AVR1509: Xplain training - Low Power

Prerequisites

- Required knowledge Atmel[®] XMEGA[™] Basics training Atmel XMEGA Clock System Atmel XMEGA DMAC (Optional, may be needed for understanding task 4) Atmel XMEGA ADC (Optional, may be needed for understanding task 4)
- Software prerequisites Atmel AVR[®] Studio[®] 4.18 or later WinAVR/GCC 20100110 or later
- Hardware prerequisites
 XPLAIN evaluation board
 JTAGICE mkll
- Estimated completion time
 2 hours

1 Introduction

Atmel XMEGA provides various sleep modes and software controlled clock gating in order to tailor power consumption to the application's requirement. Sleep modes enables the microcontroller to shut down unused modules to save power. When the device enters sleep mode, program execution is stopped and interrupts or reset is used to wake the device again. The individual clock to unused peripherals can be stopped during normal operation or in sleep, enabling a much more fine tuned power management than sleep modes alone.

Refer to application note AVR1010 and XMEGA Datasheet for more in-depth information.

8-bit **AVR**[®] Microcontrollers

Application Note

Rev. 8318A-AVR-06/10

2 Introduction to the XMEGA power reduction and sleep system

To reach the lowest possible power figures there are a couple of points to pay attention to. It is not only the sleep mode that defines the power consumption, but also the state of the IO pins, number of enabled peripheral modules and so on.

In the following chapters we will look in more detail into the different methods to reduce power, and try out a few trivial examples.

2.1 General considerations

Regardless of operating mode, two factors especially influence power consumption, namely CPU and Peripheral clock frequencies and operating voltage.

The power consumption is proportional to operating voltage, and to conserve power one should consider using as low system voltage as all possible.

Additionally, consumption is also *directly* proportional to clock frequency, and if sleep modes are not utilized, the device should be running as low frequency as possible.

2.2 Sleep modes

Sleep modes are used to shut down modules and clock domains in the microcontroller in order to tailor power consumption to the applications requirements. During sleep, various modules are shut down according to which sleep modes are entered.

	Active c	lock dom	ain	Oscillat	ors	Wake-up sources			
Sleep modes	Cpu clock	Peripheral clock	RTC clock	System clock source	RTC clock source	Asynchronous Port Interrupt	TWI Address match interrupts	Real time clock interrupts	All interrupts
Idle		х	х	х	х	х	х	х	х
Power-down						х	х		
Power-save			х		х	х	х	х	
Standby				x		х	х		
Extended standby			x	x	х	х	х	х	

Idle Mode

In Idle mode the CPU and Non-Volatile Memory are stopped, (note that any active programming will be completed) but all peripherals including the Interrupt Controller, Event System and DMA Controller are kept running. Any interrupt request will wake the device.

Power-down Mode

In Power-down mode all system clock sources, including the Real Time Counter (RTC) clock source, are stopped. This allows operation of asynchronous modules only. The only interrupts that can wake up the MCU are the Two Wire Interface address match interrupts, and asynchronous port interrupts.

Power-save Mode

Power-save mode is identical to Power-down, with one exception: If the RTC is enabled, it will keep running during sleep and the device can also wake up from either RTC Overflow or Compare Match interrupt.

Standby Mode

Standby mode is identical to Power-down with the exception that the enabled system clock sources are kept running, while the CPU, Peripheral and RTC clocks are stopped. This reduces the wake-up time.

Extended Standby Mode

Extended Standby mode is identical to Power-save mode with the exception that the enabled system clock sources are kept running while the CPU and Peripheral clocks are stopped. This reduces the wake-up time.

2.3 Power reduction registers

The Power Reduction (PR) registers provides a method to stop the clock to individual peripherals. When this is done, the current state of the peripheral is frozen and the associated I/O registers cannot be read or written. Resources used by the peripheral will remain occupied; hence the peripheral should in most cases be disabled before stopping the clock. Enabling the clock to a peripheral again puts the peripheral in the same state as before it was stopped.

This can be used in Idle mode and Active mode to reduce the overall power consumption significantly.

In all other sleep modes, the peripheral clock is already stopped.

Overview of power reduction registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
+0x00	PRGEN	-	-	-	AES	EBI	RTC	EVSYS	DMA	98
+0x01	PRPA	-	-	-	-	-	DAC	ADC	AC	99
+0x02	PRPB	-	-	-	-	-	DAC	ADC	AC	99
+0x03	PRPC	-	TWI	USART1	USART0	SPI	HIRES	TC1	TC0	99
+0x04	PRPD	-	TWI	USART1	USART0	SPI	HIRES	TC1	TC0	99
+0x05	PRPE	-	TWI	USART1	USART0	SPI	HIRES	TC1	TC0	99
+0x06	PRPF	-	TWI	USART1	USART0	SPI	HIRES	TC1	TC0	99
+0x07	Reserved	-	-	-	-	-	-	-	-	

2.4 Other power-saving tips

2.4.1 Digital I/O pin

All digital I/O pins are by default floating not to cause any hardware conflicts. However, because the pins have digital buffers it is important to ensure that the voltage level on the I/O pins are digitally well defined, as not to cause sporadic internal switching and leakage. Hence, pull-up should be enabled on all unused pins. This is mainly observable in sleep modes.

2.4.2 Watchdog Timer

Because the Watchdog is basically a timer with a separate clock source it will, if enabled, contribute to the power consumption in sleep modes.

2.4.3 Brown-Out Detection

The purpose of the Brown-Out Detector (BOD) is to ensure that the device is not operating at too low voltage.

However, during sleep, the device is "not operating", or rather, it is not executing code. For this reason the Atmel XMEGA BOD can be disabled, though enabled during active mode. The BODACT can also be programmed so the BOD is enabled automatically in active mode.

The BOD should still be enabled during automatic memory transfers with the DMA Controller in Idle mode, to avoid data corruption.

2.4.4 JTAG interface

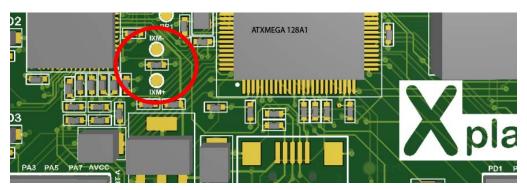
The JTAG interface is used for programming and debugging, but has no function during operation of the end-product. The JTAG interface is clocked and active during sleep if enabled.

Note that the JTAG interface can be disabled from software, and still easily be reprogrammed since the JTAG interface is re-enabled during RESET.

2.5 Relevant applications

With Atmel XMEGA it is possible to do many common tasks even with the main clock turned off, in IDLE mode, thanks to the new Event system and DMA controller. By using the Event system or DMA transfers the firmware will need to wake up the CPU less frequently.

Power-Save mode is also interesting, as the RTC clock is still powered and can wake up the CPU on overflow or compare match.


2.6 Measuring current consumption of only XMEGA chip on Xplain

There is a shunt resistor (no. R105), depending on board revision, separating the XMEGA power-domain from the regulated 3.3 voltage from the USB. To this resistor there are two test pads connected; IXM+ and IXM-. In this training we will do the following:

- Solder off the resistor, and solder on a wire to each of the pads.
- Connect the wires through an ampere meter, black lead to wire on IXM-.

AVR1509

3 Overview

Here is a short overview of the tasks in this training:

Task 1: Introductory sleep-example

This will give a basic understanding of how to select a sleep mode and how it works.

Task 2: Entering and exiting Power-save mode

In this task we will show how to set up the RTC clock source, set up compare interrupt, set up the sleep register and enter power-save mode.

Task 3: Power Reduction Registers

In this task we will use the Power Reduction Registers to stop the clock going to peripheral modules and compare with Extended Standby.

Task 4: Idle mode and DMA transfers

In this task we will show you how to set up a simple ADC sampling from the temperature-resistor on Xplain and set up an automatic memory transfer in idle mode. We will do the same in Active mode without DMA.

Task 5: TWI Address Match Wakeup

In this task we will wake the Atmel XMEGA from Power-down sleep mode by TWI address match. To do something useful, we will send button presses.

TIP:

You will have to remove the JTAGICE mkll and sometimes even cycle power to the Xplain board to observe the expected power consumption levels.

Good luck!

4 Task 1: Introductory sleep-example

In this task we will demonstrate how to enter a low-power sleep mode and wake up using asynchronous interrupts.

The goal for this task is that you know how to:

- Select a sleep mode
- Issue sleep-instruction
- Understand wakeup

TASK:

- 1. Locate the Atmel XMEGA-Lowpower folder, find the Task 1 folder and open the TrivialSleep.aps project file in AVR Studio
- 2. Look through the code and ensure you understand how things are set up. Notice the #define sleep() near the top of the file
- 3. Build the project; ensure there are no errors. Start the debugging session, singlestep through and look at the Sleep Controller in I/O view
- 4. When the sleep(); line is executed, nothing happens afterwards. Half the buttons are set up to generate interrupts. Press one of the buttons on the board and continue to single step through the code
- 5. There is an instruction missing at the end of void facilitatePowersaving() to deal with the potentiometer on the Xplain board. Try to find out what needs to be done
- 6. Switch between different sleep modes, noting power consumption in the table below

Active	Idle	Standby	Power-down

7. Compare Idle and Power-down with Electrical Characteristics Section 33.2 of the A1 datasheet. Remember to add consumption of RC2M to the characteristics for Ext Clk if applicable. We will find out in <u>task 3</u> why there is a discrepancy

Why don't the LEDs affect power-consumption as measured going into the XMEGA? See schematics for Xplain.

5 Task 2: Entering and exiting Power-save mode

Atmel XMEGA has many sleep modes. In this task we will show how to set up Power-Save mode and wake up intermittently.

The goal for this task is that you know how to:

- Select a sleep mode
- Enable/disable sleep
- Set up and use RTC-interrupt and understand the program flow

TASK:

1. Locate the XMEGA-Lowpower folder, find the Task 2 folder and open the Powersave.aps project file in Atmel AVR Studio

- 2. Look through the code and ensure you understand how things are set up
- 3. Build the project; ensure there are no errors
- 4. Add code to select the sleep mode Power Save using the SLEEP_SMODE_t struct from iox128a1.h located in \WINAVR\avr\include\avr
- 5. Rebuild and start the debugging session
- 6. Find out why the LEDs are only blinking when you press and hold down a button. They should toggle at 2 Hz automatically. Hint: Sleep mode
- 7. Use the switches to select RTC clock sources, noting power consumption

External on TOSC pins	Internal RC Oscillator	Internal Ultra Low Power

Why did we need Power-save and not, for example, Power-down or Standby? Which others would work as well?

6 Task 3: Power Reduction Registers

Atmel XMEGA features Power Reduction Registers to tailor clock-gating and, by extension, power-consumption. In this task we will show how to stop the various peripherals clocks.

The goal for this task is that you know how to:

- Stop clock to undesired peripherals
- Restart clock to peripherals

TASK:

1. Locate the XMEGA-Lowpower folder, find the Task 3 folder and open the PowerRedReg.aps project file in AVR Studio

- 2. Look through the code and ensure you understand how things are set up
- 3. Build the project; ensure there are no errors
- 4. Start the debugging session
- 5. Use the switches of selected peripherals. Do you notice any effects? Use button 3 to toggle into Extended Standby and then back into Idle with all peripherals on again. Note power consumption in the table below

Everything on	GEN+TC off	COM+ANLG off	All off	Ext. Standby

What is the difference between sleep modes and shutting off all peripheral clock gates in active mode?

7 Task 4: Idle Mode and DMA Transfer

Atmel XMEGA devices include, among other peripherals, a DMA controller which helps to conserve power and still get the work done. One of these is the DMA Controller. In this task you will see that even with the main clock turned off, the microcontroller is able to sample and move data around in memory.

The goal for this task is that you know how to:

• Utilize peripherals even in sleep modes

TASK:

- 1. Locate the XMEGA-Lowpower folder, find the Task 4 folder and open the IdleDMA.aps project file in AVR Studio
- 2. Look through the code and ensure you understand how things are set up
- 3. Build the project; ensure there are no errors
- 4. Start the debugging session
- 5. Use the switches to switch between Active and Idle mode. Note power consumption in the table below and compare with electrical characteristics and previous measurements

Active	Idle

6. Touch the temperature sensor (right by the potentiometer) or blow on it to heat it up. Check that you get corresponding result on the LEDs

Does the sampling and copying continue when in Idle mode? How?

Why is an interrupt needed to enter Active mode from Idle?

8 Task 5: TWI Address Match Wakeup

One of the advantages of TWI is that it is asynchronous and clocked externally. The Atmel XMEGA takes advantage of this, and provides a wakeup interrupt on address match, even in the lowest power Power-Down mode.

The goal for this task is that you know how to:

• Set up TWI and address match interrupt using the driver from the application note

TASK:

- 1. Locate the XMEGA-Lowpower folder, find the Task 5 folder and open the TwiWake.aps project file in Atmel AVR Studio
- 2. Look through the code and ensure you understand how things are set up
- 3. Build the project; ensure there are no errors
- 4. Connect the pins on the header marked XMEGA PORT D to another Xplain board on the same pins. Either using a 10-pin cable or using single jumper cables, connect PD0 to PD0, PD1 to PD1 and GND to GND. If desirable, one Xplain can work without USB power, but be powered by connecting V3P3 to V3P3 on the XMEGA PORT D header
- 5. Start the debugging session. Make yourself comfortable with the program flow. Note that we can't sleep again until the TWI transaction is finished
- 6. Disconnect the JTAGICE mkII and cycle power to the Xplain. Now you should see a power consumption of approximately 0.1 μA when not pressing any buttons

Why do we have to manage the sleep enable bit manually for slave transactions?

9 Summary

In this training we have looked at some of the ways we can conserve power on the XMEGA, including sleep modes, stopping the clock to peripherals and disabling various other modules when not needed. We have also seen that many tasks can easily be accomplished even when utilizing low-power sleep modes.

¹⁰ **AVR1509**

10 Resources

- Atmel XMEGA Manual and Datasheets
 - o http://www.atmel.com/xmega
- Atmel AVR Studio with help files
 - o http://www.atmel.com/products/AVR/
- WINAVR GCC compiler
 - o http://winavr.sourceforge.net/
- Atmel IAR Embedded Workbench[®] compiler o http://www.iar.com/

11 Atmel Technical Support Center

Atmel has several support channels available:

- Web portal: http://support.atmel.no/ All Atmel microcontrollers All Atmel AVR products
 - Email: avr@atmel.com
 - Email: avr32@atmel.com All 32-bit AVR products

Please register on the web portal to gain access to the following services:

- Access to a rich FAQ database
- · Easy submission of technical support requests
- History of all your past support requests
- Register to receive Atmel microcontrollers' newsletters •
- · Get information about available trainings and training material

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com

Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Request www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®], AVR[®] logo, AVR Studio[®] and others, are the registered trademarks, XMEGA[™] and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.