Omega$
LLEAKP	PMOS Switch Leakage Current			-2		2	$\mu \mathrm{A}$
ILEAKN	NMOS Switch Leakage Current			-2		2	$\mu \mathrm{A}$
$\mathrm{t}_{\text {SS }}$	Soft-Start Time				500		$\mu \mathrm{S}$
ROUTPD6	Output Pull-Down Resistance in Shutdown	ENBB $=0$			10		k Ω

LED Driver; R RED_FS $=\mathbf{2 0 k} \Omega$

$\left.\begin{array}{l|l|l|l|lc|c}\hline I_{\text {VIN7 }} & \text { Input Current (MODE0 = MODE1 = 0) } & \text { LED_OV = 0.85V (Notes 4, 5) } & & 700 & 1000 & \mu \mathrm{~A} \\ \hline V_{\text {LED_OV }} & \text { LED Overvoltage Threshold } \\ & \text { Feedback Voltage } & \text { Operating in LED Mode } \\ \text { Operating in Boost Mode }\end{array}\right)$

25mA Always-On LDO

$V_{\text {LDOFB }}$	Feedback Regulation Voltage		\bullet	780	800	820
$R_{\text {DO }}$	Dropout Resistance			mV		

$1^{2} \mathrm{C}$ Port

DVCC	Input Supply Voltage		\bullet	1.6	5.5	V
IDVCC	Input Supply Current	SCL/SDA= 0kHz			0.31	$\mu \mathrm{A}$
DVCC_UVLO	DV ${ }_{\text {cC }}$ UVLO				1	V
ADDRESS	${ }^{2} \mathrm{C}$ C Address	$\begin{aligned} & \text { LTC3675 } \\ & \text { LTC3675-1 } \end{aligned}$	\bullet		$\begin{aligned} & 51[R / W B] \\ & 0[R / W B] \end{aligned}$	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	SDA/SCL			70	\% DV ${ }_{\text {cC }}$
VIL	Input Low Voltage	SDA/SCL			30	\% DV ${ }_{\text {CC }}$
$\mathrm{IIH}^{\text {l }}$	Input High Current	SDA/SCL		-1	$0 \quad 1$	$\mu \mathrm{A}$
ILL	Input Low Current	SDA/SCL		-1	0 1	$\mu \mathrm{A}$
V OL_SDA	SDA Output Low Voltage	$\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}$			0.4	V
$\mathrm{f}_{\mathrm{SCL}}$	Clock Operating Frequency				400	kHz

ELECTRICAL CHARACTERISTICS The \bullet denotes the speciifications which apply over the full operating

junction temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$. (Note 2)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
$\mathrm{t}_{\text {BUF }}$	Bus Free Time Between Stop and Start Condition		1.3		$\mu \mathrm{S}$
thD_SDA	Hold Time After Repeated Start Condition		0.6		$\mu \mathrm{s}$
tSU_STA	Repeated Start Condition Set-Up Time		0.6		$\mu \mathrm{s}$
tSU_STO	Stop Condition Set-Up Time		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD_DAT }}(0)$	Data Hold Time Output		0	900	ns
thD_DAT(I)	Data Hold Time Input		0		ns
tSU_DAT	Data Set-Up Time		100		ns
tlow	SCL Clock Low Period		1.3		$\mu \mathrm{s}$
thigh	SCL Clock High Period		0.6		$\mu \mathrm{S}$
t_{f}	Clock/Data Fall Time	$\mathrm{C}_{\mathrm{B}}=$ Capacitance of One Bus Line (pF)	$20+0.1 \mathrm{C}_{\mathrm{B}}$	300	ns
tr_{r}	Clock/Data Rise Time	$\mathrm{C}_{\mathrm{B}}=$ Capacitance of One Bus Line (pF)	$20+0.1 C_{B}$	300	ns
$\mathrm{t}_{\text {SP }}$	Input Spike Suppression Pulse Width			50	ns

Interface Logic Pins (PBSTAT, WAKE, RSTB, IRQB, ONB)

$I_{\text {LK(HIGH) }}$	Output High Leakage Current	3.6 V at Pin	-1	$\mu \mathrm{~A}$		
$V_{\text {OL }}$	Output Low Voltage	3 mA into Pin	100	400	mV	
$V_{\text {ONB(HIGH) }}$	ONB High Threshold			800	1200	mV
$V_{\text {ONB(LOW) }}$	ONB Low Threshold		400	700	mV	

Interface Logic Pins (EN1, EN2, EN3, EN4, ENBB)

$V_{\text {HI_ALLOFF }}$	Enable Rising Threshold	All Regulators and LED Driver Disabled	\bullet	400	650	1200
$V_{\text {EN_HYS }}$	Enable Falling Hysteresis			mV		
$V_{\text {HI }}$	Enable Rising Threshold	At Least One Regulator/LED Driver Enabled	\bullet	380	400	420
$I_{\text {EN }}$	Enable Pin Leakage Current	EN $=3.6 \mathrm{~V}$	mV			

Pushbutton Parameters; CT $=\mathbf{0 . 0 1 \mu F}$

$t_{\text {ONB_LO }}$	ONB Low Time to PBSTAT Low	WAKE High	28	50	72	ms	
$t_{\text {ONB_WAKE }}$	ONB Low Time to WAKE High		280	400	520	ms	
$t_{\text {ONB_HR }}$	ONB Low to Hard Reset		3.5	5	6.5	sec	
$t_{\text {HR }}$	Time for Which All Enabled Regulators are Disabled		0.7	1	1.3	sec	
$t_{\text {PBSTAT_PW }}$	PBSTAT Minimum Pulse Width			28	50	72	ms
twaKE_ON	WAKE High Time		3.5	5	6.5	sec	

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC3675/LTC3675-1 are tested under pulsed load conditions such that $T_{A} \approx T_{\mathrm{J}}$. The LTC3675/LTC3675-1 are guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range are assured by design, characterization and correlation with statistical process controls. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal impedance and other environmental factors.
Note 3: The LTC3675/LTC3675-1 include overtemperature protection which protects the device during momentary overload conditions. Junction
temperature will exceed $125^{\circ} \mathrm{C}$ when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.
Note 4: Static current, switches not switching. Actual current may be higher due to gate charge losses at the switching frequency.
Note 5: Currents measured at a specific $\mathrm{V}_{\text {IN }}$ pin. Buck 1 ($\mathrm{V}_{\text {IN }}$, Pin 6); Buck 2 ($V_{I N}$, Pin 7); Buck 3 and Buck 4 ($V_{\text {IN }}$, Pin 10); Boost and Buck Boost (VIN, Pin 34); LED driver (VIN, Pin 31).
Note 6: The current limit features of this part are intended to protect the IC from short term or intermittent fault conditions. Continuous operation above the maximum specified pin current rating may result in device degradation over time.
Note 7: With dual string operation, the LED pin with the lower voltage sets the regulation point.

LTC3675/LTC3675-1

TYPICAL PGRFORMANCE CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ}$, unless otherwise noted.

Enable Threshold vs Temperature

1A Buck Regulators, Load Regulation

1A Buck Regulators, Efficiency vs Load

1A Buck Regulators,

 Line Regulation

TYPICAL PGRFORMANCE CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ}$, unless otherwise noted.

1A Buck Regulators, № Load Start-Up Transient (Pulse-Skipping Mode)

LOAD STEP $=100 \mathrm{~mA}$ TO 700 mA
$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT } 1}=1.2 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=1.2 \mathrm{~V}$

500mA Buck Regulators,

 Efficiency vs Load

1A Buck Regulators, PMOS

 Current Limit vs Temperature

500mA Buck Regulators,
Load Regulation

1A Buck Regulators, Switch $R_{\text {DSON }}$ VS Temperature

500mA Buck Regulators, Line Regulation

TYPICAL PERFORMANC \in CHARACTERISTICS $T_{A}=25^{\circ}$, unless othemise noted.
 $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=1.8 \mathrm{~V}$

500mA Buck Regulators Transient Response (Burst Mode Operation)

LOAD STEP $=50 \mathrm{~mA}$ to 300 mA $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=1.8 \mathrm{~V}$

500mA Buck Regulators, PMOS
Current Limit vs Temperature

Boost Regulator,
Efficiency vs Load

500mA Buck Regulators No Load Start-Up Transient (Pulse-Skipping Mode)

500mA Buck Regulators, Switch RDSON vs Temperature

Boost Regulator, Load Regulation

TYPICAL PERFORMANCE CHARACTERISTICS

Boost Regulator Transient
Response (Burst Mode Operation)

LOAD STEP $=100 \mathrm{~mA}$ to 600 mA
$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT5 }}=5 \mathrm{~V}$

Boost Regulator,
$\mathrm{V}_{\text {OUT5 }}$ vs Temperature

Boost Regulator Transient Response (PWM Mode)

Boost Regulator, No Load Start-Up Transient, PWM Mode

Boost Regulator, Forward Current Limit vs Temperature

LTC3675/LTC3675-1

TYPICAL PERFORMANCE CHARACTERISTICS

Buck-Boost Regulator,
Line Regulation

Buck-Boost Regulator No Load Start-Up (PWM Mode)

Buck-Boost Regulator, Load Regulation

Buck-Boost Regulator Transient Response (PWM Mode)

LOAD STEP $=100 \mathrm{~mA}$ to 600 mA
$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT6 }}=3.3 \mathrm{~V}$

Buck-Boost Regulator, Reduction in Load Current Deliverability

TYPICAL PERFORMANCE CHARACTERISTICS

LED Driver, LED Current vs Temperature

High Voltage Boost Regulator, Efficiency vs Load

PIn fUnCTIOnS

EN1 (Pin 1): Buck Regulator 1 Enable Input. Active high.
FB1 (Pin 2): Buck Regulator 1 Feedback Pin. Receives feedback by a resistor divider connected across the output.

FB2 (Pin 3): Buck Regulator 2 Feedback Pin. Receives feedback by a resistor divider connected across the output. Connecting FB2 to VIN combines buck regulator 2 with buck regulator 1 for higher current.
EN2 (Pin 4): Buck Regulator 2 Enable Input. Active high.
SW1 (Pin 5): Buck Regulator 1 Switch Node. External inductor connects to this pin.
$V_{\text {IN }}$ (Pin 6): Buck Regulator 1 Input Supply. A 10 1 F decoupling capacitorto GND is recommended. Must beconnected to all other $\mathrm{V}_{\text {IN }}$ supply pins (Pins 7, 10, 31, 34, 40).
$V_{\text {IN }}$ (Pin 7): Buck Regulator 2 Input Supply. A 10 $\mu \mathrm{F}$ decoupling capacitorto GND is recommended. Must be connected to all other VIN supply pins (Pins 6, 10, 31, 34, 40).
SW2 (Pin 8): Buck Regulator 2 Switch Node. External inductor connects to this pin.
SW3 (Pin 9): Buck Regulator 3 Switch Node. External inductor connects to this pin.
$V_{\text {IN }}$ (Pin 10): Buck Regulators 3 and 4 Input Supply. A $10 \mu \mathrm{~F}$ decoupling capacitor to GND is recommended. Must be connected to all other V_{IN} supply pins (Pins 6, 7, 31, 34, 40).
SW4 (Pin 11): Buck Regulator 4 Switch Node. External inductor connects to this pin.
EN3 (Pin 12): Buck Regulator 3 Enable Input. Active high.

EN4 (Pin 13): Buck Regulator 4 Enable Input. Active high.
FB4 (Pin 14): Buck Regulator 4 Feedback Pin. Receives feedback by a resistor divider connected across the output. Connecting FB4 to $\mathrm{V}_{\text {IN }}$ combines buck regulator 4 with buck regulator 3 for higher current.

FB3 (Pin 15): Buck Regulator 3 Feedback Pin. Receives feedback by a resistor divider connected across the output. Connecting FB3 to $\mathrm{V}_{\text {IN }}$ combines buck regulator 3 with buck regulator 2 for higher current.
LED_OV (Pin 16): Overvoltage Protection PinforLED Driver. LED1 (Pin 17): Connecta string of up to 10LEDs to this pin.
SW7 (Pins 18, 19, 20): LED Driver Switch Node. External inductor connects to these pins.

LED2 (Pin 21): Connecta string of up to 10LEDs to this pin.
CT (Pin 22): Timing Capacitor Pin. A capacitor connected to GND sets a time constant which is scaled for use by the WAKE, RSTB and IRQB pins.

RSTB (Pin 23): Reset Pin. Open drain output. When the regulated outputvoltage of any enabled switching regulator is more than 8% below its programmed level, this pin is driven LOW. Assertion delay is scaled by the C_{\top} capacitor.
IRQB (Pin 24): Interrupt Pin. Open drain output. When undervoltage, overtemperature, or an unmasked error condition is detected, this pin is driven LOW.
PBSTAT (Pin 25): Pushbutton Status Pin. Open drain output. This pin provides a debounced and glitch free status of the ONB pin.

PIn fUnCTIOnS

WAKE (Pin 26): Open Drain Output. When the ONB pin is pressed and released, the signal is debounced and the WAKE signal is held HIGH for a minimum time period that is scaled by the C_{\top} capacitor.
LED_FS (Pin 27): A resistor connected from this pin to GND programs full-scale LED current.
ONB (Pin 28): Pushbutton Input. Active low.
LDOFB (Pin 29): LDO Feedback Pin. A resistor divider from LDO_OUT to GND provides feedback.
LDO_OUT (Pin 30): Output of Always-On LDO. Decouple with a $10 \mu \mathrm{~F}$ capacitor to GND.

VIN (Pin 31): Quiet Input Supply Used to Power NonSwitching Control Circuitry. A $2.2 \mu \mathrm{~F}$ decoupling capacitor to GND is recommended. Must be connected to all other $V_{\text {IN }}$ supply pins (Pins 6, 7, 10, 34, 40).
SW5 (Pin 32): Boost Regulator Switch Node. External inductor connects to this pin.
$V_{\text {OUT5 }}$ (Pin 33): Boost Regulator Output. Connect two $22 \mu \mathrm{~F}$ capacitors to GND.
V_{IN} (Pin 34): Quiet Input Supply Used to Power NonSwitching Control Circuitry. A $2.2 \mu \mathrm{~F}$ decoupling capacitor to GND is recommended. Must be connected to all other $V_{\text {IN }}$ supply pins (Pins $6,7,10,31,40$).

FB5 (Pin 35): Boost Regulator Feedback Pin. Receives feedback by a resistor divider connected across the output.
FB6(Pin36): Buck-Boost Regulator FeedbackPin. Receives feedback by a resistor divider connected across the output.

ENBB (Pin 37): Buck-Boost Regulator Enable Input. Active high.
SWAB6 (Pin 38): Buck-Boost Regulator Switch Pin. External inductor connects to this pin and SWCD6.
SCL (Pin 39): Clock Line for $I^{2} \mathrm{C}$ Port.
$\mathrm{V}_{\text {IN }}$ (Pin 40): Buck-Boost Regulator Input Supply. A 10 $\mu \mathrm{F}$ decoupling capacitor to GND is recommended. Must be connected to all other $\mathrm{V}_{\text {IN }}$ Supply pins (Pins 6,7,10,31,34).
DV ${ }_{\text {CC }}$ (Pin 41): Supply Pin for ${ }^{2} \mathrm{C}$ Port.
$V_{\text {OUT6 }}$ (Pins 42): Buck-Boost Regulator Output. Connect a $22 \mu \mathrm{~F}$ capacitor to GND.
SDA (Pin 43): Serial Data Line for $I^{2} \mathrm{C}$ Port. Open drain output during readback.

SWCD6 (Pin 44): Buck-Boost Regulator Switch Pin. External inductor connects to this pin and SWAB6.
GND (Exposed Pad Pin 45): Ground for Entire Chip. Must be soldered to PCB for electrical contact and rated thermal performance.

LTC3675/LTC3675-1

BLOCK DIAGRAM

operation

The LTC3675/LTC3675-1 have six monolithic synchronous switching regulators and a dual string boost LED driver and is designed to operate from a single Li-Ion battery. All of the switching regulators and the LED driver are internally compensated and need only external feedback resistors for regulation. The switching regulators also offer two operating modes: Burst Mode operation for higher efficiency at light loads and pulse-skipping/PWM mode. In Burst Mode operation at light loads, the output capacitor is charged to a voltage slightly higher than its regulation point. The regulator then goes into sleep, during which the output capacitor provides the load current. In sleep most of the regulator's circuitry is powered down, helping conserve battery power. When the output capacitor droops below its programmed value, the circuitry is powered on and another burst cycle begins. The sleep time decreases as load current increases.

All switching regulators and LED driver may be configured via $I^{2} \mathrm{C}$, providing the user with the flexibility to operate the LTC3675/LTC3675-1 in the most efficient manner. ${ }^{2} \mathrm{C}$ commands can also be read back via the $\mathrm{I}^{2} \mathrm{C}$ port, to ensure a command was not corrupted during a transmission.
All the regulators can be enabled via ${ }^{2} \mathrm{C}$ commands. The buck regulators and the buck-boost regulator may also be enabled via enable pins. The enable pins have two different enable threshold voltages that depend on the operating state of the LTC3675/LTC3675-1. With all regulators disabled, the enable pin threshold is at 650 mV . If any regulator is enabled either by its enable pin or an $I^{2} \mathrm{C}$ command, then the enable pin thresholds are at 400 mV . A precision comparator detects a voltage greater than 400 mV on the enable pin and turns that regulator on. This precision threshold may be used to sequentially enable regulators. If all regulators are disabled, all the command registers are set in their default state.

There are also 2 bytes of data that report any fault conditions on the LTC3675/LTC3675-1 via ${ }^{2}$ ² read back.

BUCK SWITCHING REGULATOR

The LTC3675/LTC3675-1 contain four buck regulators. Two of the buck regulators are designed to deliver up to 1A load current each while the other two regulators can deliver up to 500 mA each.

The buck regulators can operate in either of two modes. In pulse-skipping mode, the regulator will skip pulses at light loads but will operate at a constant frequency of 2.25 MHz at higher loads. In Burst Mode operation, the regulator will burst at light loads whereas at higher loads it will operate at constant frequency PWM mode of operation, much the same as pulse-skipping mode at high load. In shutdown, an $I^{2} \mathrm{C}$ control bit provides the flexibility to either keep the SW node in a high impedance state or pull the SW node to GND through a 10k resistor.

The buck regulators have forward and reverse current limiting, soft-start to limit inrush current during start-up, short-circuit protection and slew rate control for lower radiated EMI.

Each buck regulator may be enabled via its enable pin or $I^{2} C$. The mode of operation, the feedback regulation voltage and switch slew rate can all be controlled via $I^{2} \mathrm{C}$. For applications that require higher power, buck regulators may be combined together.

BUCK REGULATORS WITH COMBINED POWER STAGES

Two adjacent buck regulators may be combined in a master-slave configuration by connecting their SW pins together and connecting the higher numbered buck's FB pin to the input supply. The lower numbered buck is always the master. In Figure 1, buck regulator 1 is the master. The feedback network connected to the FB1 pin programs the

Figure 1. Buck Regulators Configured as Master-Slave

operation

output voltage to 1.2 V . The FB 2 pin is tied to V_{IN}, which configures buck regulator 2 as the slave. The SW1 and SW2 pins must be tied together. The register contents of the master programthe combined buck regulator's behavior and the register contents of the slave are ignored. The slave buck control circuitry draws no current. The enable of the master buck (EN1) controls the operation of the combined bucks, the enable of the slave regulator (EN2) is ignored.
Buck regulators 2 and 3 may be configured as combined buck regulators capable of delivering up to 1.5 A load current with buck regulator 2 being the master. Buck regulators 3 and 4 may be configured as combined buck regulators capable of delivering up to 1 A load current with buck regulator 3 being the master.

BOOST SWITCHING REGULATOR

The boost regulator is capable of delivering up to 1 A load current for a programmed output voltage of up to 5 V . The boost regulator may be enabled only via $I^{2} \mathrm{C}$. The mode of operation, feedback regulation voltage and switch slew rate can all be controlled via $I^{2} C$.

The boost regulator can operate in either PWM mode or in Burst Mode operation. In PWM operating mode, the regulator operates at a constant frequency of 2.25 MHz and provides a low noise solution. For light loads, Burst Mode operation offers improved efficiency. The boost regulator has forward and reverse current limiting, softstart to limit inrush current during start-up, short-circuit protection and slew rate control for lower radiated EMI. The boost regulator also features true output disconnect when in shutdown. In shutdown, an internal 10k resistor pulls the output to GND.

BUCK-BOOST SWITCHING REGULATOR

The buck-boost regulator is a 2.25 MHz voltage mode regulator. The buck-boost regulator is capable of delivering up to 1 A load current for a programmed output voltage of 3.3V. The regulator can be enabled via its enable pin or via $I^{2} \mathrm{C}$. The mode of operation, feedback regulation voltage and switch slew rate can all be controlled via $I^{2} \mathrm{C}$.

The buck-boost regulator can operate in either PWM mode or in Burst Mode operation. The PWM operating mode provides a low noise solution. For light loads, Burst Mode operation offers improved efficiency. The buck-boost regulator has forward current limiting, soft-start to limit inrush current during start-up, short-circuit protection and slew rate control for lower radiated EMI.
When the output voltage is below 2.65 V (typical) during start-up, Burst Mode operation is disabled and switch D is turned off. The forward current is carried by the switch D well diode and there is no reverse current flowing in this condition. In shutdown, an internal 10k resistor pulls the output to GND.

LED DRIVER

The LED driver uses a constant frequency, current mode boost converter to supply power to up to two strings of 10 series LEDs. The series string of LEDs is connected from the output of the boost converter to an LED pin. The LED pin is a programmable constant current sink. The boost converter will regulate its output to force the LED pin to 300 mV . The percentage of full-scale current sunk by the LED pin is programmed via $I^{2} C$.
The LED boost converter is designed for very high duty cycle operation and can boost from below 3 V to 40 V out at up to 55 mA . The LED boost also features an overvoltage protection feature to limit the output voltage in case of an open circuit in an LED string. The boost converter will operate in either continuous conduction mode, discontinuous conduction mode or pulse-skipping mode depending on the inductor current required for regulation. The boost converter may also be configured to operate as an independent high voltage boost regulator via $\mathrm{I}^{2} \mathrm{C}$. The LED driver may also be configured as a single string LED driver. When driving a single string, LED1 and LED2 should be tied together.
The LED driver features a fully automatic gradation circuit. This circuit allows the current to ramp up or down at a controlled rate between any two current levels. On power-up the LED DAC register is set to 0 . To enable the LED driver a non-zero value must be programmed into this register.

operation

The gradation circuit will then ramp the current to the programmed value at a rate determined by the gradation rate bits. Once the LED driver reaches this value it will regulate that current until programmed otherwise. If a new value is programmed in the LED brightness register, the LED driver's current will ramp up or down at the programmed rate until that current is reached. To disable the LED driver, a code of zero is programmed in the LED DAC register. The gradation circuit will then ramp the current down at the programmed rate. Once the current reaches zero the gradation circuit will disable the boost and the entire LED driver will enter shutdown mode.

The LED driver is protected by the LED_OV pin. This pin acts as a secondary feedback path that limits the voltage on the output capacitor. A feedback divider is placed from the LED boost's output to the LED_OV pin. Values for this divider are selected to limit the output voltage similarly to the feedback dividers discussed in "Switching Regulator Output Voltage and Feedback Network" in the Applications Information section. The LED driver begins to transition to LED_OV control at 800 mV and is fully controlled by the LED_OV pin by 825 mV . During this transition the LED pins will begin to drop out of regulation. For this reason during normal operation the voltage on this pin should be kept below 800 mV .

The LED driver is also designed to limit the maximum voltage on the LED1 and LED2 pins to no more than 8 V . The boost regulates the minimum voltage on either LED pin. If one of the LED pins is shorted to ground the boost will only drive the other LED pin up to the voltage clamp, or the LED_OV voltage, whichever is lower. If one LED string is shorted, or partially shorted, this clamp will prevent the boost from damaging the LED pin.

PUSHBUTTON INTERFACE AND POWER-UP POWERDOWN SEQUENCING

The LTC3675/LTC3675-1 provide pushbutton functionality to either power up or power down the part. The ONB, WAKE and PBSTAT pins provide the user with flexibility to power up or power down the part in addition to having ${ }^{2} \mathrm{C}$
control. All PB timing parameters are scaled using the CT pin. Times described below apply to a nominal C_{T} of $0.01 \mu \mathrm{~F}$.
The LTC3675/LTC3675-1 are in an off state when it is powered up with all regulators in shutdown. The WAKE pin is LOW in the off state. The WAKE pin will go HIGH either if ONB is pulled LOW for 400 ms or a regulator is enabled via its enable pin or an $I^{2} \mathrm{C}$ command. The WAKE pin stays in its HIGH state for 5 seconds and then gets pulled Iow. WAKE will not go HIGH again if a second regulator is subsequently enabled. The LTC3675/LTC3675-1 are in an on state if either the WAKE pin is HIGH or a regulator is enabled.

The PBSTAT pin reflects the status of the ONB when the LTC3675/LTC3675-1 are in an on state. Once in the on state, the LTC3675/LTC3675-1 can be powered down by holding ONB LOW for at least 5 seconds. All enabled regulators will be turned off for 1 second and the contents of the program registers are reset to their default state. This manner of power-down is called a hard reset. A hard reset may also be generated by using an $I^{2} \mathrm{C}$ command.

POWER-UP AND POWER-DOWN VIA PUSHBUTTON

The LTC3675/LTC3675-1 may be turned on and off using the WAKE pin as shown in Figures 2a and 2b. In Figures 2 a and 2 b , pressing ONB low at time t_{1}, causes the WAKE pin to go high at time t_{2} and stay high for 5 seconds, after which WAKE is pulled low. WAKE going HIGH at t_{2} causes buck regulator 1 to power up, which sequentially powers up the other buck regulators. The RSTB pin gets pulled HIGH 200ms after the last enabled buck is in its PGOOD state. An application showing sequential regulator start-up is shown in the Typical Applications section (Figure 7).
If an $I^{2} \mathrm{C}$ command is written before the 5 second WAKE period t_{3} to keep the buck regulators enabled, the regulators stay enabled as shown in Figure 2b. Otherwise, when WAKE gets pulled Iow at t_{3}, the buck regulators will also power down sequentially as shown in Figure 2a.
In Figure 2b, ONB is held LOW at instant t_{4} for 5 seconds. This causes a hard reset to be generated and at t_{5}, all regulators are powered down.

LTC3675/LTC3675-1

OPERATION

Figure 2a. Power-Up Using WAKE (Sequenced Power-Up, Figure 7)

Figure 2b. Power-Up Using WAKE and Power-Down Due to Hard Reset (Sequenced Power-Up, Figure 7)

Figure 2c. Power-Up Using an Enable Pin and Power-Down Due to $I^{2} \mathrm{C}$ Generated Hard Reset

OPERATION

POWER-UP AND POWER-DOWN VIA ENABLE PIN OR I ${ }^{2} \mathrm{C}$

With the LTC3675/LTC3675-1 in its off state, a regulator can be enabled either via its enable pin or $\mathrm{I}^{2} \mathrm{C}$. In Figure 2 c , buck regulator 1 is enabled via its enable pin at time t_{1}. The WAKE pin goes HIGH for 5 seconds and at t_{2} is pulled LOW. The buck regulator stays enabled until time t_{3} when a hard reset command is issued via $I^{2} \mathrm{C}$. The buck regulator powers down and stays off for 1 second. At time t_{4}, the LTC3675/LTC3675-1 exit from the power down state. Since the buck regulator 1 is still enabled via its enable pin, it powers back up. WAKE also gets pulled HIGH for 5 seconds. The RSTB pin gets pulled HIGH 200ms after the buck regulator 1 is in its PGOOD state.

LED CURRENT PROGRAMMING

The LED current is primarily controlled through the LED DAC register at $I^{2} C$ sub-address 8 . This register controls an 8 bit current DAC. A 20k resistor placed between the LED_FS pin and ground provides a current reference for the DAC which results in 98μ A of programmed LED current per LSB. For example, programming a LED DAC register code of 64 h will result in a LED current of 9.8 mA and a full-scale setting of FFh will result in a LED current of 25 mA .
The $2 x$ FS bit which is bit 3 of the LED configuration register at sub-address 7 effectively doubles the programmed LED current. With a 20k resistor from LED_FS to ground each LSB will be $196 \mu A$. Programming a LED DAC register
code of 64 h will result in a LED current of 19.6 mA and a full-scale setting of FFh will result in an LED current of 50 mA . The $2 x$ FS mode is only intended for use when the output voltage is below 20 V .

${ }^{2}{ }^{2} \mathrm{C}$ InTERFACE

The LTC3675/LTC3675-1 may communicate with a bus master using the standard $\mathrm{I}^{2} \mathrm{C} 2$-wire interface. The timing diagram (Figure 3) shows the relationship of the signals on the bus. The two bus lines, SDA and SCL, must be high when the bus is not in use. External pull-up resistors or current sources, such as the LTC1694 SMBus accelerator, are required on these lines. The LTC3675/LTC3675-1 are both a slave receiver and slave transmitter. The $\mathrm{I}^{2} \mathrm{C}$ control signals, SDA and SCL are scaled internally to the $\mathrm{DV}_{C C}$ supply. DV ${ }_{\text {CC }}$ should be connected to the same power supply as the bus pull-up resistors.
The ${ }^{2} \mathrm{C}$ port has an undervoltage lockout on the $\mathrm{DV}_{C C}$ pin. When $\mathrm{DV}_{C C}$ is below 1 V , the $I^{2} \mathrm{C}$ serial port is cleared and the LTC3675/LTC3675-1 registers are set to their default configurations.

$I^{2} C$ Bus Speed

The $I^{2} C$ port is designed to be operated at speeds of up to 400 kHz . It has built-in timing delays to ensure correct operation when addressed from an $I^{2} \mathrm{C}$ compliant master device. It also contains input filters designed to suppress glitches should the bus become corrupted.

Figure 3. $1^{2} \mathrm{C}$ Bus Operation

LTC3675/LTC3675-1

OPERATION

$I^{2} C$ Start and Stop Conditions

A bus master signals the beginning of communications by transmitting a START condition. A START condition is generated by transitioning SDA from HIGH to LOW while SCL is HIGH. The master may transmit either the slave write or the slave read address. Once data is written to the LTC3675/LTC3675-1, the master may transmit a STOP condition which commands the LTC3675/LTC3675-1 to act upon its new command set. A STOP condition is sent by the master by transitioning SDA from LOW to HIGH while SCL is HIGH. The bus is then free for communication with another $\mathrm{I}^{2} \mathrm{C}$ device.

I^{2} C Byte Format

Each byte sentto or received from the LTC3675/LTC3675-1 must be 8 bits long followed by an extra clock cycle for the acknowledge bit. The data should be sent to the LTC3675/ LTC3675-1 most significant bit (MSB) first.

1^{2} C Acknowledge

The acknowledge signal is used for handshaking between the master and the slave. When the LTC3675/LTC3675-1 are written to (write address), it acknowledges its write address as well as the subsequent two data bytes. When it is read from (read address), the LTC3675/LTC3675-1 acknowledge its read address only. The bus master should acknowledge receipt of information from the LTC3675/ LTC3675-1.

An acknowledge (active LOW) generated by the LTC3675/ LTC3675-1 lets the master know that the latest byte of information was received. The acknowledge related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the acknowledge clock cycle. The LTC3675/LTC3675-1 pull down the SDA line during the write acknowledge clock pulse so that it is a stable LOW during the HIGH period of this clock pulse.
When the LTC3675/LTC3675-1 are read from, it releases the SDA line so that the master may acknowledge receipt of the data. Since the LTC3675/LTC3675-1 only transmit one byte of data during a read cycle, a master not acknowledging the data sent by the LTC3675/LTC3675-1 has no $1^{2} \mathrm{C}$ specific consequence on the operation of the $\mathrm{I}^{2} \mathrm{C}$ port.

I^{2} C Slave Address

The LTC3675 responds to a 7-bit address which has been factory programmed to b'0001001[R/WB]'. The LSB of the address byte, known as the read/write bit, should be 0 when writing data to the LTC3675 and 1 when reading data from it. Considering the address as an 8-bit word, the write address is 12 h and the read address is 13 h . The LTC3675-1 is factory programmed to b‘0110100[R/WB]'. Its write address is 68 h and the read address is 69 h .

The LTC3675/LTC3675-1 will acknowledge both the read and write addresses.

${ }^{1}{ }^{2} \mathrm{C}$ Sub-Addressed Writing

The LTC3675/LTC3675-1 have twelve command registers for control input. They are accessed by the $I^{2} \mathrm{C}$ port via a sub-addressed writing system.
A single write cycle of the LTC3675/LTC3675-1 consists of exactly three bytes except when a lear interrupt command is written. The first byte is always the LTC3675/LTC3675-1's write address. The second byte represents the sub-address. The sub-address is a pointer which directs the subsequent data byte within the LTC3675/LTC3675-1. The third byte consists of the data to be written to the location pointed to by the sub-address. The LTC3675/LTC3675-1 contain 11 control registers which can be written to.

$I^{2} \mathrm{C}$ Bus Write Operation

The master initiates communication with the LTC3675/ LTC3675-1 with a START condition and the appropriate write address. If the address matches that of the LTC3675/ LTC3675-1, the LTC3675/LTC3675-1 return an acknowledge. The master should then deliver the sub-address. Again the LTC3675/LTC3675-1 acknowledge and the cycle is repeated for the data byte. The data byte is transferred to an internal holding latch upon the return of its acknowledge by the LTC3675/LTC3675-1. This procedure must be repeated for each sub-address that requires new data. After one or more cycles of [ADDRESS][SUB-ADDRESS] [DATA], the master may terminate the communication with a STOP condition. Multiple sub addresses may be written to with a single address command using a

OPERATION

Table 1. Summary of I^{2} C Sub-Addresses and Byte Formats. Bits A7, A6, A5, A4 of Sub-Address Need to Be 0 to Access Registers

SUB-ADDRESS A7A6A5A4A3A2A1AO	OPERATION	ACTION	BYTE FORMAT D7D6D5D4D3D2D1D0	$\begin{aligned} & \text { DEFAULT } \\ & \text { D7D6D5D4D3D2D1D0 } \end{aligned}$	COMMENTS
00000000 (00h)	Write	No Register Selected			Used in the Clear Interrupt Operation.
00000001 (01h)	Read/ Write	Buck1 Register	Enable, OUT_Hi-Z, Mode, Slow, DAC[3], DAC[2], DAC[1], DAC[0]	01101111	
00000010 (02h)	Read/ Write	Buck2 Register	Enable, OUT_Hi-Z, Mode, Slow, DAC[3], DAC[2], DAC[1], DAC[0]	01101111	
00000011 (03h)	Read/ Write	Buck3 Register	Enable, OUT_Hi-Z, Mode, Slow, DAC[3], DAC[2], DAC[1], DAC[0]	01101111	
00000100 (04h)	Read/ Write	Buck4 Register	Enable, OUT_Hi-Z, Mode, Slow, DAC[3], DAC[2], DAC[1], DAC[0]	01101111	
00000101 (05h)	Read/ Write	Boost Register	Enable, Unused, Mode, Slow, DAC[3], DAC[2], DAC[1], DAC[0]	00001111	
00000110 (06h)	Read/ Write	Buck-Boost Register	Enable, Unused, Mode, Slow, DAC[3], DAC[2], DAC[1], DAC[0]	00001111	
00000111 (07h)	Read/ Write	LED Configuration Register	Unused, Mode[1], Mode[0], Slow, 2XFS, GRAD[2], GRAD[1], GRAD[0]	00001111	
00001000 (08h)	Read/ Write	LED DAC Register	$\begin{aligned} & \text { DAC[7], DAC[6], DAC[5], DAC[4], DAC[3], } \\ & \text { DAC[2], DAC[1], DAC[0] } \\ & \hline \end{aligned}$	00000000	00000000 = LED Driver Disabled $11111111=25 \mathrm{~mA}$ per String
00001001 (09h)	Read/ Write	UVOT Register	RESET_ALL, UV[2], UV[1], UV[0], UNUSED, UNUSEED, OT[1], OT[0]	00000000	
00001010 (0Ah)	$\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$	RSTB Mask Register	UNUSED, PGOOD[7], PGOOD[6], PGOOD[5], PGOOD[4], PGOOD[3], PGOOD[2], PGOOD[1]	11111111	Fault will pull RSTB low if the corresponding bit is ' 1 '
00001011 (0Bh)	Read/ Write	IRQB Mask Register	UNUSED, PGOOD[7], PGOOD[6], PGOOD[5], PGOOD[4], PGOOD[3], PGOOD[2], PGOOD[1]	00000000	Fault will pull IRQB Iow if the corresponding bit is ' 1 '
00001100 (0Ch)	Read	Status Register (Real Time)	UNUSED, UNUSED, PGOOD[6], PGOOD[5], PGOOD[4], PGOOD[3], PGOOD[2], PGOOD[1]		Read Back
00001101 (0Dh)	Read	Status Register (Latched)	UV, OT, PGOOD[6], PGOOD[5], PGOOD[4], PGOOD[3], PGOOD[2], PGOOD[1]		Read Back
00001111 (0Fh)	Write	Clear Interrupt			Clears the Interrupt Bit, Status Latches are Unlatched

[ADDRESS][SUB-ADDRESS][DATA][SUB-ADDRESS] [DATA] sequence. Alternatively, a REPEAT-START condition can be initiated by the master and another chip on the ${ }^{2} \mathrm{C}$ bus can be addressed. This cycle can continue indefinitely and the LTC3675/LTC3675-1 will remember the last input of valid data that it received. Once all chips on the bus have been addressed and sent valid data, a global STOP can be sent and the LTC3675/LTC3675-1 will update its command latches with the data that it had received.
It is important to understand that until a STOP signal is transmitted, data written to the LTC3675/LTC3675-1 command registers are not acted on by the LTC3675/ LTC3675-1. Only once a STOP signal is issued is the data transferred to the command latch and acted on. The one exception is when sub-address OFh is written to clear an
interrupt. To clear an interrupt, sub address OFh must be written, followed by sub address 00h. A complete clear interrupt cycle would have the following write sequence: 12h, OFh, STOP, 12h, 00h, STOP.

$1^{2} C$ Bus Read Operation

The LTC3675/LTC3675-1 have eleven command registers and two status registers. The contents of any of these registers may be read back via ${ }^{2} \mathrm{C}$.

To read the data of a register, that register's sub-address must be provided to the LTC3675/LTC3675-1. The bus master reads the status of the LTC3675/LTC3675-1 with a START condition followed by the LTC3675/LTC3675-1's write address followed by the first data byte (the subaddress of the register whose data needs to be read) which

LTC3675/LTC3675-1

OPERATION

Figure 4. Simplified Schematic Showing RSTB and IRQB Signal Path
is acknowledged by the LTC3675/LTC3675-1. After receiving the acknowledge signal from the LTC3675/LTC3675-1 the bus master initiates a new START condition followed by the LTC3675/LTC3675-1 read address. The LTC3675/ LTC3675-1 acknowledge the read address and then return a byte of read back data from the selected register. A STOP command is not required for the bus read operation.
Immediately after writing data to a register, the contents of that register may be read back if the bus master issues a START condition followed by the LTC3675/LTC3675-1 read address.

ERROR CONDITION REPORTING VIA RSTB AND IRQB PINS

Error conditions are reported back via the IRQB and RSTB pins. After an error condition is detected, status data can be read back to a microprocessor via ${ }^{2} \mathrm{C}$ to determine the exact nature of the error condition.
Figure 4 is a simplified schematic showing the signal path for reporting errors via the RSTB and IRQB pins.

All the switching regulators and the LED driver have an internal power good (PGOOD) signal. When the regulated output voltage of an enabled switcher rises above 93.5\% of its programmed value, the PGOOD signal will transition high. When the regulated output voltage falls below 92.5\% of its programmed value, the PGOOD signal is pulled low. If that PGOOD is not masked and stays low for greater than $50 \mu \mathrm{~s}$, then it pulls the RSTB and IRQB pins low, indicating to a microprocessor that an error condition has occurred. The 50μ s filter time prevents the pins from being pulled low due to a transient.
The LED driver has a PGOOD signal (PGOOD[7]) that is used to indicate output voltage status only when it is configured as a high voltage boost regulator. In all other operating modes, PGOOD[7] is disabled.
An error condition that pulls the RSTB pin low is not latched. When the error condition goes away, the RSTB pin is released and is pulled high if no other error condition exists.
In addition to the PGOOD signals of the regulators, the IRQB pin also indicates the status of the overtemperature

OPERATION

and undervoltage flags. The undervoltage and overtemperature faults cannot be masked. A fault that causes the IRQB pin to be pulled low is latched. When the fault condition is cleared, the IRQB pin is still maintained in its low state. The user needs to clear the interrupt by using a CLRINT command.
On start-up, all PGOOD outputs are unmasked and a poweron reset will cause RSTB to be pulled low. Once all enabled regulators have their output PGOOD for 200ms typical $\left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}\right)$ the RSTB output goes $\mathrm{Hi}-\mathrm{Z}$.
By masking a PGOOD signal, the RSTB or IRQB pin will remain Hi -Z even though the output voltage of a regulator may be below its PGOOD threshold. However, when the status register is read back, the true condition of PGOOD is reported.

UNDERVOLTAGE AND OVERTEMPERATURE FUNCTIONALITY

The undervoltage (UV) circuit monitors the input supply voltage and shuts down all enabled regulators if the input voltagefalls below 2.45 V . The LTC3675/LTC3675-1 also provide a user with an undervoltage warning, which indicates to the user that the input supply voltage is approaching the UV threshold. The undervoltage warning threshold is user programmable as shown in Table 2.

Table 2. UV Warning Thresholds

UV[2], UV[1], UV[0]	FALLING V IN WARNING THRESHOLD
000 (Default)	2.7 V
001	2.8 V
010	2.9 V
011	3.0 V
100	3.1 V
101	3.2 V
110	3.3 V
111	3.4 V

To prevent thermal damage to the LTC3675/LTC3675-1 and its surrounding components, the LTC3675/LTC3675-1 incorporate an overtemperature (OT) function. When the die temperature reaches $150^{\circ} \mathrm{C}$ all enabled regulators are shut down and remain in shutdown until the die temperature falls to $135^{\circ} \mathrm{C}$. The LTC3675/LTC3675-1 also have an overtemperature warning function which warns a user that the die temperature is approaching the OT threshold which allows the user to take any corrective action. The OT warning threshold is user programmable as shown in Table 3.

Table 3. OT Warning Thresholds

$0 T[1]$, OT[0]	OT WARNING THRESHOLD
00 (Default)	10° Below OT
01	20° Below OT
10	30° Below OT
11	40° Below OT

A UV or OT warning is reported to the user when the IRQB pin is in its high impedance state. The UV and OT warning flags are not maskable by the user.
RESET_ALL Functionality:The RESET_ALL bitshuts down all enabled regulators (enabled either via its enable pin or ${ }^{2} \mathrm{C}$) for 1 second. All command registers are cleared and put in their default state.

LTC3675/LTC3675-1

APPLICATIONS INFORMATION

Switching Regulator Output Voltage and Feedback Network

The output voltage of the switching regulators is programmed by a resistor divider connected from the switching regulator's output to its feedback pin and is given by $\mathrm{V}_{\text {OUT }}$ $=V_{F B}(1+R 2 / R 1)$ as shown in Figure 5. Typical values for R1 range from $40 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. The buck regulator transient response may improve with optional capacitor C_{FF} that helps cancel the pole created by the feedback resistors and the input capacitance of the FB pin. Experimentation with capacitor values between 2 pF and 22 pF may improve transient response.

Figure 5. Feedback Components

Buck Regulators

All four buck regulators are designed to be used with $2.2 \mu \mathrm{H}$ inductors. Tables 4 and 5 show the recommended inductors for the 500 mA and 1 A buck regulators.

The input supply needs to be decoupled with a $10 \mu \mathrm{~F}$ capacitor while the output needs to be decoupled with a $22 \mu \mathrm{~F}$ capacitor for a 1 A buck regulator and $10 \mu \mathrm{~F}$ for a 500 mA buck regulator. Refer to Capacitor Selection in the Applications Information section for details on selecting a proper capacitor.
Each buck regulator can be programmed vial ${ }^{2} \mathrm{C}$. To program buck regulator 1 (1A) use sub-address 01h, buck regulator2 (1A) sub-address 02h, buck regulator 3 (500 mA) subaddress 03 h and buck regulator4 (500 mA) sub-address 04h. The bit format is explained in Table 6.

Combined Buck Regulators

A single 2 A buck regulator is available by combining both 1A buck regulators together. Both the 500mA buck regulators may also be combined together to form a 1A buck regulator. Tables 4 and 7 show the recommended inductors.
The input supply needs to be decoupled with a $22 \mu \mathrm{~F}$ capacitor while the output needs to be decoupled with

Table 4. Recommended Inductors for 1A Buck Regulators and Ganged Buck 3, Buck 4 Application

PART NUMBER	$\mathrm{L}(\boldsymbol{\mu \mathrm { H })}$	MAX IDC $\mathbf{(A)}$	MAX DCR $(\mathbf{m \Omega} \mathbf{)}$	SIZE IN mm (L×W $\times \mathbf{H})$	MANUFACTURER
LPS4018-222	2.2	2.8	70	$4 \times 4 \times 1.8$	Coilcraft www.coilcraft.com
XFL4022-222	2.2	3.5	21.35	$4 \times 4 \times 2$	Coilcraft www.coilcraft.com
LTF5022-2R2	2.2	3.2	36	$5 \times 5.2 \times 2.2$	TDK www.tdk.com
LPS3015-222	2.2	2.0	110	$3 \times 3 \times 1.5$	Coilcraft www.coilcraft.com

Table 5. Recommended Inductors for 500mA Buck Regulators

PART NUMBER	$\mathrm{L}(\boldsymbol{\mu H})$	MAX I IDC (\mathbf{A})	MAX DCR $(\mathbf{m} \boldsymbol{\Omega})$	SIZE IN mm $(\mathbf{L} \times \mathbf{W} \times \mathbf{H})$	MANUFACTURER
LPS3015-222	2.2	2.0	110	$3 \times 3 \times 1.5$	Coilcraft www.coilcraft.com
MLPS3015-2R2	2.2	1.4	110	$3 \times 3 \times 1.5$	Maglayers www.maglayers.com
MDT2520-CR2R2	2.2	1.35	90	$2.5 \times 2 \times 1$	Toko www.toko.com
LQM2HPN2R2	2.2	1.0	120	$2.5 \times 2 \times 1.1$	Murata www.murata.com

LTC3675/LTC3675-1

APPLICATIONS INFORMATION

a $47 \mu \mathrm{~F}$ capacitor for a 2 A combined buck regulator and $22 \mu \mathrm{~F}$ for a 1 A combined buck regulator. Refer to "Capacitor Selection" in the Applications Information section for details on selecting a proper capacitor.

Boost Regulator

The boost regulator is designed to be used with a $2.2 \mu \mathrm{H}$ inductor. Table 8 provides a list of recommended inductors.

The input supply needs to be decoupled with a $10 \mu \mathrm{~F}$ capacitor while the output needs to be decoupled with two $22 \mu \mathrm{~F}$ capacitors. Refer to Capacitor Selection in the Applications Information section for details on selecting a proper capacitor.
The boost regulator can be programmed via $I^{2} \mathrm{C}$. To program the boost regulator, use sub-address 05h. The bit format is explained in Table 9.

Table 6. Buck Regulator Program Register Bit Format

Bit7	Enable	Default is '0' which disables the part. A buck regulator can also be enabled via its enable pin. When enabled via pin, the contents of the ' 2 C register program its functionality.
Bit6	OUT_Hi-Z	Default is '1' in which the SW node remains in a high impedance state when the regulator is in shutdown. A'0' pulls the SW node to GND through a 10k resistor.
Bit5	Mode	Default is '1' which is Burst Mode operation. A '0' programs the regulator to operate in pulse-skipping mode.
Bit4	Slow Edge	This bit controls the slew rate of the switch node. Default is '0' which enables the switch node to slew at a faster rate, than if the bit were programmed a '1'.
Bit3(DAC3) Bit2(DAC2) Bit1(DAC1) Bit0(DACO)	DAC Control	These bits are used to program the feedback regulation voltage. Default is '1111' which programs a full-scale voltage of 800 weight of 25 mVV.

Table 7. Recommended Inductors for 2A Combined Buck Regulator

PART NUMBER	$\mathbf{L}(\boldsymbol{\mu H})$	MAX I $\mathbf{D C}(\mathbf{A})$	MAX DCR $(\mathbf{m \Omega} \mathbf{)}$	SIZE IN mm $(\mathbf{L} \times \mathbf{W} \times \mathbf{H})$	MANUFACTURER
XFL4022-222	2.2	3.5	21.35	$4 \times 4 \times 2$	Coilcraft www.coilcraft.com
LPS6225-222	2.2	4	45	$6 \times 6 \times 2.5$	Coilcraft www.coilcraft.com
FDV0530-2R2	2.2	5.3	17.3	$6.2 \times 5.8 \times 3$	Toko www.toko.com

Table 8. Recommended Inductors for Boost Regulator and Buck-Boost Regulator

PART NUMBER	$\mathrm{L}(\boldsymbol{\mu} \mathbf{H})$	MAX $\mathrm{I}_{\mathrm{DC}}(\mathbf{A})$	MAX DCR $(\mathbf{m} \boldsymbol{\Omega})$	SIZE IN $\mathbf{m m}(\mathbf{L} \times \mathbf{W} \times \mathbf{H})$	MANUFACTURER
XFL4022-222	2.2	3.5	21.35	$4 \times 4 \times 2$	Coilcraft www.coilcraft.com
LTF5022-2R2	2.2	3.2	36	$5 \times 5.2 \times 2.2$	TDK www.tdk.com

Table 9. Boost Regulator Program Register Bit Format

Bit7	Enable	Default is '0' which disables the boost.
Bit6	x	Unused
Bit5	Mode	Mode $=0$ is PWM mode, Mode $=1$ is Burst Mode operation
Bit4	Slow Edge	This bit controls the slew rate of the switch node. Default is '0' which enables the switch node to slew at a faster rate than if the bit were programmed a '1.'
Bit3(DAC3) Bit2(DAC2) Bit1(DAC1) Bit0(DAC0)	DAC Control	These bits are used to program the feedback regulation voltage. Default is '1111' which programs a full-scale voltage of 800 mV . Bits ' 0000 ' program the lowest feedback regulation of 425mV. A LSB (DACO) has a bit weight of 25mV.

LTC3675/LTC3675-1

APPLICATIONS INFORMATION

Optional capacitor C_{FF} is not needed and may compromise loop stability.

Buck-Boost Regulator

The buck-boost regulator is an internally compensated voltage mode regulator that is designed to be used with a $2.2 \mu \mathrm{H}$ inductor. Recommended inductors are listed in the Table 8.

The input supply needs to be decoupled with a $10 \mu \mathrm{~F}$ capacitor while the output needs to be decoupled with a $22 \mu \mathrm{~F}$ capacitor. Refer to "Capacitor Selection" in the Applications Information section for details on selecting a proper capacitor.
The buck-boost regulator can be programmed via $I^{2} \mathrm{C}$. To program the buck-boost regulator, use sub-address 06h. The bit format is explained in Table 10.

To ensure loop stability, feedback resistor R1 in Figure 5 should be no greater than $105 \mathrm{k} \Omega$. Optional capacitor $\mathrm{C}_{\text {FF }}$ is not needed and may compromise loop stability.

LED Driver

For proper operation the LED driver boost circuit needs a $10 \mu \mathrm{H}$ inductor. Recommended inductors are listed in Table 11.

The LED driver also needs a rectifier diode. Recommended schottky diodes are listed in Table 12.

The LED driver has two registers that can be programmed via $I^{2} \mathrm{C}$. One of the registers is accessed at sub-address 07h and the bit format is as shown in Table 13.

The rate at which the gradation circuit ramps the LED current is set by GRAD[2:0]. GRAD[2:0] sets the time the LED driver will take to transition through one LSB of LED current.

Table 10. Buck-Boost Regulator Program Register Bit Format

Bit7	Enable	Default is '0' which disables the buck-boost. The buck-boost regulator can alternately be enabled via its enable pin. When enabled via pin, the contents of the I'C register program its functionality.
Bit6	x	Unused
Bit5	Mode	Mode $=0$ is PWM mode, Mode = 1 is Burst Mode operation. Default is '0.'
Bit4	Slow edge	This bit controls the slew rate of the switch node. Default is '0' which enables the switch node to slew at a faster rate than if the bit were programmed a '1.'
Bit3(DAC3) Bit2(DAC2) Bit1(DAC1) Bit0(DAC0)	DAC control	These bits are used to program the feedback regulation voltage. Default is '1111' which programs a full-scale voltage of 800 mV . Bits '0000' program the lowest feedback regulation of 425mV. A LSB (DACO) has a bit weight of 25mV.

Table 11. Recommended Inductors for LED Driver

PART NUMBER	$\mathbf{L}(\boldsymbol{\mu H})$	MAX IDC (\mathbf{A})	MAX DCR $(\mathbf{m} \boldsymbol{\Omega})$	SIZE IN mm (L $\times \mathbf{W} \times \mathbf{H})$	MANUFACTURER
LPS6225-103M	10	2.1	105	$6 \times 6 \times 2.5$	Coilcraft www.coilcraft.com
IHLP2020BZER10RM01	10	4	184	$5.2 \times 5.5 \times 2$	Vishay www.vishay.com

Table 12. Recommended Schottky Diodes for LED Driver

PART NUMBER	$\mathbf{I}_{\mathbf{F}}(\mathbf{A})$	MANUFACTURER
PD3S140	1.0	Diodes Inc. www.diodes.com
ZLLS1000	1.16	Diodes Inc./Zetex www.diodes.com
CTLSH1-40M322	1.0	Central Semiconductor www.centralsemi.com

APPLICATIONS INFORMATION

Table 13. LED Driver Regulator Program Register 1 Bit Format

Bit7	X	Unused
$\begin{aligned} & \hline \text { Bit6 } \\ & \text { Bit5 } \end{aligned}$	Mode1 ModeO	Mode1 $=$ Mode0 $=0$ is default; both LED pins are regulated. Mode1 $=0$ Mode0 $=1$; Only LED1 is regulated. (Single string application). Mode1 $=1$ Mode $=0 ;$ LED driver is configured as a high voltage boost regulator. Mode1 $=$ Mode $0=1$; Both LED pins are regulated, but boost is not powered up. In this mode an external voltage is needed to drive the LED's.
Bit4	Slow Edge	This bit controls the slew rate of the switch node. Default is '0' which enables the switch node to slew at a faster rate than if the bit were programmed a ' 1 .'
Bit3	2xFS	This bit doubles the full-scale programmed LED current. Default is ' 1. '
$\begin{aligned} & \text { Bit2(GRAD2) } \\ & \text { Bit1(GRAD1) } \\ & \text { Bit0(GRADO) } \\ & \hline \end{aligned}$	DAC Control	LED current gradation timing bits. Default is '111.' See Table 14.

These times are shown in Table 14. The default state of 000 in GRAD[2:0] results in a very fast ramp time that cannot be visually perceived.

Table 14. LED Gradation Bits

GRAD2, GRAD1, GRADO	GRADATION STEP TIME
000	0.056 ms
001	0.912 ms
010	1.824 ms
011	3.648 ms
100	7.296 ms
101	14.592 ms
110	29.184 ms
111 (Default)	58.368 ms

The LED DAC register is at sub-address 08h. All 8 bits in this register are used to control LED current. The default state of this register is 00 h which disables the LED driver. See Table 1.

Operating the LED Driver As a High Voltage Boost Regulator

The LED driver may be configured as a high voltage boost regulator capable of producing an output voltage up to 40 V . The boost mode may be programmed via $I^{2} \mathrm{C}$. In this mode, the LED_OV pin serves as the feedback pin. The feedback resistors are selected as discussed in the Switching Regulator Outputvoltage and Feedback Network section. The LED_FS pins must be tied to the input supply in this mode. When configured as a high voltage boost, the LED DAC register is ignored.

To maintain stability, the average inductor current must be maintained below 750 mA . This limits the deliverable output current at low input supply voltages. Figure 8 gives an example of the LED driver configured as a high voltage boost regulator.

Input and Output Decoupling Capacitor Selection

The LTC3675/LTC3675-1 have multiple input supply pins and output pins. Each of these pins must be decoupled with low ESR capacitors to GND. These capacitors must be placed as close to the pins as possible. Ceramic dielectric capacitors are a good compromise between high dielectric constant and stability versus temperature and DC bias. Note that the capacitance of a capacitor deteriorates at higher DC bias. It is important to consult manufacturer data sheets and obtain the true capacitance of a capacitor at the DC bias voltage it will be operated at. For this reason, avoid the use of Y5V dielectric capacitors. The X5R/ X7R dielectric capacitors offer good overall performance.

The input supply voltage pins 6, 7, 10 and 40 all need to be decoupled with at least $10 \mu \mathrm{~F}$ capacitors. The input supply pins 31 and 34 and the DVCC pin 41 need to be decoupled with $2.2 \mu \mathrm{~F}$ capacitors. The outputs of the 1 A buck regulators need $22 \mu \mathrm{~F}$ capacitors, while the outputs of the 500 mA buck regulators need $10 \mu \mathrm{~F}$ capacitors. The buck-boost output regulator needs a $22 \mu \mathrm{~F}$ decoupling capacitor. The boost regulator needs two $22 \mu \mathrm{~F}$ output decoupling capacitors. The LED driver output pin should be decoupled with a $4.7 \mu \mathrm{~F}$ capacitor.

LTC3675/LTC3675-1

APPLICATIONS INFORMATION

Choosing the $\mathbf{C}_{\boldsymbol{T}}$ Capacitor

The C_{T} capacitor may be used to program the timing parameters associated with the pushbutton. For a given $\mathrm{C}_{\boldsymbol{T}}$ capacitor the timing parameters may be calculated as below. C_{T} is in units of $\mu \mathrm{F}$.

$$
\begin{aligned}
& \mathrm{t}_{\text {ONB_LO }}=5000 \times \mathrm{C}_{\top} \mathrm{ms} \\
& \mathrm{t}_{\text {PBSTAT_PW }}=5000 \times \mathrm{C}_{T} \mathrm{~ms} \\
& \mathrm{t}_{\text {ONB_WAKE }}=40000 \times \mathrm{C}_{T} \mathrm{~ms} \\
& \mathrm{t}_{\text {WAKE_ON }}=500 \times \mathrm{C}_{T} \text { seconds } \\
& \mathrm{t}_{\text {ONB_HR }}=500 \times \mathrm{C}_{T} \text { seconds } \\
& \mathrm{t}_{\text {HR }}=100 \times \mathrm{C}_{T} \text { seconds }
\end{aligned}
$$

Programming the UVOT Register

The UV/OT warning byte (default 0000 0000) structure is as below:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
RESET_ALL	UV[2]	UV[1]	UV[0]	Unused	Unused	OT[1]	OT[0]

Programming the RSTB and IRQB Mask Registers

The RSTB mask register can be programmed by the user at sub-address OAh and its format is as below.

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Unused	PGO0D7	PG00D6	PG00D5	PG00D4	PG00D3	PG00D2	PG00D1

If a bit is set to ' 1 ,' then the corresponding regulator's PGOOD will pull RSTB low if a PGOOD fault were to occur. The default for this register is FFh.

The IRQB mask register has the same bit format as the RSTB mask register. The IRQB mask register is located at sub-address OBh and its default contents are 00h.

PGO0D7 is used only when the LED driver is configured as a high voltage boost regulator.

APPLICATIONS INFORMATION

Status Byte Read Back

When either the RSTB or IRQB pin is pulled low, it indicates to the user that a fault condition has occurred. To find out the exact nature of the fault, the user can read the status registers. There are two status registers. One register provides real time fault condition reporting while a second register latches data when an interrupt has occurred. Figure 4 shows the operation of the real time and latched status registers. The contents of the latched status register are cleared when a CLRINT signal is issued. A PGOOD bit is a ' 0 ' if that regulator's output voltage is more than 8% below its programmed value.

The sub-address for the real time status register is OCh and its format is as follows:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Unused	Unused	PG00D6	PG00D5	PG00D4	PG00D3	PG00D2	PG00D1

The sub-address for the latched status register is ODh and its format is as follows:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
UV	OT	PG00D6	PG00D5	PG00D4	PG00D3	PG00D2	PG00D1

A write operation cannot be performed to either of the status registers.

PCB Considerations

When laying out the printed circuit board, the following list should be followed to ensure proper operation of the LTC3675/LTC3675-1:

1. The exposed pad of the package (pin45) should connect directly to a large ground plane to minimize thermal and electrical impedance.
2. All the input supply pins must be tied together and each supply pin should have a decoupling capacitor.
3. The switching regulator input supply pins and their respective decoupling capacitors should be kept as short as possible. The GND side of these capacitors should

LTC3675/LTC3675-1

APPLICATIONS INFORMATION

connect directly to the ground plane of the part. These capacitors provide the AC current to the internal power MOSFETs and their drivers. It's important to minimize inductance from these capacitors to the $\mathrm{V}_{\text {IN }}$ pins of the LTC3675/LTC3675-1.
4. The switching power traces connecting SW1, SW2, SW3, SW4, SW5, SWAB6, SWCD6 and SW7 to their respective inductors should be minimized to reduce radiated EMI and parasitic coupling. Due to the large voltage swing of the switching nodes, high input impedance sensitive nodes such as the feedback nodes
and LED_OV node should be kept far away or shielded from the switching nodes or poor performance could result.
5. The GND side of the switching regulator output capacitors should connect directly to the thermal ground plane of the part. Minimize the trace length from the output capacitor to the inductor(s)/pin(s).
6. In a combined buck regulator application the trace length of switch nodes to the inductor must be kept equal to ensure proper operation.

TYPICAL APPLICATIONS

Figure 6. Detailed Front Page Application Circuit

LTC3675/LTC3675-1

TYPICAL APPLICATIONS

Figure 7. Buck Regulators with Sequenced Start-Up and a Single String of LEDs. Buck Regulators Power-Up in the Sequence Buck1, Buck2 and Buck3

TYPICAL APPLICATIONS

Figure 8. Combined Buck Regulators and a High Voltage Boost Regulator

LTC3675/LTC3675-1

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	4/12	Clarified PGood Threshold Voltage spec, added Min/Max Clarified Note 2, electrical grades and temperatures Modified pin function descriptions for RSTB and IRQB Changed figure reference in $I^{2} \mathrm{C}$ Interface section Modified PGood Comparator Polarity Figure 4 Modified Programming the RSTB and IRQB Mask Registers section Modified Status Byte Read Back section Modified application circuit $\mathrm{V}_{\text {IN }}$ caps	4 7 14 21 24 30 31 $33,34,35,38$
B	10/12	Added part number LTC3675-1 Added new $I^{2} \mathrm{C}$ address Clarified maximum ambient temperature in Note 2	$\begin{gathered} 1-38 \\ 6,21-23 \\ 7 \end{gathered}$

LTC3675/LTC3675-1

TYPICAL APPLICATION

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC3569	Triple Buck Regulator with 1.2A and Two 600 mA Outputs and Individual Programmable References	Triple, Synchronous, 100\% Duty Cycle, PG00D Pin, Programmable V FB $^{\prime}$ Servo Voltage
LTC3577/ LTC3577-1/ LTC3577-3/ LTC3577-4	Highly Integrated Portable/Navigation PMIC	PMIC: Linear Power Manager and Three Buck Regulators, 10-LED Boost Regulator, Synchronous Bucks ADJ at $800 \mathrm{~mA} / 500 \mathrm{~mA} / 500 \mathrm{~mA}$, PB Control, $I^{2} \mathrm{C}$ Interface, $2 \times 150 \mathrm{~mA}$ LDOs, OVP Charge Current Programmable Up to 1.5A from Wall Adapter Input, Thermal Regulation, $4 \mathrm{~mm} \times 7 \mathrm{~mm}$ QFN-44 Package; "-1" and "-4" Versions Have 4.1V VFLOAT, "-3" Version for SiRF Atlas IV Processors
$\begin{aligned} & \hline \text { LTC3586/ } \\ & \text { LTC3586-1 } \end{aligned}$	Switching USB Power Manager with Li-Ion/ Polymer Charger, 1A Buck-Boost + Dual Sync Buck Converter + Boost + LDO	PMIC: Switching Power Manager, 1A Buck-Boost +2 Bucks ADJ to 0.8V at $400 \mathrm{~mA} / 400 \mathrm{~mA}+800 \mathrm{~mA}$ Boost + LDO, Charge Current Programmable Up to 1.5 A from Wall Adapter Input, $4 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN-38 Package; "-1" Version Has 4.1V VFLOAT

