AN1722 APPLICATION NOTE
 Design and Realization of a CCFL Application Using TSM108, STN790A, or STS3DPFS30, and STSA1805

1. ABSTRACT

This technical document shows how to use the integrated circuit TSM108, the PNP power bipolar transistor STN790A, or the P channel power MOSFET STS3DPFS30, the NPN power bipolar transistor STSA1805 and the diode 1N5821 in order to design and realize a CCFL application. Such work allows STMicroelectronics' customers to choose an alternative design and STMicroelectronics itself to supply all devices concerning the power transistor part and also the control and driver part for these applications (KIT approach).
In the application block diagram below, the several STMicroelectronics' power devices are inserted in the related block.

Figure 1: Block diagram of the application

2. TSM108 DESCRIPTION

TSM108 is a PNP power bipolar or P channel power MOSFET controller. TSM108 includes a PWM generator (AMP3 in fig. 2), voltage and current control loops (AMP1 and AMP2 respectively in fig. 2) and it also includes safety functions that lock the PNP power bipolar or P channel power MOSFET in off state. The TSM108 can sustain 60 V on V_{cc} and the $\mathrm{I}_{\text {sink }}$ (base or gate drive sink current to switch on the device) and $I_{\text {source }}$ (base or gate drive source current to switch off the device) are respectively 15 mA (min value) and 30 mA (max value).

Rev. 2

Figure 2: TSM108 schematic circuit

As exposed above, the safety functions UV and OV can switch off the power transistor (PNP power bipolar or P channel power MOSFET) when the $V_{c c}$ is under a definite min voltage or when the $\mathrm{V}_{c c}$ overcomes a definite max voltage. In fact, in these cases the output signal of the AMP 5, or the AMP 6, is low and the NAND output is high. Considering the UV function, fig. 3 shows the circuit part concerning it.
Figure 3: UV schematic circuit detail

The V_{+}voltage (the one in the non-inverting pin of the AMP5) is:

$$
\begin{equation*}
V_{+}=\frac{76.5}{184+76.5} V_{c c} \tag{1.1}
\end{equation*}
$$

and considering:

$$
\begin{equation*}
V_{-}=2.52 \mathrm{~V} \tag{1.2}
\end{equation*}
$$

the minimum $V_{c c}$ under which the application will switch off is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{cc}}=\frac{2.52}{76.5}(184+76.5) \approx 8.5 \mathrm{~V} \tag{1.3}
\end{equation*}
$$

Considering the OV function, fig. 4 shows the circuit part concerning it.
Figure 4: OV schematic circuit detail

The $V_{\text {_ }}$ voltage (the voltage in the inverting pin of the AMP6) is:

$$
\begin{equation*}
V_{-}=\frac{23.2}{275+23.2} V_{c c} \tag{1.4}
\end{equation*}
$$

and considering:

$$
\begin{equation*}
V_{+}=2.52 \mathrm{~V} \tag{1.5}
\end{equation*}
$$

the maximum $V_{c c}$ over which the board will switch off is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{cc}}=\frac{2.52}{23.2}(275+23.2) \approx 32.4 \mathrm{~V} \tag{1.6}
\end{equation*}
$$

In order to adjust the UV and OV voltages it is necessary to insert suitable resistances as showed later in this paper.
It is important to highlight that, normally, the max δ (duty cycle) of the base drive, or gate drive, is around 95 \%.

3. STN790A DESCRIPTION

The STMicroelectronics' power bipolar transistor device STN790A is housed in the SOT-223 package. Such device is manufactured in PNP planar technology using a 'Base Island' layout that involves a very high gain performance and a very low saturation voltage.

The main characteristics of the STN790A device are:

1) $V_{\text {eco }} \geq 30 \mathrm{~V}$
2) $V_{\text {ecs }} \geq 40 \mathrm{~V}$
3) $V_{\text {beo }} \geq 5 \mathrm{~V}$
4) $I_{C}=-3 \mathrm{~A}$ (continuous current)
5) $I_{b}=1 \mathrm{~A}$ (continuous current)
6) $\mathrm{V}_{\mathrm{ec}(\text { sat })}=1.2 \mathrm{mV}$ (typ) @ $\mathrm{I}_{\mathrm{b}}=-20 \mathrm{~mA} @ \mathrm{Ic}=-2 \mathrm{~A}$ (typical conditions)
7) $\mathrm{H}_{\mathrm{fe}}=100(\mathrm{~min}) @ \mathrm{I}_{\mathrm{c}}=-2.5 \mathrm{~A} @ \mathrm{~V}_{\mathrm{ec}}=3 \mathrm{~V}$ (typical conditions)

4. 1N5821 DESCRIPTION

The STMicroelectronics' SCHOTTKY diode is integrated in the package DO-201AD and has very small conduction losses, negligible switching losses and extremely fast switching.

The main characteristics of the 1N5821 device are:

1) $V_{R R M} \geq 30 \mathrm{~V}$
2) $I_{F}=3 A$

5. STS3DPFS30 DESCRIPTION

The STS3DPFS30 device is mounted inside a P channel power MOSFET, using the STripFET layout that allows a lower Rds(on) and a SCHOTTKY diode. It is housed in the SO-8 package.
The main characteristics of the STS3DPFS30L device are:

1) $V_{\text {sd }} \geq 30 \mathrm{~V}$
2) $V_{s g} \geq 20 \mathrm{~V}$
3) $R_{\text {ds(on)_max }}=0.09$ Ohm @ $I_{d}=1.5 A @ V_{s g}=10 \mathrm{~V}$
4) $I_{F}=3 A$ (integrated diode);
5) $\mathrm{V}_{\mathrm{F} \text { _max }}=0.51 \mathrm{~V}$ (integrated diode)
6) $\mathrm{V}_{\mathrm{RRM}}=30 \mathrm{~V}$ (integrated diode)

6. STSA1805 DESCRIPTION

The STMicroelectronics' power bipolar transistor device STSA1805 is housed in the TO-92 package. Such device is manufactured in NPN planar technology using a 'Base Island' layout that involves a very high gain performance and a very low saturation voltage.

The main characteristics of the STSA1805 device are:

1) $V_{\text {ceo }} \geq 60 \mathrm{~V}$
2) $V_{\text {ces }} \geq 150 \mathrm{~V}$
3) $V_{\text {ebo }} \geq 7 \mathrm{~V}$
4) $I_{C}=5 A$ (continuous current)
5) $I_{b}=1 \mathrm{~A}$ (continuuous current)
6) $\mathrm{V}_{\mathrm{ce}(\mathrm{sat})}=140 \mathrm{mV}$ (typ) @ $\mathrm{I}_{\mathrm{b}}=50 \mathrm{~mA} @ \mathrm{I}_{\mathrm{c}}=2 \mathrm{~A}$ (typical conditions)
7) $\mathrm{H}_{\mathrm{fe}}=270$ (typ) @ Ic = 2A @ $\mathrm{V}_{\mathrm{ce}}=1 \mathrm{~V}$ (typical conditions)

7. APPLICATION INTRODUCTION

The CCFL applications (Cold Cathode Fluorescent Lamp) are generally used for the monitor back lighting which is often used to illuminate the signs.
The part of the circuit driving the CCFL lamps is composed of a DC-AC converter. The CCFL applications use special compact fluorescent lamps. The lamps number can be $1,2,4$, or 6 and the output power can be in the range of $2-24 \mathrm{~W}$. The DC-AC converters transform the low DC in input voltage in necessary high $A C$ output voltage for the fluorescent tubes. The CCFL are usually powered with a $12 \mathrm{~V}_{\mathrm{dc}}$ voltage.

Today, two topologies are available for driving the above-mentioned special tubes: the 'ROYER' and the FULL BRIDGE solutions.

The 'ROYER' solution uses a Push-Pull current fed converter where the current source is due to an inductor and where it is possible to regulate the lamps brightness. Such a regulation is carried out by means of the inductor current controls, through a PNP power bipolar or P channel power MOSFET transistors (STN790A or STS3DPFS30 respectively), working in PWM mode, and a free wheeling diode. The diode, the transistor and the inductor make a BUCK converter stage before of the PUSH-PULL converter stage. The PUSH-PULL converter uses two NPN power bipolar transistors (STSA1805). The other solution, the FULL BRIDGE topology, uses four power MOSFET transistors, two pair of complementary power MOSFET transistors, driven by a suitable IC.
The design described in this paper uses the 'ROYER' topology, thus, only such topology will be studied.
In the graph below a schematic circuit of a CCFL application, using two paralleled 6W lamps and only one transformer, is shown (this is one of the several possible output stage configurations).
Figure 5: 'ROYER' converter schematic circuit

8. FLUORESCENT TUBES CHARACTERISTICS

Fluorescent lamps are generally made with tubes filled with a gas mixture at low pressure. The inner sides of the tubes are covered with fluorescent elements. During the start-up, before the tube lights on, the lamp has a very high resistance. Usually, in the common fluorescent lamps, the electrodes voltage increases up to around 500 V and starts to warm up and emit ions, but in the CCFL tubes the voltage between the lamp electrodes reaches up to 1300V. Fig. 6 shows CCFL lamp characteristics before the striking.

Figure 6: Lamp voltage before striking

When the fluorescent lamp lights on, the gas mixture inside is fully ionized, and an arc across the two electrodes occurs. In this new condition, the lamp resistance drops to 60 KOhm and the voltage across the lamps drops to about 800V (Fig. 7 and Fig. 8 show the lamp characteristics and the V-I characteristic respectively after the striking).

Figure 7: Voltage and current Lamp after striking

Figure 8: V-I Characteristic after striking

After the striking, the gas mixture emits radiations able to excite the fluorescent elements inside the tube producing the light in the visible spectrum. In this example, after the striking, the maximum electrodes voltage falls from 1300 V down to 770 V with a peak current of 12 mA . In the common fluorescent lamp
the voltage between the tube terminals drops from about 500 V , before the striking, to about 220 V after the striking.
Usually, after the striking, in order to increase the light efficiency, the tube works with a frequency around $25-50 \mathrm{KHz}$, in fact, in this frequency range, the light output can increase up to 15% for the same input energy.
Generally, the common fluorescent lamps can be considered only as a resistive load. In the CCFL lamps, instead, even if the tubes show a resistive behavior, a small but evident capacitive behavior is observed as it is shown in fig.7. In fig. 7 it is evident that the V-I Characteristic is linear until the established voltage value is reached (in this case about 500 V). After reaching this voltage value, the characteristic starts to become flat because no ion can emit other radiations.

9. TRANSFORMER DESCRIPTION

The transformer named T_{1} shown in fig. 5 has three windings. The primary winding terminals are connected to the collectors of the Q_{2} and Q_{3} NPN power bipolar transistors. The same primary winding has a central terminal where the inductor L_{1} output is connected. The secondary winding terminals are connected to the loads.
The third winding terminals are connected to the base of the transistors Q_{2} and Q_{3} so that the first is on while the second is off and vice versa. During the Q_{2} on state the current flows through the device and the related half primary winding, instead, when Q_{3} is on the current passes through this second device and the other half primary winding. Usually the LT primary inductance of the transformer T_{1} is much lower compared to the inductance L_{1}. The resonance frequency of the PUSH-PULL converter is also due to the LT inductance. In the design, N_{2} (number of secondary turns) and $N_{1} / 2$ (number of half primary turns) ratio is around 80-90 while, $N_{1} / 2$ and N_{3} (number of third turns) ratio, is around 4-5. In fact, considering a $12 \mathrm{~V}_{\mathrm{dc}}$ input voltage, the $\mathrm{V}_{1 / 2 \max }$ voltage (the max voltage between the terminal of the central point of the primary winding and the reference when the PNP power bipolar or the P channel power MOSFET transistors are always on) is:

$$
\begin{equation*}
v_{1 / 2 \max }=\frac{\pi}{2} \cdot V_{d c} \tag{9.1}
\end{equation*}
$$

as then demonstrated around 19 V , the $\mathrm{v}_{2 \max }$ (the max voltage between the secondary terminals of the transformer) is:

$$
\begin{equation*}
v_{2 \max }=\frac{\pi}{2} \cdot V_{d c} \frac{N_{2}}{\left(N_{1} / 2\right)} \tag{9.2}
\end{equation*}
$$

around $1500-1700 \mathrm{~V}$ and the $\mathrm{v}_{3 \max }$ (the max voltage between the terminals of the third transformer winding) is:

$$
\begin{equation*}
v_{3 \max }=\frac{\pi}{2} \cdot V_{d c} \frac{\left(N_{3}\right)}{N_{1} / 2} \tag{9.3}
\end{equation*}
$$

As exposed above, the $N_{1} / 2$ value and not N_{1} is highlighted. In order to understand the reason of it, it is
necessary to consider the graph below.
Figure 9: Detail of the transformer T_{1}

As already exposed, when the Q_{2} transistor is on, the other is off and vice versa. Now, considering fig. 9 where the T_{2} switch is on, the I current passes through the 'b' half primary winding of the transformer T_{1} and generates a magnetic force (Hopkinson law):

$$
\begin{equation*}
\frac{N_{1}}{2} \cdot I=\mathfrak{R} \cdot \Phi \tag{9.4}
\end{equation*}
$$

where Φ is the magnetic flux and \Re is the magnetic reluctance of the T_{1} core, thus Φ is:

$$
\begin{equation*}
\Phi=\frac{\frac{N_{1}}{2} \cdot l}{\mathfrak{R}} \tag{9.5}
\end{equation*}
$$

The magnetic reluctance \mathfrak{R} is:

$$
\begin{equation*}
\mathfrak{R}=\frac{l}{\mu \cdot A} \tag{9.6}
\end{equation*}
$$

where μ is the core permeability, A is the core section and I is the core length. When T_{2} switches off and T_{1} switches on, the current flows through the other half primary winding 'a' of the transformer T_{1} and the flux Φ inverts its direction. Such a flux flows in the magnetic core T_{1} creating a link respectively with the windings N_{2} and N_{3}, and also with the other half of the primary windings $N_{1} / 2$, and generating the voltages v_{2} and v_{3} (magnetic law-Lenz law):

$$
\begin{equation*}
v_{2}=-N_{2} \frac{\Delta \Phi}{\Delta t} ; v_{3}=-N_{3} \frac{\Delta \Phi}{\Delta t} ; v_{1 / 2}=-\frac{N_{1}}{2} \frac{\Delta \Phi}{\Delta t} \tag{9.7}
\end{equation*}
$$

thus:

$$
\begin{equation*}
\frac{v_{2}}{v_{1 / 2}}=\frac{N_{2}}{N_{1} / 2}, \frac{v_{3}}{v_{1 / 2}}=\frac{N_{3}}{N_{1} / 2}, \frac{v_{1}}{v_{1 / 2}}=2 \tag{9.8}
\end{equation*}
$$

Furthermore, the current i_{2} (the current flowing through the secondary winding of T_{1}) is:

$$
\begin{equation*}
i_{2}=I \frac{N_{1} / 2}{N_{2}} \tag{9.9}
\end{equation*}
$$

in fact, the apparent input power is:

$$
\begin{equation*}
A_{i n}=V_{1 / 2} I \tag{9.10}
\end{equation*}
$$

while the apparent output power is:

$$
\begin{equation*}
A_{\text {out }}=V_{2} i_{2} \tag{9.11}
\end{equation*}
$$

and considering an ideal transformer:

$$
\begin{equation*}
V_{2} i_{2}=V_{1 / 2} I \tag{9.12}
\end{equation*}
$$

and thus:

$$
\begin{equation*}
\frac{i_{2}}{I}=\frac{V_{1 / 2}}{V_{2}}=\frac{N_{1} / 2}{N_{2}}=\frac{1}{k} \tag{9.13}
\end{equation*}
$$

10. THE 'ROYER' CONVERTER TOPOLOGY

As previously exposed, the topology solution for CCFL applications used in this paper is the 'ROYER' topology. This topology solution has a current feed PUSH-PULL switching converter stage and also an inductor that together with a PNP power bipolar, or P channel power MOSFET transistor and a free wheeling diode, makes a BUCK converter stage before the PUSH-PULL stage. The PNP power bipolar, or the P channel power MOSFET transistor fixes the output power and thus the lamps brightness. All this is performed through a PWM signal able to drive either the PNP bipolar transistor or P channel MOSFET depending on the kind of device used. In order to implement the PWM of the transistor it is necessary to make an output current sensing (the lamps current) and to compare such a signal to the reference voltage in the AMP1 (see fig. 10 and fig. 11 for the schematic circuit designed in this paper using the PNP power bipolar transistor STN790 and the power MOSFET transistor STS3DPFS30 respecticvely). The reference is fixed to 2.52 V by the TSM108 internal voltage generator.

Figure 10: CCFL schematic circuit using the PNP power bipolar transistor

Figure 11: CCFL schematic circuit using the P channel power MOSFET transistor

Such a sensing net fixes also the right output power during the voltage net fluctuations.

The component values for capacitors, resistors, and inductors are selected based on the load power, the operation frequency of the lamp before and after the striking (the operation lamp frequency must be in the range of $25-50 \mathrm{Khz}$), and the current ripple. The PNP power bipolar, or the P channel power MOSFET operation frequency is fixed by means of the 220 pF capacitor C_{14} (around 90 KHz).
Before the lamps strike the operation frequency is due to the resonance between the capacitor C_{9} and the primary transformer windings inductance LT of the T_{1} transformer (see fig. 12):

$$
\begin{equation*}
f=\frac{1}{2 \cdot \pi \sqrt{L T C_{9}}} \tag{10.1}
\end{equation*}
$$

Figure 12: Resonant schematic circuit before lamps striking

When the lamps are connected, the transformer circuit, considering the ideal transformer, can be represented as in the following graph.
Figure 13: Resonant circuit of the transformer after lamps striking

In this condition, the apparent input power is:

$$
\begin{equation*}
A_{i n}=v_{1} l \tag{10.2}
\end{equation*}
$$

Now it is possible to consider a new equivalent transformer circuit as shown in the graph below and where the apparent power is the same as before.
Figure 14: Equivalent resonant circuit of the transformer after lamps striking

In this equivalent transformer circuit the output impedance is transferred from the secondary winding to the primary winding of the transformer T_{1}. In fact, considering that C_{3} and C_{4} have the same value ($\mathrm{C} 3=\mathrm{C} 4=\mathrm{C}$) and that $\mathrm{R}_{\text {lamp }}$ is the same for both lamps, considering also that the $\mathrm{C}_{3}-R_{\text {lamp }}$ net and the $\mathrm{C}_{4}-\mathrm{R}_{\text {lamp }}$ net are in parallel configuration, the output impedance can be written as:

$$
\begin{equation*}
\frac{R_{\text {Lamp }}}{2}-j \frac{1}{2 \cdot \omega \cdot C} \tag{10.3}
\end{equation*}
$$

but:

$$
\begin{equation*}
V_{1} I=V_{2} i_{2}=i_{2}{ }^{2}\left(\frac{R_{\text {Lamp }}}{2}-j \frac{1}{2 \cdot \omega \cdot C}\right) \tag{10.4}
\end{equation*}
$$

thus:

$$
\begin{equation*}
\frac{V_{1} I}{i_{2}^{2}}=\left(\frac{R_{\text {Lamp }}}{2}-j \frac{1}{2 \cdot \omega \cdot C}\right)=\frac{V_{1}}{i_{2}} \frac{I}{i_{2}}=\frac{V_{1}}{I} \frac{N_{2}^{2}}{\left(N_{1} / 2\right)^{2}}=\frac{V_{1}}{I} k^{2} \tag{10.5}
\end{equation*}
$$

and thus:

$$
\begin{equation*}
\frac{V_{1}}{l}=z_{e q 1}=\frac{1}{k^{2}}\left(\frac{R_{L a m p}}{2}-j \frac{1}{2 \cdot \omega \cdot C}\right) \tag{10.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
\frac{R_{\text {Lamp }}}{2 k^{2}} \tag{10.7}
\end{equation*}
$$

is the primary equivalent resistance, while:

$$
\begin{equation*}
2 C k^{2} \tag{10.8}
\end{equation*}
$$

is the primary equivalent capacitance.

Now, the equivalent primary admittance $\left(\mathrm{Yeq}_{1}\right)$ is:

$$
\begin{equation*}
Y_{e q 1}=\frac{-j}{\omega \cdot L T}+j \omega \cdot C_{9}+\frac{k^{2} j 2 \omega C}{\left(1+j \omega C R_{L a m p}\right)} \tag{10.9}
\end{equation*}
$$

where:

$$
\begin{equation*}
\frac{k^{2} j 2 \omega \cdot C}{\left(1+j C R_{\text {Lamp }} \omega\right)} \tag{10.10}
\end{equation*}
$$

is the admittance of the series net:

$$
\begin{equation*}
\frac{R_{\text {Lamp }}}{2 k^{2}}-2 C k^{2} \tag{10.11}
\end{equation*}
$$

Considering the impedance of the

$$
\frac{R_{\text {Lamp }}}{k^{2}}
$$

negligible compared to Ck^{2}, deriving the Yeq_{1} with respect to the pulsation ω and equaling to zero, it is possible to find the frequency that maximizes the $Y_{\text {eq1 }}$ and, thus, minimizes the $Z_{\text {eq1 }}$ impedance (such frequency is the resonance frequency of the application during the lamps on state):

$$
\begin{equation*}
\omega^{2} \cong \frac{1}{L T\left(C_{9}+2 k^{2} C\right)} \tag{10.12}
\end{equation*}
$$

and thus:

$$
\begin{equation*}
f \cong \frac{1}{2 \cdot \pi \sqrt{L T\left(C_{9}+2 k^{2} C\right)}} \tag{10.13}
\end{equation*}
$$

When the board is powered, the resistances R_{10} and R_{11} (see fig. 15) enable the power bipolar devices Q_{2} and Q_{3} and the lamps turn on. After the start-up, during the Q_{2} on state, the current flowing through the inductance L_{1}, through the half primary winding of the transformer T_{1} and through the transistor Q_{2}, increases with an angular coefficient given by:

$$
\begin{equation*}
\operatorname{tg} \alpha=\frac{\mathrm{v}_{\mathrm{L} 1}{ }^{*} \Delta \mathrm{t}}{\mathrm{~L}_{1}} \tag{10.14}
\end{equation*}
$$

After a first instant, the current curve becomes flat and its average value depends on the impedance $Z_{\text {eq1 }}$ and on the output power. However, when the PNP power bipolar, or P channel power MOSFET is on, after the lamps start-up, the current oscillates around the average value because the ripple on it depends only on the inductance L_{1}. In PWM mode, instead, it depends also, linearly, on the duty cycle of the transistor.

Figure 15 shows the 'ROYER' converter schematic circuit during the start-up considering the current I graph through the inductor.
Figure 15: 'ROYER' converter schematic circuit with inductor current theoretical behavior at star- up

After the striking, the primary current ' l ' generates the current i_{2} into the secondary winding of the transformer T_{1}. At the beginning, the current i_{2} can be written as:

$$
\begin{equation*}
\mathrm{i}_{2}=\frac{\mathrm{v}_{2}}{\mathrm{R}_{\text {Lamp }} / 2} \tag{10.15}
\end{equation*}
$$

because the capacitors C_{3} and C_{4} are discharged. Immediately after, these capacitors get charged and the current i_{2} drops to zero, while vc_{3} and vc_{4} reach the maximum voltage. At this time, the current i_{2} inverts its direction and the capacitors C_{3} and C_{4} start discharging until the charge inside them becomes zero and the current i_{2} reaches its maximum negative value. Furthermore, when the current i_{2} inverts the direction also the voltage $v_{\mathrm{t} 1 \mathrm{~b} 2}$ reverts the polarities so that Q_{2} switches off, Q_{3} switches on, and the current 'l' starts flowing into the other half winding of the transformer T_{1} (see fig. 16).

Figure 16: 'ROYER' converter schematic circuit with theoretical behavior of $\mathrm{v}_{1}, \mathrm{v}_{\mathbf{2}}$, and $\mathrm{i}_{\mathbf{2}}$

The main output electrical parameters $\mathrm{v}_{2}(\mathrm{t}), \mathrm{I}_{\text {Lamp }}(\mathrm{t}), \mathrm{V}_{\text {Lamp }}(\mathrm{t}), \mathrm{v}_{\mathrm{c3}}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{c4}}(\mathrm{t})$ (these last two are the voltages across the capacitors C_{3} and C_{4}) are shown in the following graph under a vectorial representation.
Figure 17: Vectorial representation of $\mathbf{v}_{\mathbf{2}}, \mathrm{i}_{\mathbf{2}}, \mathrm{v}_{\text {lamp }}, \mathrm{v}_{\mathrm{c} 3}$ and $\mathbf{v}_{\mathbf{c} 4}$

In fact, assuming that, the lamps have only resistive behavior, the $\mathrm{I}_{\text {Lamp }}$ currents flowing through them and the $\mathrm{V}_{\text {lamp }}$ (the voltage across them) can be written as:

$$
\begin{equation*}
V_{\text {Lamp }}=I_{\text {Lamp }} * R_{\text {Lamp }} \tag{10.16}
\end{equation*}
$$

The graph also assumes that the vectors $\mathrm{V}_{\text {Lamp }}$ and $\mathrm{I}_{\text {Lamp }}$ are on the real axis at the time taken into consideration. The $I_{\text {Lamp }}$ currents flow also through the capacitors C_{3} and C_{4} and, thus, the voltages $\mathrm{v}_{\mathrm{c} 3}$
and $v_{c 4}$ can be represented as -90° phase shifted vectors compared to the $I_{\text {Lamp }}$ vectors. The voltage v_{2} is the vectorial sum between the $V_{\text {Lamp }}$ and $v_{c 3}$, or $v_{c 4}$. Before the striking, the resistance lamps $R_{\text {lamp }}$ are very high compared to reactance of C_{3} and C_{4}, the currents $\mathrm{I}_{\text {Lamp }}$ are low and the voltages $\mathrm{V}_{\text {lamp }}$ are very much comparable to the voltage v_{2} across the secondary winding of the transformer T_{1}. After the striking, $\mathrm{R}_{\text {lamp }}$ drops to about 60 KOhm and the reactance $\mathrm{C}_{3}-\mathrm{C}_{4}$ becomes higher compared to the first one, thus making the voltages $v_{c 3}$ and $v_{c 4}$ comparable to v_{2}. However, in order to keep the lamps on, after the striking, the max $V_{\text {lamp }}$ must be about 700 V across the tubes.
The voltage v_{11} (voltage across the inductor L_{1}) is the difference between the V_{dc} and the $\mathrm{v}_{1 / 2}$ voltages considering the PNP power bipolar in on-state, or the P channel power MOSFET transistor (see fig. 18). Figure 18: 'ROYER' converter schematic circuit with the theoretical behavior of $\mathrm{v}_{1}, \mathrm{v}_{1 / 2}, \mathrm{v}_{\mathrm{L} 1}$, and $V_{\text {dc }}$

During the off state of the transistor Q_{1}, the diode D_{1} turns on and the voltage $v_{L 1}$ becomes:

$$
\begin{equation*}
V_{L 1}=-V_{1 / 2} \tag{10.17}
\end{equation*}
$$

Figure 19: $\mathrm{v}_{1}, \mathrm{v}_{1 / 2}, \mathrm{v}_{\mathrm{L} 1}$, and V_{dc} theoretical behavior when the P channel power MOSFET switches off and the diode D1 freewheels

In fact, supposing Q1 always in on state, focusing the attention only on one half-period of the periodic voltage $v_{1 / 2}$, as showed in fig. 20, the area A_{2} must be equal to the area A_{1} because the half-sine wave voltage $v_{1 / 2}$ and the voltage $V_{d c}$ must have the same average value.
Figure 20: $\mathrm{v}_{1 / 2}$ half-sine wave and Vdc graphs

So writing A_{1} as:

$$
\begin{equation*}
\mathrm{A}_{1}=\mathrm{V}_{\mathrm{dc}} \frac{\mathrm{~T}}{2} \tag{10.18}
\end{equation*}
$$

and considering A_{2} :

$$
\begin{equation*}
A_{2}=\int_{0}^{\frac{T}{2}} V_{1 / 2 \max } \operatorname{sen}\left(\frac{2 \pi}{T} t\right) d t= \tag{10.19}
\end{equation*}
$$

$$
\begin{gather*}
=\frac{\mathrm{T}}{2 \pi} \mathrm{~V}_{1 \max }\left[-\cos \left(\frac{2 \pi}{\mathrm{~T}}\right) t\right]_{0}^{\frac{\mathrm{T}}{2}}=\frac{\mathrm{T}}{\pi} \mathrm{~V}_{1 / 2 \max } \tag{10.19}\\
\mathrm{~A}_{1}=\mathrm{A}_{2} \tag{10.20}\\
\mathrm{~V}_{\mathrm{dc}} \frac{\mathrm{~T}}{2}=\frac{\mathrm{T}}{\pi} \mathrm{~V}_{1 \max } \Rightarrow \mathrm{~V}_{1 / 2 \max }=\frac{\pi}{2} \mathrm{~V}_{\mathrm{dc}} \tag{10.21}
\end{gather*}
$$

and finally, the max voltage v_{1} is:

$$
\begin{equation*}
\mathrm{V}_{1 \max }=\pi \cdot \mathrm{V}_{\mathrm{dc}} \tag{10.22}
\end{equation*}
$$

During the half-period $T / 2, Q_{1}$ can switch off and, in this short time, any voltage is supplied to the board. Fig. 21 shows a possible example.
Figure 21: $\mathbf{v}_{1 / 2}$ half-sine wave and $V_{d c}$ graphs when $\delta \neq 100 \%$

In this condition, the voltages $\mathrm{v}_{1 / 2 \max }$ and $\mathrm{v}_{1 \text { max }}$ become:

$$
\begin{align*}
& \mathrm{V}_{1 / 2 \max }=\delta \frac{\pi}{2} \mathrm{~V}_{\mathrm{dc}} \tag{10.23}\\
& V_{1 \max }=\delta \cdot \pi \cdot V_{d c} \tag{10.24}
\end{align*}
$$

where δ is the duty cycle of Q_{1}.
Now focusing the attention only on one half-period of the voltage $\mathrm{v}_{\mathrm{L} 1}$ and considering Q_{1} always in on state (see fig. 22).

Figure 22: : v_{11} theoretical behavior detail

As previously exposed, after the lamps striking, the current 'l' fluctuates around an average value, thus it can be written:

$$
\begin{equation*}
I_{\max }-I_{a v g}=I_{a v g}-I_{\min }=\Delta I \tag{10.25}
\end{equation*}
$$

where $\mathrm{I}_{\mathrm{avg}}$ is the average value current ' I ' that involves:

$$
\begin{equation*}
v_{\mathrm{avg}}=0 \tag{10.26}
\end{equation*}
$$

where $v_{\text {avg }}$ is the average voltage value across L_{1}.
The voltage $v_{\text {avg }}$ is:

$$
\begin{equation*}
v_{a v g}=\frac{(A+D-B-C)}{T} \tag{10.27}
\end{equation*}
$$

where now T is the period of the voltage $\mathrm{v}_{\mathrm{L} 1}$, and thus:

$$
\begin{equation*}
A+D=B+C \tag{10.28}
\end{equation*}
$$

and:

$$
\begin{equation*}
A=B \tag{10.29}
\end{equation*}
$$

because:

$$
\begin{equation*}
C=B, D=A \tag{10.30}
\end{equation*}
$$

The voltage $v_{L 1}$ is:

$$
\begin{equation*}
v_{L 1}=V_{d c}-\frac{\pi}{2} V_{d c} \cdot \operatorname{sen}\left(\frac{2 \cdot \pi}{T} t\right) \tag{10.31}
\end{equation*}
$$

and t^{\prime} is the time when $\mathrm{v}_{\mathrm{L} 1}$ is zero:

$$
\begin{equation*}
0=V_{d c}-\frac{\pi}{2} V_{d c} \cdot \operatorname{sen}\left(\frac{2 \cdot \pi}{T} t^{\prime}\right) \tag{10.32}
\end{equation*}
$$

Solving the equation t^{\prime} becomes:

$$
\begin{equation*}
t^{\prime}=\frac{T}{2 \cdot \pi} \operatorname{arcsen}\left(\frac{2}{\pi}\right) \tag{10.33}
\end{equation*}
$$

During the design of the application, the max current ripple of ' 1 ' is fixed. Usually, the $\Delta I_{\text {max\% }}$ is about 20 40% of the average value of ' I ', where:

$$
\begin{equation*}
\Delta I_{\max \%}=\frac{\Delta I_{\max }}{l_{\mathrm{avg}}} \tag{10.34}
\end{equation*}
$$

and thus:

$$
\begin{equation*}
\Delta I_{\max \%} \cdot I_{\text {avg }}=\Delta I_{\max } \tag{10.35}
\end{equation*}
$$

Considering the Lenz law:

$$
\begin{equation*}
v_{\text {avg }}=L 1_{\min } \frac{\Delta I_{\max }}{\Delta t} \tag{10.36}
\end{equation*}
$$

it is possible to find $L_{\text {min }}$ (L_{1} minimum value) as:

$$
\begin{equation*}
L_{1 \min }=\frac{\Delta t}{\Delta I_{\max }} v_{\text {avg }} \tag{10.37}
\end{equation*}
$$

During the time interval $0-\mathrm{t}$ ' the current 'I' increases of

$$
\frac{\Delta I_{\max }}{2}
$$

and the $v_{\text {avg }}$ is:

$$
\begin{equation*}
v_{\text {avg }}=\frac{1}{t^{\prime}} \int_{0}^{t^{\prime}} v_{L 1} \cdot d t=\frac{1}{t^{\prime}} \int_{0}^{t^{\prime}}\left[V_{d c}-\frac{\pi}{2} V_{d c} \cdot \operatorname{sen}\left(\frac{2 \cdot \pi}{T} t\right)\right] d t \tag{10.38}
\end{equation*}
$$

and thus:

$$
\begin{equation*}
v_{a v g}=\frac{1}{t^{\prime}}\left\{V_{d c} \cdot t^{\prime}-\frac{T}{4} V_{d c}\left[1-\cos \left(\frac{2 \cdot \pi}{T} t^{\prime}\right)\right]\right\} \tag{10.39}
\end{equation*}
$$

Finally, $\mathrm{L} 1_{\text {min }}$ can be calculated as:

$$
\begin{equation*}
L 1_{\min }=\frac{2}{\Delta I_{\max }}\left\{V_{d c} \cdot t^{\prime}-\frac{T}{4} V_{d c}\left[1-\cos \left(\frac{2 \cdot \pi}{T} t^{\prime}\right)\right]\right\} \tag{10.40}
\end{equation*}
$$

When PWM is used, the current ripple depends also on frequency and duty cycle of Q_{1}. Such ripple is lower compared to the case where Q_{1} is permanently in an on-state, therefore this is the worst condition with regard to the ripple.
The attention will be now focused on the PNP power bipolar transistor, or P channel power MOSFET, on Q_{1} and the diode D_{1}. During the Q_{1} on-state, the diode D_{1} is disabled, 'l' flows through the same device, while during the Q_{1} off-state 'l' freewheels into D_{1} (see fig. 23).

Figure 23: Q_{1} and D_{1} theoretical behavior

With regard to Q_{2} or Q_{3}, when the first is on, the current flows through the device, while the second is off and vice versa (see fig. 24).

Figure 24: $\mathbf{Q}_{\mathbf{2}}$ and $\mathrm{Q}_{\mathbf{3}}$ voltages and currents theoretically calculated

11. SENSING NET AND PWM NET WITH TSM108

The following picture highlights the sensing net considering the CCFL design used in this paper.
Figure 25: Sensing circuitry detail

During the i_{2} positive half-sine-wave the current, mainly, passes through the resistance R_{9}. The voltage across R_{9} enables the diode D_{2} and the net $C_{11}-R_{8}-P-R_{7}-C_{8}$. When Q_{1} is in on-state the max output power on the lamps reaches about 16 W , thus, the $\mathrm{i}_{\text {2eff }}$ (RMS current) is:

$$
\begin{equation*}
i_{2 \text { eff }}=\sqrt{\frac{P_{\text {out }}}{R_{\text {Lamp }}}}=\sqrt{\frac{16}{60000}} \cong 16 \mathrm{~mA} \tag{11.1}
\end{equation*}
$$

While its maximum value $\mathrm{i}_{2 \max }$ is:

$$
\begin{equation*}
i_{2 \max }=16 \sqrt{2} \cong 23 m A \tag{11.2}
\end{equation*}
$$

The maximum voltage across $R 9, \mathrm{~V}_{\mathrm{R} 9}$ is:

$$
\begin{equation*}
V_{R 9 \max }=R_{9} \cdot i_{2 \max }=390 \cdot 23 \cdot 10^{-3} \cong 9 \mathrm{~V} \tag{11.3}
\end{equation*}
$$

The maximum voltage $\mathrm{V}_{\mathrm{R} 9}$ is important because if it overcomes 9 V it can make the TSM108 instable.

Figure 26: $\mathbf{V}_{\mathrm{R} 9}$ theoretical behavior

During the i_{2} negative half-sine-wave, the diode $D_{2 "}$ carries the current bypassing the resistance R_{9} and increasing the application efficiency. During the i_{2} positive half-sine-wave, the capacitor C_{11} gets charged, keeps constant the voltage across it and discharges on the $R_{8}-P-R_{7}$ net during the i_{2} negative half-wave.
The inverting input of the AMP1 is fixed at 2.52 V and it tries to keep the non-inverting input at the same voltage. When the output power increases, the current i_{2} increases as well and the voltage in the non-inverting input overcomes the 2.52 V but, immediately after, the AMP1 output and TSM108 regulate the duty cycle of Q_{1} limiting the output power and in turn reducing the non-inverting input voltage to 2.52 V .

Regulating the trimmer P, the lamps brightness can be regulated. In fact, increasing the trimmer P resistance the lamps brightness can be decreased because the non-inverting input overcomes 2.52 V and TSM108 decreases the Q_{1} duty cycle and vice versa. In the following figure the AMP1 characteristics are shown.
Figure 27: TSM108 AMP1measured waveforms

The capacitor C_{8} keeps the voltage in the non-inverting input of the AMP1 constant, thus avoiding
situations of instability. The resistor R_{5} regulates the minimum output power on the lamps. It is connected to the central point of the primary winding of T_{1} on one side, and, on the other side, to the diode D_{3} whose cathode goes to the capacitor C_{11}. The diode D_{3} avoids a current flowing from $C_{11}-R_{8}$ -$\mathrm{P}_{-} \mathrm{R}_{7}-\mathrm{C}_{8}$ net to the T_{1} transformer. Without this net, the minimum output power would never reach a value under the 40% of the nominal lamps power. C_{7} is the compensation capacitor of the AMP1 output, while the C_{5} is the voltage reference bias capacitor. The capacitor C_{6} allows the flickering of the lamps to be avoided. The following picture shows the driving circuitry of Q_{1}.
Figure 28: Q_{1} driver circuitry

The AMP1 output is the AMP3 inverting input and is compared to the saw tooth signal generated from AMP4. The frequency of the saw tooth signal is established by the capacitor C_{14}. In this design the 220 pF capacitor generates a saw tooth signal with about 90 KHz switching frequency. Usually the Q_{1} switching frequency must be at least twice the lamps frequency. It can reach up to about 250 KHz using a P channel power MOSFET. When the AMP1 output is higher compared to the saw tooth signal, the AMP3 output is low and Q_{1} switches on and vice versa. The following picture shows the AMP3 characteristics.

Figure 29: TSM108 AMP3 measured waveforms

It is important to highlight that such design allows the regulation of the output power on the lamps in the 2-16W range.

As considered in section 1, the TSM108 has the Q_{1} lock functions UV (under voltage lockout) and OV (over voltage lockout). Without any external components, as previously said, the input voltage range accepted by the TSM108 is between 8.5 V and 32.4 V . In this application, being such voltage 12 V , the chosen voltage range is $8.5-15.5 \mathrm{~V}$. While the minimum input voltage value corrisponds to the standard UV of the TSM108, being the maximum chosen input voltage lower than the standard OV, it is necessary to introduce an external a 220 KOhm resistor R1 between +12 V and the pin 5 of the TSM108, in order to decrease such value (see fig. 30).
Figure 30: OV modified circuit

Considering the equation 2.6 , the OV voltage is:

$$
\begin{equation*}
V c c=\frac{2.52}{23.2}(275 / / 220+23.2)=\frac{2.52}{23.2}\left[\left(\frac{275^{*} 220}{275+220}\right)+23.2\right]=15.8 \mathrm{~V} \tag{11.1}
\end{equation*}
$$

12. DESIGN OF THE CCFL APPLICATION USING TSM108 AND THE STMicroelectronics' POWER TRANSISTORS

In Table 1 all the components of the design, taken as an example, are listed. Figures 31 and 32 show the schematic circuits of the application using the STN790A power bipolar and STS3DPFS30 respectively and the TSM108.

Table 1: Components list

COMPONENT	NAME	VALUE
RESISTANCE	R1	220 kOhm
RESISTANCE	R2	4,7 kOhm
RESISTANCE	R3	330 Ohm
RESISTANCE	R4	470 kOhm
RESISTANCE	R5	390 kOhm
RESISTANCE	R7	330 Ohm
RESISTANCE	R8	680 Ohm
RESISTANCE	R9	390 Ohm
RESISTANCE	R10	2 kOhm
RESISTANCE	R11	2 kOhm
RESISTANCE	R12	2 kOhm
RESISTANCE	R13	2 kOhm
CAPACITOR	C1	22 nF
CAPACITOR	C2	150 uF
CAPACITOR	C3	22 pF
CAPACITOR	C4	22 pF
CAPACITOR	C5	10 nF
CAPACITOR	C6	39 nF
CAPACITOR	C7	82 nF
CAPACITOR	C8	82 nF
CAPACITOR	C9	220 nF
CAPACITOR	C11	15 nF
CAPACITOR	C13	10 nF
CAPACITOR	C14	220 pF
STS3DFPS30-POWER MOSFET	Q1	
STN790A-PNP POWER BIPOLAR	Q1	
STSA1805-NPN POWER BIPOLAR	Q2	
STSA1805-NPN POWER BIPOLAR	Q3	
TSM108-IC		
1N5821-DIODE	D1	
1N5821-DIODE	D3	
6 W LAMP	11	
6 W LAMP	12	
INDUCTOR	L1	140 uH
TRIMMER	P	47 kOhM
FUSE		2 A

Figure 31: CCFL schematic circuit using the PNP power bipolar transistor

Figure 32: CCFL schematic circuit using the P channel power MOSFET transistor

The following graphs show the voltage characteristics of the transformer while no lamps are connected to the converter.
Figure 33: $\mathbf{v}_{\mathbf{2}}$ measured waveforms before striking

Figure 34: v_{1} measured waveforms before striking

Figure 35: V3 measured waveforms before striking

Figure 36: $\mathbf{v}_{1 / 2}$ measured waveforms before striking

In figure 34 the maximum value of v 1 is 37 V according to the formulas 10.22 :

$$
\begin{equation*}
v_{1 \max }=\pi \cdot V_{d c}=3,14 \cdot 12 \cong 37,5 \mathrm{~V} \tag{12.1}
\end{equation*}
$$

The operation frequency is about 50 KHz , in fact, considering the formula 10.1:

$$
\begin{equation*}
f=\frac{1}{2 \cdot \pi \sqrt{L T C_{9}}}=\frac{1}{2 \cdot 3.14 \sqrt{46 \cdot 10^{-6} \cdot 220 \cdot 10^{-9}}} \cong 50 \mathrm{Khz} \tag{12.2}
\end{equation*}
$$

The maximum voltage value of $\mathrm{v}_{1 / 2}$ is 18.80 V , as stated in formula 9.19:

$$
\begin{equation*}
v_{1 / 2 \max }=\frac{\pi}{2} \cdot V_{d c}=\frac{3.14}{2} \cdot 12 \cong 18.8 V \tag{12.3}
\end{equation*}
$$

The voltage $v_{1 / 2}$ has a frequency twice the v_{1} because $v_{1 / 2}$ has only half positive sin-wave characteristics.

$$
\begin{align*}
& \text { The } \frac{N_{2}}{N_{1} / 2}, \frac{N_{3}}{N_{1} / 2} \text { ratio are: } \\
& \frac{N_{2}}{N_{1} / 2}=\frac{V_{2 \max }}{V_{1 / 2 \max }}=\frac{1700}{18.80} \cong 90 \tag{12.4}\\
& \frac{N_{3}}{N_{1} / 2}=\frac{v_{3 \text { max }}}{V_{1 / 2 \max }}=\frac{5.5}{18.80} \cong \frac{1}{3} \tag{12.5}
\end{align*}
$$

In fig. 37 the waveforms of current and voltage of L_{1} are showed.
Figure 37: $\mathbf{v}_{\mathrm{L} 1}, \mathrm{i}_{\mathrm{L} 1}$ and i_{ak} measured waveforms before striking

In this condition, the current $L_{L 1}$ into the inductor L_{1} is $1 A$. The $v_{L 1}$ frequency is the same as the $v_{1 / 2}$ one, while the maximum $\mathrm{v}_{\mathrm{L} 1}$ voltage is equal to V_{dc}. According to the formula 9.29 the minimum $\mathrm{v}_{\mathrm{L} 1}$ value is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{L} 1 \min }=\mathrm{V}_{\mathrm{dc}}-\frac{\pi}{2} \mathrm{~V}_{\mathrm{dc}}=12-\frac{3.14}{2} 12 \cong-7 \mathrm{~V} \tag{12.6}
\end{equation*}
$$

As showed in fig. 37, the minimum $v_{L 1}$ value is about -18.5 V because during the operation Q_{1} switches off, the diode D_{1} switches on (in fig. 37 the $i_{a k}$ current is highlighted), and the voltage $v_{L 1}$ is $-v_{1 / 2}$.

The following graph shows current and voltage in D_{1} in these conditions.
Figure 38: i_{ak} and v_{ak} measurements before striking

The pictures in the next pages show all voltages and currents when the lamps are connected.
Figure 39: $\mathbf{v}_{\mathbf{2}}$ measurement during the lamps on-state

Figure 40: v_{1} measurement during the lamps on-state

Figure 41: V3 measurement during the lamps on-state

Figure 42: $\mathrm{v}_{1 / 2}$ measurement during the lamps on state

The operation frequency drops from about 50 KHz to about 35 KHz , in fact, considering the 10.13:

$$
\begin{gathered}
f=\frac{1}{2 \cdot \pi \sqrt{L T\left(C_{9}+2 \cdot \mathrm{k}^{2} \cdot \mathrm{C}\right)}}= \\
=\frac{1}{2 \cdot 3.14 \sqrt{46 \cdot 10^{-6}\left(220 \cdot 10^{-9}+2 \cdot 44 \cdot 90^{2} \cdot 10^{-12}\right)}} \cong 32 \mathrm{Khz}
\end{gathered}
$$

The obtained result theoretically is very much similar to the measured one and the slight difference is mainly due to the simplifications applied in the mathematical model.
Fig. 43 shows the current and voltage behavior when lamps are connected.
Figure 43: $\mathbf{v}_{\mathrm{L} 1}, \mathrm{i}_{\mathrm{L} 1}$ and i_{ak} measurements during the lamps on-state

Now, focusing the attention on Q_{1}, considering the lamps on, the following figures show the power bipolar STN790A and the power MOSFET STS3DPFS30 characteristics (steady state, turn off) considering three different input voltages 12 V (standard condition), 10.8 V and 13.2 V ($+-10 \%$ of the nominal voltage condition). The tables, following the graphs below, summarize the main electrical parameters. Furthermore, waveforms regarding the free wheeling diode D_{1} working under the same above-mentioned conditions are included.
Figure 44: STN790A steady state ($\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}$)

Figure 45: STN790A turn off $\left(\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}\right)$

Figure 46: STN790A turn on $\left(\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}\right)$

Figure 47: STS3DPFS30 steady state ($\left.\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}\right)$.

Figure 48: STS3DPFS30 turn off ($\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}$)

| Figure 49: STS3DPFS30 turn on (Vdc=12V).

Figure 50: STN790A steady state $\left(\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}\right)$.

Figure 51: STN790A turn off (Vdc=10.8 V).

Figure 52: STN790A turn on ($\mathrm{V}_{\mathrm{dc}}=10,8 \mathrm{~V}$).

Figure 53: STS3DPFS30 steady state ($\mathrm{V}_{\mathrm{dc}}=10,8 \mathrm{~V}$).

Figure 54: STS3DPFS30 turn off ($\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}$).

Figure 55: STS3DPFS30 turn on ($\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}$).

Figure 56: STN790A steady state ($\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}$)

Figure 57: STN790A turn off $\left(\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}\right)$

Figure 58: STN790A turn on ($\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}$)

Figure 59: STS3DPFS30 steady state $\left(\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}\right)$

Figure 60: STS3DPFS30 turn off ($\mathrm{V}_{\mathrm{dc}}=\mathbf{1 3 . 2 V}$)

Figure 61: STS3DPFS30 turn on $\left(\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}\right)$

Figure 62: 1 N 5821 steady state $\left(\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}\right)$

Figure 63: 1N5821 turn off $\left(V_{d c}=12 \mathrm{~V}\right)$

Figure 64: 1N5821 turn on ($\mathrm{V}_{\mathrm{dc}}-12 \mathrm{~V}$)

igure 65: 1 N 5821 steady state $\left(\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}\right)$

Figure 66: 1N5821 turn off $\left(\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}\right)$

Figure 67: 1N5821 turn on $\left(\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}\right)$

Figure 68: 1N5821 steady state ($\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}$)

Figure 69: 1N5821 turn off $\left(\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}\right)$

Figure 70: 1N5821 turn on ($\mathrm{V}_{\mathrm{dc}}-13.2 \mathrm{~V}$)

Tab II: Main measured electrical parameters.

	STN790A	STS3DPFS30
Vdc		
Idc	12 V typ	12 V typ
Vce_sat@Ic=1 A and lb=15mA	145 mV	1 A
Rds(on)@Id=1,15 A and Vsg=9 V	--------	
Hfe @ Ic=1 A and Vec=1 V	169	102 mOhm
Frequency	$90,0 \mathrm{Khz}$	----
Tcase	$71^{\circ} \mathrm{C}$	$89,7 \mathrm{Khz}$
Turn-off Energy	974 nJ	$49{ }^{\circ} \mathrm{C}$
Turn-on Energy	1508 nJ	649 nJ
Turn-off time	204 ns	160 nJ
Turn-on time	316 ns	375 ns
Ic_max	$1,44 \mathrm{~A}$	-----
Id_max	-----	$1,37 \mathrm{~A}$
Duty cycle	79%	81%
Ibon	12 mA	----
Vsg	-----	$11,5 \mathrm{~V}$
Iboff_max	-16 mA	-----
Vsd_max	-----	13 V
Vec_max	15 V	----

Tab III: Main measured electrical parameters.

	STN790A	STS3DPFS30
Vdc		
Idc	$10,8 \mathrm{~V}$	$10,8 \mathrm{~V}$
Vce_sat@lc=1 A and Ib=15mA	145 mV	$1,12 \mathrm{~A}$
Rds(on)@ld=1,15 A and Vsg=9 v	--------	
Hfe @ Ic=1 A and Vec=1 V	169	102 mOhm
Frequency	$89,8 \mathrm{Khz}$	-----
Tcase	$72^{\circ} \mathrm{C}$	$90,0 \mathrm{Khz}$
Turn-off Energy	905 nJ	$47{ }^{\circ} \mathrm{C}$
Turn-on Energy	1634 nJ	652 nJ
Turn-off time	204 ns	387 nJ
Turn-on time	384 ns	180 ns
Ic_max	$1,45 \mathrm{~A}$	104 ns
Id_max	--------	
Duty cycle	90%	$1,31 \mathrm{~A}$
Ibon	$12,5 \mathrm{~mA}$	90%
Vsg	-----	-----
Iboff_max	-16 mA	$10,3 \mathrm{~V}$

Tab IV: Main electrical parameters measured.		
	STN790A	STS3DPFS30
Vdc	$13,2 \mathrm{~V}$	$13,2 \mathrm{~V}$
Idc	$0,89 \mathrm{~A}$	$0,89 \mathrm{~A}$
Vce_sat@Ic=1 A and Ib=15mA	145 mV	-----
Rds(on)@\|d=1,15 A and Vsg=9 V	-----	102 mOhm
Hfe @ Ic=1 A and Vec=1 V	169	-----
Frequency	$89,8 \mathrm{Khz}$	$89,7 \mathrm{Khz}$
Tcase	$68^{\circ} \mathrm{C}$	$50{ }^{\circ} \mathrm{C}$
Turn-off Energy	1082 nJ	640 nJ
Turn-on Energy	1381 nJ	377 nJ
Turn-off time	204 ns	144 ns
Turn-on time	292 ns	100 ns
Ic_max	$1,50 \mathrm{~A}$	-----
Id_max	-----	$1,34 \mathrm{~A}$
Duty cycle	73%	74%
Ibon	15 mA	-----
Vsg	-----	$12,4 \mathrm{~V}$
Iboff_max	-16 mA	-----
Vsd_max	-----	14 V
Vec_max	16 V	-----

The aim of the table below is to show how stable is the power delivered to the lamps. In fact, the maximum power variation is always below 2% for fluctuations of input voltage of $+/-10 \%$.

Table V: Input power variation vs input voltage variation

Vdc	Idc	Pin	Delta_power
12 V	1 A	12 W	-----
$10,8 \mathrm{~V}$	$1,12 \mathrm{~A}$	$12,1 \mathrm{~W}$	0.83%
$13,2 \mathrm{~V}$	$0,89 \mathrm{~A}$	$11,8 \mathrm{~W}$	-1.69%

Furthermore, considering the above graphs and tables it is possible to see that the operation frequency is about 90 KHz , the duty cycle is in the range of $73-81 \%$ for all considered input voltages conditions, the max Ic (Id) current is about 1.5 A , the max $\mathrm{V}_{\mathrm{ec}}\left(\mathrm{V}_{\mathrm{sd}}\right)$ voltage is about 14 V .

Considering the STN790A device, the $I_{\text {bon }}$ (bipolar transistor base current during conductions) is about 13 mA and the $\mathrm{I}_{\text {boff }}$ (bipolar transistor base current during turn-off) is about -16 mA . Such values are achieved by means of a suitable STN790A polarization net, consisting in the $R_{2}-R_{3}-R_{4}-C_{1}$ components. Such net avoids having $\mathrm{I}_{\text {sink }}$ outside the maximum rating established for TSM108 and, in the meantime, it minimizes the turn off losses of the transistor. In open air, the measured case temperature of STN790A and STS3DPFS30 is about $70^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively. Such difference in temperature between STN790A and STS3DPFS30 is, in particular, due to the higher switching loss of the PNP power bipolar compared to the P channel power MOSFET and, however, it can be considered acceptable.
On the other hand, it is important to highlight that, during the turn on and the turn off, using the P channel power MOSFET, much more noise is observed compared to the PNP power bipolar switching behavior.

In the next graphs all the waveforms regarding STSA1805, mounted in PUSH-PULL converter, are showed considering the three input voltages under analysis.

Figure 71: STSA1805 steady state ($\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}$)

Figure 72: STSA1805 turn off ($\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}$)

Figure 73: STSA1805 turn on ($\mathrm{V}_{\mathrm{dc}}=12 \mathrm{~V}$)

Figure 74: STSA1805 steady state $\left(\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}\right)$

Figure 75: STSA1805 turn off $\left(\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}\right)$

Figure 76: STSA1805 turn on ($\mathrm{V}_{\mathrm{dc}}=10.8 \mathrm{~V}$)

Figure 77: STSA1805 steady state $\left(\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}\right)$

Figure 78: STSA1805 turn off $\left(\mathrm{V}_{\mathrm{dc}}=13.2 \mathrm{~V}\right)$

Figure 79: STSA1805 turn on $\left(\mathrm{V}_{\mathrm{dc}}=\mathbf{1 3 . 2 V}\right)$

Tab VI: Main electrical parameters measured.

	STSA1805	STSA1805	STSA1805
Vdc	12 V typ	$10,8 \mathrm{~V}$	$13,2 \mathrm{~V}$
Idc	1 A	$1,12 \mathrm{~A}$	$0,89 \mathrm{~A}$
Vce_sat@Ic=1 A and Ib=35mA	78 mV	78 mV	78 mV
Hfe @ Ic=1,4 A and Vec=1 V	305	305	305
Frequency	$40,0 \mathrm{Khz}$	$40,3 \mathrm{Khz}$	$40,4 \mathrm{Khz}$
Tcase	$41^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{C}$
Turn-off Energy	1131 nJ	959 nJ	976 nJ
Turn-on Energy	Negligible	Negligible	Negligible
Ic_max	$1,58 \mathrm{~A}$	$1,45 \mathrm{~A}$	$1,39 \mathrm{~A}$
Ibon	35 mA	35 mA	35 mA
Iboff_max	-122 mA	-121 mA	-126 mA
Vce_max	31 V	30 V	31 V

In the above graphs and table it is possible to see that the operation frequency is about 40 KHz , the $\mathrm{I}_{\text {bon }}$ is about 35 mA , the max $\mathrm{V}_{\text {ce }}$ is about 32 V and the $\max \mathrm{I}_{\mathrm{c}}$ is about 1.5 A for all the powering conditions. From the thermal measurement, the case temperature for STSA1805 is $41^{\circ} \mathrm{C}$.

The measured case temperature of the TSM108 is $29^{\circ} \mathrm{C}$ in all conditions, the ambient temperature is $25^{\circ} \mathrm{C}$.

13. CONCLUSIONS

This paper has showed an example on how a CCFL application can be designed and realized using the TSM108, the power bipolar transistors STN790A (or the Power MOSFET STS3DPFS30), STSA1805 and the SCHOTTKY diode 1N5821.
In particular, a detailed theoretical model of the system has been built and the validation of the results has given confirmation of the decided approach. Based on the very good results achieved, this technical paper offers a valid support to whoever is interested in designing such kind of lighting systems.
The application shows a very good operation and it is stable considering the several input voltage conditions. The application uses the 'ROYER' topology and by means of a sensing circuitry it fixes the lamps brightness considering a net fluctuation. In fact, for variations of $+/-10 \%$ of the nominal powering voltage, the application power variation is always less than 2%. Furthermore, acting on a P trimmer it is possible to regulate the lamps brightness changing the PNP power bipolar duty cycle, or the P channel power MOSFET one.
Such a design considers an output solution with two 6W lamps connected in parallel, but tuning the capacitors and the resistors components any output topology, considering several lamps, can be achieved using the same STMicroelectronics' devices. This design allows, acting on the P trimmer, the output power on the lamps to be fixed between the $2-16 \mathrm{~W}$ range and the application is enabled when the input voltage is in the range of $8.5-15.5 \mathrm{~V}$. The operation frequency of the transistor Q_{1}, in the BUCK converter part, is fixed at about 90 KHz . The application shows a good electrical and thermal behavior considering both the solutions with STN790A (PNP power bipolar) and STS3DPFS30 (P channel power MOSFET). In particular, the measured case temperature of the device STN790A under open air condition, is in the worst case about $70^{\circ} \mathrm{C}$ compared to the $50^{\circ} \mathrm{C}$ of STS3DPFS30 (such a device has also an integrated SCHOTTKY diode included in the same package). The reason for the difference in the case temperature measured on the two devices is due, in particular, to the higher switching losses of the power bipolar transistor compared to the power MOSFET transistor, and anyway is acceptable for this design. On the other hand, it is important to highlight that, during the turn on and the turn off, of the P channel power MOSFET much more noise was observed compared to the PNP power bipolar. The reason for such a behavior is mainly due to the higher speed of the MOSFET compared to the bipolar transistor. The analysis results achieved in this experiment demonstrate that the TSM108 and the power transistors STN790A, or STS3DPFS30, and the STSA1805 can be used in order to realize the CCFL applications.

Table 6: Revision History

Date	Revision	Description of Changes
28-Apr-2004	1	First Release
18-Jun-2004	2	Some spelling mistakes were corrected

55/56

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

