
AN1601
APPLICATION NOTE

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Rev. 1.1

INTRODUCTION

This application note describes a software example for driving a DALI slave board using an
ST7DALI (ST7LITE2 family) microcontroller. It is supplied with the kit ST7DALI-EVAL and can
be ordered with the code ST7DALI-EVAL.

The software is written in C language and is compatible with both Metrowerks and Cosmic
compilers.

Lamp-Ballast

DALI network

1-10 V

DALI

master

board

DALI

slave

board

DALI slave
software
AN1601/0404

www.BDTIC.com/ST

1/23

1

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
1 PROCESS OVERVIEW

First of all, the DALI slave software initializes the slave system; afterwards, when the DALI
master board sends a forward frame (basically 1 address byte and 1 data byte), and the DALI
slave board receives the forward frame, a DALI interrupt (IT) is generated. This interrupt sets
a flag, when this flag is set, the program checks whether the command is addressed to this
ballast or not. If the command is addressed to this ballast the command handling process is
started and the DALI slave board reacts to the received command.

Main.c

Process
command

Dali IT

DALI_CMD

New frame arrival
www.BDTIC.com/ST

2/23

2

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
2 GENERAL STRUCTURE OF THE DALI SLAVE SOFTWARE

The following diagram shows the different software modules and their relationships.

Figure 1. General Block Diagram

Note: The names of DALI_CMD module functions are prefixed by DALIC_. DALI_REG
module functions are prefixed by DALIR_, and DALI_PUB module functions are prefixed by
DALIP_.

DALI_REG
(DALI registers)

DALI_CMD
(DALI commands)

main. cInit
Inits

PERIPHERAL
MODULES

Process
Command

Dali

IT

ports

IT

EEPROM

clock_reset_
supply

main_clock_
contr

pwm_ar_timer
_12bit

lite_timer_8bitDALI_PUB
www.BDTIC.com/ST

3/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
3 MODULE DESCRIPTIONS

3.1 MAIN.C MODULE

For DALI communication, the microcontroller has to monitor the low voltage state on the DALI
bus (it is not allowed to be more than 500ms), and so it needs a process to differentiate a
frame reception from a bus down.

This module calls all the initialization routines in the other modules, then it calls the routines to
switch on the red and green LEDs on the board, and finally it enters an infinite loop.

This loop could be divided in two parts, the management of the low voltage condition of the
DALI BUS and fade rate plus the management of the new DALI frame reception.

The management of the low voltage condition and fade rate is obtained using a state machine,
synchronized with a period of 1 ms, in fact the lite_timer_IT_state variable is set to one every
1 ms.

To better understand how it works, please refer to Figure 12 in appendix A.

To manage the DALI frame reception, it checks the "dali_receive_status" flag in order to see
if a new forward frame has been received by the microcontroller (MCU). If so, it calls the
"DALIC_isTalkingToMe" function to check whether the command is addressed to this ballast
or not. If it is, it switches on the green LED and starts the command handling process; other-
wise it switches on the red LED. Finally it resets the "dali_receive_status" flag to restart the
cycle.

3.2 DALI_CMD MODULE

The main purpose of this module is to handle the DALI commands.

DALI_CMD contains several functions, most of them handle a particular DALI command, but
three of them are called from outside the module (from main.c):

1) The “DALIC_Init”, function initializes the ballast at its “POWER_ON_LEVEL”.

2) The “DALIC_isTalkingToMe” function, checks whether the command is addressed to this
ballast or not.

3) The “DALIC_ProcessCommand” function is the first step in the process of executing a
command. It checks if a repetition fault has occurred (according to the specification, an-
other command between an expected repetition is ignored and leads to the cancellation of
the repetition sequence) and it checks whether the command is a special one or a normal
one.

The sequence continues as shown in Figure 2:
www.BDTIC.com/ST

4/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 2. DALI_CMD Module Sequence

Notes:

a) “DALIP_Reserved_Special_Function” is called. This function is empty, it is reserved for fu-
ture needs.

b) The function for handling a special command is called through the “special_jt” table.

c) The “DALIC_Direct_Arc” function handles this kind of command.

d) The function for handling a normal command, is called through the “normal_jt” table (that
points to the function).

Note: In the case of COSMIC compilation, this is divided into three tables to avoid “long array”
problems (this COSMIC problem has since been solved).

3.3 DALI_REG MODULE

In accordance with the DALI specification, some data variables giving information on the bal-
last and its status have to be stored in memory; we refer to these variables as DALI registers.

The DALI_REG module handles the reading and writing of the DALI registers. It allows access
to any of the DALI registers in the same way, wherever they are physically situated (ROM,
EEPROM, RAM).

Normally you don’t need to use the functions of this module directly (you can access most of
these registers using the functions defined for this purpose in the DALI_PUB module). How-
ever, in case you need direct access to the registers, you can find the description of these
functions and how to use them in Appendix B.

Command

Normal
command

Special
command

Other normal
command

Direct arc power
control command

Other special
command

Reserved special
command

a

b

c

d

www.BDTIC.com/ST

5/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
3.4 PERIPHERAL MODULES

The purpose of these modules is to handle the different peripherals and hardware blocks of
the MCU, each one is in charge of a specific block.

All these modules have the same file structure. Each module has three files:

– xxx_hr.h where all or part of the registers and the register bits are defined.

– xxx.h that contains the declaration of the public functions and constants.

– xxx.c that contains the function routines.

(xxx represents the name of the module)

3.4.1 “clock_reset_supply” module

This module handles the “RC Oscillator Control” Register (RCCR) and the “System Integrity
Control/Status” Register (SICSR). In the current version, it just configures the RCCR to cali-
brate the RC oscillator frequency. Two factory calibration values are stored in the first two
EEPROM addresses, however you can calibrate the RC with a different value. Please refer to
the ST7FDALI datasheet SUPPLY, RESET AND CLOCK MANAGEMENT section for more
details.

3.4.2 “dali” module

This module handles the DALI peripheral.

It initializes the peripheral (DALI_Init function), and contains the DALI interrupt routine that
handles the arrival of a forward frame. It also contains the (Send_DALI_Frame) function that
allows sending backward frames to the master board. Please refer to the ST7FDALI da-
tasheet, section DALI COMMUNICATION MODULE for more details.

3.4.3 “eeprom” module

This module handles the EEPROM of the MCU.

It initializes the EEPROM, so it saves the DALI registers (their reset values) in the EEPROM
the first time that the program is started. It also contains the functions in charge of the physical
reading and writing of the EEPROM. When you use the EEPROM, you don’t need to use
these functions directly, since a group of functions for handling the EEPROM is defined in the
DALI_PUB module.

3.4.4 “lite_timer_8bit” module

This module handles the Lite Timer peripheral (Two 8-bit upcounters for timing purposes). In
the current version, it just uses upcounter 1.

It initializes the Lite Timer so that the interrupt routine is run every 1 ms, this routine carries out
the various countdowns required by the program.
www.BDTIC.com/ST

6/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
3.4.5 “main_clock_contr” module

This module contains the Main Clock Control initialization routine that handles the Main Clock
Control/Status Register (MCCSR). In the current version, it enables the MCO output clock; i.e.
the CPU clock signal can be seen on this pin.

3.4.6 “ports” module

This module handles the MCU I/O ports. In the current version of the software, this application
just uses the PA1 and PA2 ports; they are used as outputs for switching the LEDs on and off,
to indicate whether a forward frame has been addressed to this ballast or not.

3.4.7 “pwm_ar_timer_12bit” module

This module controls the 12-bit autoreload timer.

In this application the 12-bit autoreload timer is used for generating a PWM signal to control
the power level of the lamp (the PWM duty cycle determines the DC output level of the slave
board).

So, the purpose of this module is to initialize the timer and set up the PWM duty cycle ac-
cording to the command received.

3.5 DALI_PUB MODULE

This module has to be modified (if needed) by the user. The following sections describe the
main parts of the module.

3.5.1 ROM registers

According the DALI specification, the DALI “version number” and “physical min. level” regis-
ters have to be stored in ROM, these two values are defined in this module by the “ROMRegs”
table as follows: ROMRegs[]={0,25}, where the first value is the “version number” and the
second is the “physical min. level”, you can modify these values according to the ballast used.

3.5.2 Fading functions

“DALIP_LaunchTimer”: starts a countdown in the Lite Timer interrupt routine (“lite_timer_8bit”
module), so that the “DALIP_TimerCallback” function is called every 1ms. The parameter
passed represents the number of times that the function “DALIP_TimerCallback” will be
called, but if you pass 0xFF the function will be called every 1ms non stop until the function
“DALIP_DoneTimer” is called.

“DALIP_DoneTimer”: is used to stop the timer started by “DALIP_LaunchTimer”. It should be
called as soon as the process is finished to let the MCU enter in SLOW-WAIT-MODE (in order
to save power) if it has nothing more to do.
www.BDTIC.com/ST

7/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
“DALIP_TimerCallback”: handles the fading effect; basically, it increases or decreases (one
step) the arc power level every “DALIP_iChangeEvery” ms (according to the DALI command
processed and the fade time/rate selected), until the required power level is reached.

3.5.3 Arc power control functions

The following functions are the last step in the process of all “arc power control” commands:
DALIP_ Di rec t_ A rc, DALIP_ Of f , DAL IP_U p, D AL IP_D own , DALIP_ S tep _U p,
DALIP_Step_Down, DALIP_Step_Down_And_Off, DALIP_On_And_Step_Up. They set the
new power level and update the “actual dim level” register. DALIP_Off, DALIP_Up and
DALIP_Direct_Arc (if necessary) calculate the “DALIP_iChangeEvery” value used by the
“DALIP_TimerCallback” function, this value is calculated according the current fade time/rate
value to carry out the fading process.

Note: All the above functions correspond to DALI commands described in the DALI specifica-
tion.

3.5.4 DALI register access functions

The following functions allow you to write and read most of the specific DALI registers (see
DALI spec.). If you need to access the registers directly, refer to the DALI_REG module de-
scription.

The Write Functions pass just one parameter to update a particular DALI register and returns
nothing:
Table 1. List of DALI Register Write functions

Note: For Flag Registers, pass 0 to clear the Bit and !=0 to set it.

The Read Functions return the current value of a particular DALI register:
Table 2. List of DALI Register Read functions

Write-Functions DALI register affected
DALIP_SetArc Actual dim level
DALIP_SetBallastStatusFlag Status information (bit 0)
DALIP_SetLampFailureFlag Status information (bit 1)
DALIP_SetLampPowerOnFlag Status information (bit 2)
DALIP_SetFadeReadyFlag Status information (bit 4)
DALIP_SetPowerFailureFlag Status information (bit 7)

Read-Function DALI register affected
DALIP_GetArc Actual dim level
DALIP_GetFadeTime Fade time
DALIP_GetFadeRate Fade rate
DALIP_GetMaxLevel Max level
DALIP_GetMinLevel Min level
DALIP_GetPowerOnLevel Power on level
www.BDTIC.com/ST

8/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
3.5.5 EEPROM access functions

Using these functions, you can read and write to the connected EEPROM. The addressing
range is from 0 to the return-value of DALIP_EEPROM_Size. Accesses outside that range will
be ignored.

Note: The returned EEPROM-Size is the actual size minus a few bytes that are used for
saving the DALI-Registers. There is maximum size of 256 bytes for the connected EEPROM.
(Bigger ones work too, but only the lower 256 bytes can be accessed).

Caution: If a Page-Write exceeds the addressing range, the WHOLE Write Operation will be
ignored!

DALIP_EEPROM_Size

Return: Highest address that can be passed to an EEPROM-Access-Command

DALIP_Read_E2

Reads one byte from the passed address

Param1: Address to be read

Return: Data byte read from the EEPROM

DALIP_Write_E2

Writes one byte to the passed address

Param1: Address to write to

Param2: Data byte to be written

DALIP_Write_E2_Buffer

Writes a sequence of Bytes (uses the page-write-operation of the EEPROM to be faster)

Param1: First Address to write to

Param2: Number of Bytes to be written

Param3: Pointer to the first byte of the array that contains the data

3.5.6 Reserved functions

Many commands in the DALI specification are reserved for future needs. When a forward
frame calls for one of these commands, one of the following functions is called. Either
“DALIP_Reserved_Function” if the reserved command is not special (commands in the range

DALIP_GetSysFailureLevel System failure level
DALIP_GetStatus Status information
DALIP_GetVersion Version number
DALIP_GetPhysMinLevel Physical min. level
www.BDTIC.com/ST

9/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
0-255) or “DALIP_Reserved_Special_Function” if it’s a special command (commands in the
range 256-287).

At present these functions are empty.

3.5.7 Other functions

DALIP_Is_Physically_Selected

This function returns 1 if the device is physically selected, otherwise it returns 0.

Since the first case it is not yet implemented, at present it always returns 0.

DALIP_What_Device_Type

This function returns a number that corresponds with the type of the device used. At present
it returns 0 that means “device for fluorescent lamps” according to the DALI specification, so
you should specify here the type if it is a different one.
www.BDTIC.com/ST

10/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
APPENDIX A. FLOWCHARTS

Figure 3. Main.c Flowchart

Compiler Init

Peripherals Init

new Frame?
(is dali_receive_status flag set?)

Switch off LEDs

Command addressed to this ballast?
(DALIC_isTalkingToMe?)

Switch on red LED

Switch on green LED

Restore Status
(reset dali_receive_status flag)

Process Command

yes

no

no yes

Switch on LEDs

Enable interrupts

Set light level @
POWER_ON_LEVEL value

lite_timer_IT_state=1 State Machine
yes

no
www.BDTIC.com/ST

11/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 4. DALIC_is_talking_to_me @ dali_cmd.c

DALIC_is_talking_to_me

clr b_is_special flag

special?

return 1broadcast?

return 1

group?

mask group

group 0..7?

group 8..15?

return 1

return 1

return 0

direct?

return
1

return 0

set b_is_special flag

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no
www.BDTIC.com/ST

12/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 5. DALIC_ProcessCommand @ dali_cmd.c

DALIC_ProcessCommand

DALIC_Is_Repetiton_Fault?

Special Command?

yes

no

Return

yes

DALIC_ProcessSpecialCommand

Return

ReturnDALIC_ProcessNormalCommand

no
www.BDTIC.com/ST

13/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 6. DALIC_ProcessSpecialCommand @ dali_cmd.c

DALIC_ProcessSpecialCommand

Reserved Command?
yes

no

DALIP_Reserved_Special_Function

Return

Return

Execute desired special
command routine
(function jump table)
www.BDTIC.com/ST

14/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 7. DALIC_ProcessNormalCommand @ dali_cmd.c

DALIC_ProcessNormalCommand

address last bit = 1?

yes

no

DALIC_Direct_Arc

Return

Execute desired command
routine (function jump
table)

Return
www.BDTIC.com/ST

15/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 8. DALIC_Is_Repetition_Fault @ dali_cmd.c

DALIC_Is_Repetiton_Fault

IsFlag(b_is_cmd_buffered)? Return 0

SetFlag
(b_is_cmd_inbetween)

no

No time out & buffer = Dali message?

No time out & buffer!= Dali message? Return 1

yes

Time out?
yes

yes

no

ClrFlag
(b_is_cmd_buffered)

ClrFlag
(b_is_cmd_inbetween)

Return 0

ClrFlag
(b_is_cmd_buffered)

ClrFlag
(b_is_cmd_inbetween)

Return 0

yes

IsFlag (b_is_cmd_inbetween)?

yes Return 0

no

ClrFlag
(b_is_cmd_buffered)

ClrFlag
(b_is_cmd_inbetween)

Return 1

no

no
www.BDTIC.com/ST

16/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 9. DALIC_Direct_Arc @ dali_cmd.c

DALIC_Direct_Arc

data = 255?
yes

no

DALIP_Off

Return

data = 0?
Clear LAMP_ARC_POWER_ON

flag

Set LAMP_ARC_POWER_ON
flag

yes

data < MIN_LEVEL ?

data > MAX_LEVEL ?

DALIP_Direct_Arc
at MIN_LEVEL

Set LIMIT_ERROR
flag

DALIP_Direct_Arc
at MAX_LEVEL

Clear LIMIT_ERROR flag

DALIP_Direct_Arc
at data level

Return

Return

ReturnReturn

Set LIMIT_ERROR
flag

no

yes

yes

no

no
www.BDTIC.com/ST

17/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 10. DALIC_Is_Repeated @ dali_cmd.c

DALIC_Is_Repeated

IsFlag(b_is_cmd_buffered)?

SetFlag(b_is_cmd_buffered)

RTC_LaunchTimer(DAL
I_REPETITION_WAIT)

Return 0

buffer = Dali message

yes

no

ClrFlag(b_is_cmd_buffered)

Time out ?

Return 0

yes

no

no

buffer = Dali message?

Return 1

yes

Return 0
www.BDTIC.com/ST

18/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 11. DALIP_Direct_Arc @ DALI_PUB.C

DALIP_Direct_Arc

Data level = current level?

Turn off timer
(DALIP_DoneTimer)

Update
ACTUAL_DIM_LEVEL

variable (DALIP_SetArc)

yes

no

Set new PWM duty cycle
(AR_TIMER_Set_PWM)

Present power level > data level?

Return

yes

no

no

Fade time = 0?

yes

Return

Set fade ready flag (fade is
running)

Calcul
DALIP_iChangeEvery

DALIP_LaunchTimer(0xFF)

Set DALIP_bIncrease
flag

clear
DALIP_bIncrease flag

Calcul
DALIP_iChangeEvery

Return
www.BDTIC.com/ST

19/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
Figure 12. State Machine diagram

If DALIBUS == HIGH

If DALIBUS == LOW

If Bus Failure Timer != 0

If Bus Failure Timer == 0

Process_Status_0

Process_Status_1

Process_Status_2

Process_Status_3

Initialize Bus Failure Timer
Disable Interrupt PB5

If DALIBUS == LOW
Decrease Bus Failure Timer

Reset Bus Failure Timer
Enable Interrupt PB5
Set Bus Failure

If DALIBUS == HIGH
www.BDTIC.com/ST

20/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
APPENDIX B. DALI_REG MODULE FUNCTIONS

The program makes use of the following functions of the DALI_REG module to read/write the
DALI registers easily:

DALIR_ReadReg

Purpose: it reads the value of one register.

Parameters: name of the register to be read

Returns: value of the register

DALIR_WriteReg

Purpose: It writes to one of the DALI-Registers

Parameters: Name of the register to be write, new value

Returns: --

DALIR_WriteStatusBit

Purpose: To reset/clear one bit of the DALIREG_STATUS_INFORMATION register.

Parameters: name of the bit, 0 to reset the bit and !=0 to set it.

Returns: --

DALIR_ReadStatusBit

Purpose: It reads the value of one bit of the DALIREG_STATUS_INFORMATION register.

Parameters: name of the bit to be read.

Returns: bit value (0 or 1).

Other DALI_REG functions:

DALIR_Init

Purpose: it initialises the RAM-registers to zero.

Parameters: --

Returns: --

DALIR_ResetRegs

Purpose: It initialises the DALI registers to their “reset value” (the “reset

value” for each register is specified the DALI specification)

Parameters: --

Returns: --

DALIR_LoadRegsFromE2

Purpose: It loads the DALIREG_SHORT_ADDRESS into the “short_addr” variable (func-

tion used just in the EEPROM init).

Parameters: --

Returns: --
www.BDTIC.com/ST

21/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
DALIR_DeleteShort

Purpose: It writes 0xFF in the DALIREG_SHORT_ADDRESS register, which means that no

address is ascribed to this ballast (mask).

Parameters: --

Returns: --

The names of the registers are defined in dali_regs.h as follows:

RAM-Registers:

DALIREG_ACTUAL_DIM_LEVEL (1 byte)

DALIREG_SEARCH_ADDRESS (3 bytes)

DALIREG_STATUS_INFORMATION (1 byte):

Bit 0: DALIREG_STATUS_BALLAST

Bit 1: DALIREG_STATUS_LAMP_FAILURE

Bit 2: DALIREG_STATUS_LAMP_ARC_POWER_ON

Bit 3: DALIREG_STATUS_LIMIT_ERROR

Bit 4: DALIREG_STATUS_FADE_READY

Bit 5: DALIREG_STATUS_RESET_STATE

Bit 6: DALIREG_STATUS_MISSING_SHORT

Bit 7: DALIREG_STATUS_POWER_FAILURE

E²PROM-Registers:

DALIREG_POWER_ON_LEVEL (1 byte)

DALIREG_SYSTEM_FAILURE_LEVEL (1 byte)

DALIREG_MIN_LEVEL (1 byte)

DALIREG_MAX_LEVEL (1 byte)

DALIREG_FADE_RATE (1 byte)

DALIREG_FADE_TIME (1 byte)

DALIREG_SHORT_ADDRESS (1 byte)

DALIREG_RANDOM_ADDRESS (3 bytes)

DALIREG_GROUP_0_7 (1 byte)

DALIREG_GROUP_8_15 (1 byte)

DALIREG_SCENE (16 bytes)

ROM-Registers:

DALIREG_VERSION_NUMBER (1 byte)

DALIREG_PHYS_MIN_LEVEL (1 byte)
www.BDTIC.com/ST

22/23

SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com
www.BDTIC.com/ST

23/23

	INTRODUCTION
	1 PROCESS OVERVIEW
	2 GENERAL STRUCTURE OF THE DALI SLAVE SOFTWARE
	3 MODULE DESCRIPTIONS
	3.1 MAIN.C Module
	3.2 DALI_CMD Module
	3.3 DALI_REG Module
	3.4 Peripheral modules
	3.4.1 “clock_reset_supply” module
	3.4.2 “dali” module
	3.4.3 “eeprom” module
	3.4.4 “lite_timer_8bit” module
	3.4.5 “main_clock_contr” module
	3.4.6 “ports” module
	3.4.7 “pwm_ar_timer_12bit” module

	3.5 DALI_PUB Module
	3.5.1 ROM registers
	3.5.2 Fading functions
	3.5.3 Arc power control functions
	3.5.4 DALI register access functions
	3.5.5 EEPROM access functions
	3.5.6 Reserved functions
	3.5.7 Other functions

	APPENDIX A. FLOWCHARTS
	APPENDIX B. DALI_REG MODULE FUNCTIONS

