

OBSOLETE: FOR INFORMATION PURPOSES ONLY Contact Linear Technology for Potential Replacement

DESCRIPTION

The RH1084 positive adjustable regulator is designed to provide 5A with higher efficiency than currently available devices. All internal circuitry is designed to operate down to 1V input-to-output differential and the dropout voltage is fully specified as a function of load current. Dropout is guaranteed at a maximum of 1.5V at maximum output current, decreasing at lower load currents. On-chip trimming adjusts the output voltage to 1%. Current limit is also trimmed, minimizing the stress on both the regulator and power source circuitry under overload conditions.

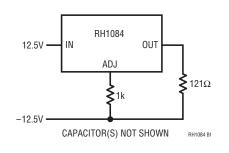
The RH1084 is pin compatible with older 3-terminal regulators. A 10μ F output capacitor is required on these new device. However, this is usually included in most regulator designs.

The wafer lots are processed to Linear Technology Corporation's in-house Class S flow-to-yield circuits usable in stringent military applications. RH1084

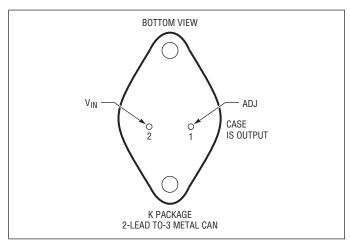
5A Low Dropout Positive Adjustable Regulator

ABSOLUTE MAXIMUM RATINGS

Power Dissipation Internally Limited Input-to-Output Voltage Differential25V Operating Junction Temperature Range


Control Section	– 55°C to 150°C
Power Transistor	–55°C to 200°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering,	10 sec) 300°C

PRECONDITIONING


100% Thermal Limit Burn-In

𝗊, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

BURN-IN CIRCUIT

PACKAGE INFORMATION

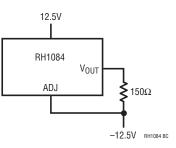


TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation)

			T _A = 25°C			SUB-	–55°C ≤ T _A ≤ 125°C			SUB-	
PARAMETER	CONDITIONS	NOTES	MIN	ТҮР	MAX	GROUP	MIN	TÝP	MAX	GROUP	UNITS
Reference Voltage	$I_{OUT} = 10$ mA, $(V_{IN} - V_{OUT}) = 3V$		1.238	1.250	1.262	1					V
	$\label{eq:loup_loss} \begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL\ LOAD}, \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 25V \end{array}$	5	1.225		1.270		1.225	1.250	1.270	2,3	V
Line Regulation	$\label{eq:loss} \begin{array}{ l llllllllllllllllllllllllllllllllll$	1, 2		0.015	0.2 0.5	1 1		0.035 0.050	0.2 0.5	2,3 2,3	% %
Load Regulation	$(V_{IN} - V_{OUT}) = 3V,$ 10mA $\leq I_{OUT} \leq I_{FULL \ LOAD}$	1,2,5		0.3	0.6	1		0.5	0.8	2,3	%
Dropout Voltage	$\Delta V_{\text{REF}} = 1\%$, $I_{\text{OUT}} = I_{\text{FULL LOAD}}$	3,5			1.5	1		1.3	1.5	2,3	V
Current Limit	$(V_{IN} - V_{OUT}) = 5V$ $(V_{IN} - V_{OUT}) = 25V$		5.5 0.3			1 1	5.5 0.3	6.5 0.6		2,3 2,3	A A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$				10	1		5.0	10	2,3	mA
Thermal Regulation	T _A = 25°C, 30ms Pulse			0.003	0.015	4					%/W
Ripple Rejection	$f = 120Hz$, $C_{ADJ} = 25\mu$ F, $C_{OUT} = 25\mu$ F Tantalum, $I_{OUT} = I_{FULL LOAD}$, $(V_{IN} - V_{OUT}) = 3V$	5	60	75		4	60	75		5,6	dB
Adjust Pin Current	$T_J = 25^{\circ}C$			55	120	1			120	2,3	μA
Adjust Pin Current Change	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL \ LOAD}, \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 25V \end{array} \end{array} \label{eq:eq:entropy_states}$	5			5	1		0.2	5	2,3	μA
Temperature Stability								0.5			%
Long Term Stability	T _A = 125°C, 1000 Hrs	4						0.3			%
RMS Output Noise (% of V _{OUT})	$T_A = 25^{\circ}C$, $10Hz \le f \le 10kHz$			0.003							%
Thermal Resistance	Control Circuitry Power Transistor	4 4		0.75 2.3							°C/W °C/W

Total Dose Bias Circuit

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) T_A = 25°C unless otherwise noted.

PARAMETER	CONDITIONS	10KR Min	AD(Si) Max	20KR Min	AD(Si) Max	50KR/ Min	AD(Si) Max	100KR Min	AD(Si) Max	200KR Min	AD(Si) Max	UNITS
Reference Voltage (Note 5)	$I_{OUT} = 10$ mA ($V_{IN} - V_{OUT}$) = 3V	1.234	1.258	1.23	1.257	1.225	1.253	1.22	1.247	1.205	1.241	V
	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL \ LOAD}, \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$	1.22	1.275	1.219	1.275	1.215	1.275	1.210	1.275	1.203	1.275	V
Line Regulation (Notes 1, 2)	$\begin{array}{l} I_{LOAD} = 10mA \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \\ 15V \leq (V_{IN} - V_{OUT}) \leq 25V \end{array}$		0.2 0.5		0.21 0.5		0.23 0.5		0.25 0.5		0.3 0.5	%
Load Regulation (Notes 1, 2, 5)	$(V_{IN} - V_{OUT}) = 3V$ 10mA $\leq I_{OUT} \leq I_{FULL \ LOAD}$		0.6		0.6		0.6		0.7		0.8	%
Dropout Voltage (Note 3)	$\Delta V_{REF} = 1\%$, $I_{OUT} = FULL LOAD$		1.5		1.55		1.65		1.8		2.0	V
Current Limit	$(V_{IN} - V_{OUT}) = 5V$ $(V_{IN} - V_{OUT}) = 25V$	5.5 0.3		5.5 0.3		5.4 0.3		5.25 0.3		5.0 0.3		A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$		10		10		10		10		10	mA
Adjust Pin Current			120		120		120		120		120	μA
Adjust Pin Current Change (Note 5)	$eq:logical_lo$		5		5		5		5		5	μA

Note 1: See thermal regulation specifications for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing.

Note 2: Line and load regulation are guaranteed up to the maximum power dissipation of 45W for RH1084. Power dissipation is determined by the input/output differential voltage and the output current. Guaranteed maximum power dissipation will not be available over the full input/output voltage range.

Note 3: Dropout voltage is specified over the full output current range of the device. Test points and limits are shown on the Dropout Voltage curve in the LT[®]1084 data sheet.

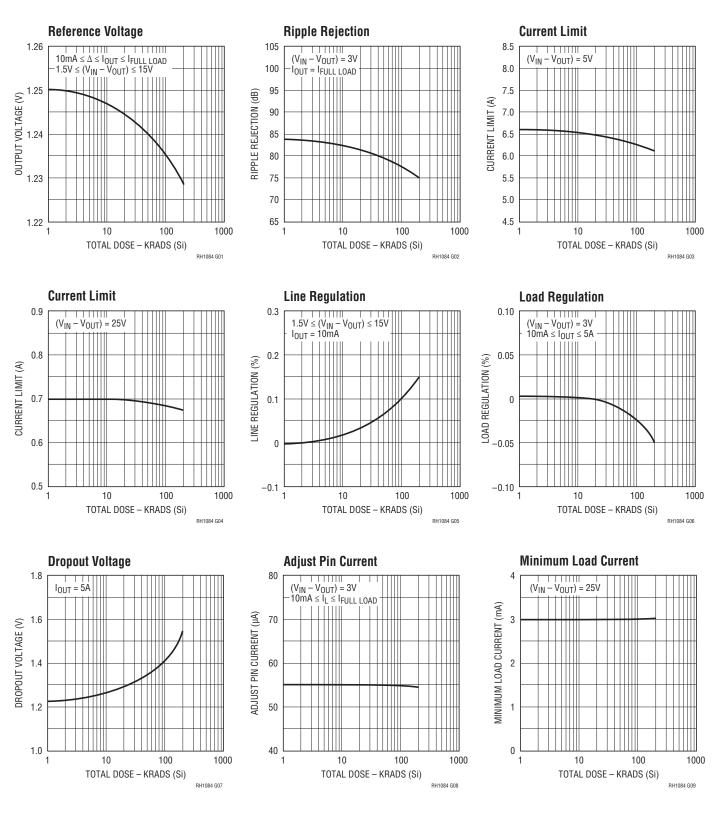
Note 4: Guaranteed by design, characterization, or correlation to other tested parameters.

Note 5: I_{FULL LOAD} is defined in the Current Limit curves in the standard data sheet. For compliance with 883 revision C current density specifications, the RH1084 is rated to 3A.

TABLE 1A: ELECTRICAL CHARACTERISTICS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUP			
Final Electrical Test Requirements (Method 5004)	1*,2,3,4,5,6			
Group A Test Requirements (Method 5005)	1,2,3,4,5,6			
Group C and D End Point Electrical Parameters (Method 5005)	1			

* PDA Applies to subgroup 1. See PDA Test Notes.


PDA Test Notes

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown in accordance with method 5004 of MIL-STD-883 Class B. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent defective for the lot.

Linear Technology Corporation reserves the right to test to tighter limits than those given.

TYPICAL PERFORMANCE CHARACTERISTICS

rh1084fd

ID No. 66-11-1084 • LT 0811 REV D PRINTED IN USA TECHNOLOGY © LINEAR TECHNOLOGY CORPORATION 1996