EMERGENCY LIGHTING APPLICATIONS

G. Consentino

1. ABSTRACT

This application note shows the topologies implemented in the Emergency Lighting Applications and the STMicroelectronics's power bipolar transistors used.
Today, the Emergency Lamps market has grown considerably due to the new improved safety rules. In fact, the Emergency Lamps are used in all public places and, also, in private homes replacing the traditional lighting applications.

2. STSA851 DESCRIPTION

The STMicroelectronics's power bipolar transistor STSA851 is housed in the TO-92 package. This device is manufactured in NPN planar technology using a 'Base Island' layout that involves a very high gain performance and a very low saturation voltage.
The main characteristics of the STSA851 device are:

1) $V_{\text {ceo }} \geq 60 \mathrm{~V}$;
2) $V_{\text {ces }} \geq 150 \mathrm{~V}$;
3) $V_{\text {ebo }} \geq 7 \mathrm{~V}$;
4) $I_{C}=5 \mathrm{~A}$ (continuous current);
5) $\mathrm{I}_{\mathrm{b}}=1 \mathrm{~A}$ (continuous current);
6) $\mathrm{V}_{\mathrm{ce}(\mathrm{sat})}=140 \mathrm{mV}$ (typ) @ $\mathrm{Ib}=50 \mathrm{~mA} @ \mathrm{Ic}=2 \mathrm{~A}$ (typical conditions);
7) $\mathrm{H}_{\mathrm{fe}}=270$ (typ) @ Ic = $2 \mathrm{~A} @ \mathrm{~V}_{\mathrm{ce}}=1 \mathrm{~V}$ (typical conditions).

3. HIGH EFFICIENCY DC-AC CONVERTERS

The part of the circuit used to drive the emergency lamp is composed of DC-AC converters. The DC-AC converters transform the low DC input voltage in high AC output voltage required by the fluorescent tube. Fluorescent tubes are employed in these applications because they are much more efficient at converting electrical energy into light than conventional incandescent bulbs increasing the battery life. Usually, DC-AC converters used in these applications are the Push-Pull switching converter forced to run in synchronized mode by the inclusion of a supply inductor, and the Forward converter. Mainly, the DCAC converters have suitable transformers that increase the output voltage and allow the electrical isolation between the secondary and primary of the transformer, and suitable switches. Usually, the switches are power bipolars driven by a third winding magnetically coupled to the transformer, like in the PUSH-PULL current FED converter.

The power bipolar transistor collector current I_{C} depends on the load, turns rapport

$$
\begin{equation*}
\mathrm{K}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1} / 2} \tag{3.1}
\end{equation*}
$$

where N_{2} is the secondary turn number and N 1 is the primary turn number of the transformer, and it also depends on the battery voltage.
Usually, in these applications the lamp power is in the range of $8-24 \mathrm{~W}$, and the turns rapport

$$
\begin{equation*}
\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1} / 2} \tag{3.2}
\end{equation*}
$$

is about 30 , the current I_{c} is in the range of $1.5-3.0 \mathrm{~A}$. Furthermore, usually, the emergency lighting boards are powered with an input voltage in the range of $3.6-6.0 \mathrm{~V}_{\mathrm{dc}}$ so that the typical $\mathrm{V}_{\text {ce_max }}$ is around $10-20 \mathrm{~V}_{\mathrm{dc}}$. The voltage and current values ranges, $\mathrm{V}_{\text {ce_max }}$ and Ic , are inside the SOA of the STSA851 so that these devices can be used in all emergency lighting applications. The emergency lamp applications drive a lamp up to 58 W . Usually, these emergency lighting applications do not supply such output powers but only $10-20 \%$ of the nominal lamp power. Sometimes, such applications are used to power lamps that commonly light up rooms. When the net voltage disappears the emergency lamp switches on supplying around $10-20 \%$ of the nominal lamp power just to light up the room.

4. FLUORESCENT TUBE CHARACTERISTICS

Fluorescent lamps are generally made with tubes filled with a gas mixture at a low pressure. The inner sides of the tubes are covered with fluorescent elements. When the net voltage disappears, before the tube lights on, the lamp has a higher resistance. In this moment, the electrodes voltage increases up to around 500 V and the electrodes start to warm up and emit ions. Figures 1 and 2 show the V -time and Itime waveforms and the V-I waveform respectively before the start-up of a 24 W tube.
Figure 1: V-time and I-time Waveforms Before the Striking

Figure 2: V-I waveform before the striking

As shown above, to strike the fluorescent tube the electrodes voltage reaches up to 505 V of peak. Furthermore, the current that flows through the lamp is very low, 56 mA , because the resistance before the striking is high (around 10 KOhm).
When the fluorescent lamp lights on, the gas mixture inside is fully ionized, and an arc across the electrodes occurs. In this new condition, the lamp resistance drops to around 1 KOhm value (Figures 3 and 4 show the V-time and I-time waveforms and the V-I waveform after the striking.

Figure 3: V-time and I-time waveforms after the striking

Figure 4: V-I waveform after the striking

After the striking, the gas mixture emits radiations that excite the fluorescent elements inside the tube producing the light in the visible spectrum. In this example, after the striking, the voltage across the electrodes drops from 505 V of peak to 220 V of peak and the current increases from 56 mA of peak to 158 mA of peak.

Usually, after the striking, in order to increase the lamp efficiency up to 15%, the operation frequency is in the range of $25-30 \mathrm{KHz}$. Furthermore, as shown in Fig. 4, the waveform I-V has a linear behavior until the established voltage value is kept. In fact, if the voltage across the electrodes overcomes this established voltage value, the characteristic becomes flat because no ion can emit other radiations.

5. PUSH-PULL CURRENT FED CONVERTER TOPOLOGY INTRODUCTION

As previously exposed, a topology solution for emergency lighting applications is the PUSH-PULL current FED converter topology. This topology solution has a Push-Pull switching converter forced to run in synchronized mode by the inclusion of a supply inductor.

Figure 5: PUSH-PULL current FED converter schematic circuit

The components values of capacitors, resistors, and inductors are selected operation on the input voltage, power lamp, and operation frequency.

6. TRANSFORMER DESCRIPTION OF PUSH-PULL TOPOLOGY

In figure 5 the transformer named T_{1} has three windings. The primary winding vices are connected to the collectors of the NPN power bipolar transistors Q_{1} and Q_{2}. The same primary winding has a central vice where the inductor L_{1} is connected. The secondary winding vices are connected to the load.

The third winding vices are connected to the base of the transistors Q_{1} and Q_{2} so that when the first is on, the second is off and vice versa. During the Q_{2} on state, the current flows through the same device and the respective half primary winding and vice versa. Usually the primary inductance LT of the transformer T_{1} is much lower compared to the inductance L_{1}. The resonance frequency of the PUSH-PULL converter is also due to LT. N_{2} (secondary winding turns) and $N_{1} / 2$ (half primary winding turns) rapport is around 60 , while $N_{1} / 2$ and N_{3} (third winding turns) rapport is around 5 . Considering a $6 \mathrm{~V}_{\mathrm{dc}}$ input voltage, the voltage $v_{1 \text { max }}$ (the max voltage across the vice of the primary winding central point and the reference) can be written as:

$$
\begin{equation*}
\mathrm{v}_{1 \max }=\frac{\pi}{2} \cdot \mathrm{~V}_{\mathrm{dc}}=\frac{3.14}{2} 6 \cong 9 \mathrm{~V} \tag{6.1}
\end{equation*}
$$

$\mathrm{v}_{2 \text { max }}$ (the max voltage across the secondary winding vices) can be written as:

$$
\begin{equation*}
\mathrm{V}_{2 \max }=\frac{\pi}{2} \cdot \mathrm{~V}_{\mathrm{dc}} \frac{\mathrm{~N}_{2}}{\left(\mathrm{~N}_{1} / 2\right)}=\frac{3.14}{2} 6 * 60 \cong 560 \mathrm{~V} \tag{6.2}
\end{equation*}
$$

$\mathrm{v}_{3 \text { max }}$ (the max voltage across the vices of the third winding) can be written as:

$$
\begin{equation*}
\mathrm{V}_{3 \max }=\frac{\pi}{2} \cdot \mathrm{~V}_{\mathrm{dc}} \frac{\mathrm{~N}_{3}}{\mathrm{~N}_{1} / 2}=\frac{3.14}{2} 6 * \frac{1}{5} \cong 2 \mathrm{~V} \tag{6.3}
\end{equation*}
$$

As exposed above, it is highlighted $N_{1} / 2$ and not N 1 . In order to understand the reason of it, it is necessary to consider the graph below.

Figure 6: Particular of $\mathrm{T}_{\mathbf{1}}$

When Q_{2} is on, Q_{1} is off and vice versa. Now, considering fig. 6 where T_{2} is on; the current 'l' flows through the half primary winding 'b' and it generates a magnetic force (Hopkinson law):

$$
\begin{equation*}
\frac{N_{1}}{2} \cdot I=\Re \cdot \Phi \tag{6.4}
\end{equation*}
$$

Φ is the magnetic flux and \Re is the magnetic reluctance of the T1 core; Φ can be written as:

$$
\begin{equation*}
\Phi=\frac{\frac{N_{1}}{2} \cdot l}{\Re} \tag{6.5}
\end{equation*}
$$

\Re can be written as:

$$
\begin{equation*}
\Re=\frac{1}{\mu \cdot A} \tag{6.6}
\end{equation*}
$$

μ is the core permeability, A is the core section and I is the core length. When T_{2} switches off, T_{1} switches on, the current flows through the other half primary winding 'a' and the flux Φ inverts its direction. Such flux flows into the transformer core creating a link with N_{2}, N_{3} and also with the other
turns $N_{1} / 2$, generating the voltages v_{2} and v_{3} (magnetic law-Lenz law):

$$
\begin{gather*}
v_{2}=-N_{2} \frac{\Delta \Phi}{\Delta t} ; \\
v_{3}=-N_{3} \frac{\Delta \Phi}{\Delta t} ; \tag{6.7}\\
v_{1 / 2}=-\frac{N_{1}}{2} \frac{\Delta \Phi}{\Delta t} \\
\frac{v_{2}}{v_{1}}=\frac{N_{2}}{N_{1}} / 2, \frac{v_{3}}{v_{1}}=\frac{N_{3}}{N_{1}}, \frac{v_{c 2}}{v_{1}}=2 \tag{6.8}
\end{gather*}
$$

Furthermore, i_{2} (the current that flows through the lamp) can be written as:

$$
\begin{equation*}
i 2=I \frac{N_{1} / 2}{N_{2}}=I \frac{1}{K} \tag{6.9}
\end{equation*}
$$

In fact, the apparent input power can be written as:

$$
\begin{equation*}
A_{i n}=v_{1} l \tag{6.10}
\end{equation*}
$$

The output power can be written as:

$$
\begin{equation*}
A_{\text {out }}=v_{2} i_{2} \tag{6.11}
\end{equation*}
$$

Considering an ideal transformer:

$$
\begin{gather*}
v_{2} i_{2}=v_{1} I \tag{6.12}\\
\frac{i_{2}}{l}=\frac{v_{1}}{v_{2}}=\frac{N_{1} / 2}{N_{2}}=\frac{1}{k} \tag{6.13}
\end{gather*}
$$

Before the lamp strike, or when the lamp is disconnected, the operation frequency (about 60 KHz) is due to the resonance between C_{2} and the primary transformer winding inductance LT (see fig. 7).
Figure 7: Resonant Schematic Circuit Before the Lamp Strike

$$
\begin{equation*}
f=\frac{1}{2 \cdot \pi \sqrt{L T C 2}} \tag{6.14}
\end{equation*}
$$

When the lamp is connected, the transformer circuit can be showed as in the graph below.
Figure 8: Ideal Schematic Circuit of the Transformer After the Lamp Strike

The input apparent power can be written as:

$$
\begin{equation*}
A_{i n}=v_{1} i_{1} \tag{6.15}
\end{equation*}
$$

Now it is possible to consider an equivalent circuit to fig. 8, as in fig. 9, where the apparent input power is equal.
Figure 9: Equivalent Schematic Circuit of the Transformer After the Lamp Strike

Furthermore, after the lamp strike, the resonant schematic circuit can be represented as in figure 10 where, usually, the operation frequency is due to $L T, C_{2}$ and $C_{1} K^{2}(25-30 \mathrm{KHz})$.

Figure 10: Resonant Schematic Circuit of the Transformer After the Lamp Strike

In this transformer equivalent circuit the output impedance has been transferred from the secondary winding to the primary winding.

$$
\begin{gather*}
v_{1} I=v_{2} i_{2}=i_{2}^{2}\left(R_{\text {Lamp }}-j \frac{1}{\omega \cdot C_{1}}\right) \tag{6.16}\\
\frac{v_{1} I}{i_{2}^{2}}=\left(R_{\text {Lamp }}-j \frac{1}{\omega \cdot C_{1}}\right)=\frac{V_{1}}{i_{2}} \frac{l}{i_{2}}=\frac{v_{1}}{l} \frac{N_{2}^{2}}{\left(N_{1} / 2\right)^{2}}=\frac{v_{1}}{l} k^{2} \tag{6.17}\\
\frac{v_{1}}{l}=z_{\text {eq1 }}=\frac{1}{k^{2}}\left(R_{\text {Lamp }}-j \frac{1}{\omega \cdot C_{1}}\right) \tag{6.18}
\end{gather*}
$$

Where:

$$
\begin{equation*}
\frac{R_{L A M P}}{k^{2}} \tag{6.19}
\end{equation*}
$$

is the primary equivalent resistance and where:

$$
\begin{equation*}
C_{1} K^{2} \tag{6.20}
\end{equation*}
$$

is the primary equivalent capacitance.
Now, the equivalent primary admittance ($\mathrm{Y}_{\mathrm{eq} 1}$) can be written as:

$$
\begin{equation*}
Y_{e q 1}=\frac{-j}{\omega \cdot L T}+j \omega \cdot C_{2}+\frac{k^{2} j \omega C_{1}}{\left(1+j C R_{L a m p} \omega\right)} \tag{6.21}
\end{equation*}
$$

and where:

$$
\begin{equation*}
\frac{k^{2} j \omega \cdot C_{1}}{\left(1+j C R_{\text {Lamp }} \omega\right)} \tag{6.22}
\end{equation*}
$$

is the admittance of the series net

$$
\begin{equation*}
\frac{R_{\text {Lamp }}}{k^{2}}-C_{1} k^{2} \tag{6.23}
\end{equation*}
$$

Considering

$$
\begin{equation*}
\frac{R_{\text {Lamp }}}{k^{2}} \tag{6.24}
\end{equation*}
$$

negligible compared to

$$
\begin{equation*}
\frac{1}{\omega \cdot C_{1} k^{2}} \tag{6.25}
\end{equation*}
$$

deriving $Y_{\text {eq1 }}$ compared to the pulsation and equal to zero, it is possible to achieve the frequency that maximizes, the $\mathrm{Y}_{\text {eq } 1}$ (such frequency is the resonance frequency of the application during the lamps on state).

$$
\begin{align*}
& \omega^{2} \cong \frac{1}{L T\left(C_{2}+k^{2} C_{1}\right)} \tag{6.26}\\
& f \cong \frac{1}{2 \cdot \pi \sqrt{L T\left(C_{2}+k^{2} C_{1}\right)}} \tag{6.27}
\end{align*}
$$

When the board is powered, R_{1} and R_{2} enable Q_{1} and Q_{2} and the lamp turns on. After the lamp start-up, during the Q_{2} on state, the current flows through L_{1}, the half primary winding transformer T_{1} and Q_{2}, and it increases as:

$$
\begin{equation*}
\operatorname{tg} \alpha=\frac{v_{L 1}{ }^{*} \Delta t}{L_{1}} \tag{6.28}
\end{equation*}
$$

angular coefficient but, after a while, the current curves and it becomes flat. However, in the permanent state, even if the current oscillates around its average value, there is a ripple of this same value. The current ripple decreases increasing the inductance value L_{1}.
Figure 11 shows the PUSH-PULL current FED converter schematic circuit with the theoretical waveform of ' I '.
Figure 11: PUSH-PULL Current FED Converter Schematic Circuit with the Theoretical Waveform

After the strike, ' l ' generates the current i_{2} and, at the beginning, the same i_{2} can be written as:

$$
\begin{equation*}
i_{2}=\frac{V_{2}}{R_{\text {Lamp }}} \tag{6.29}
\end{equation*}
$$

because the capacitor C_{1} is discharged. Immediately after, C_{1} gets charged and i_{2} decreases to zero until the voltage across C_{1} reaches the maximum value. A this time, the current i_{2} inverts its direction and the capacitors C_{1} start discharging until the charge inside it becomes zero and the current i_{2} reaches its maximum negative value. Furthermore, when i_{2} inverts itself, also the voltage across the third winding inverts its direction so that Q_{2} switches off and Q_{1} switches on and 'I' flows through the other half primary winding of the transformer T_{1} (see fig. 11).

Figure 12: PUSH-PULL Current FED Converter Schematic Circuit with $\mathbf{v}_{\mathbf{c} 1}, \mathbf{v}_{\mathbf{c} 2}, \mathrm{i}_{\mathbf{2}}$, and $\mathbf{v}_{\mathbf{t} 1 \mathrm{~b} 2}$ Theoretical Waveforms

In the above graph, $v_{c 2}$ is the voltage between the vices of the Q_{1} and Q_{2} collectors. The maximum value of such voltage is twice v_{1}, where v_{1} is the voltage between the vices of the central point of the primary winding of T_{1} and the reference. The voltage v_{1} is a half positive sine wave and this reaches the maximum value when Q_{1} or Q_{2} are on, while it drops to zero during the turn-off and the turn-on of the same transistors (see fig. 13).

Figure 13: PUSH-PULL current FED converter schematic circuit with $\mathrm{v}_{\mathrm{c} 2}, \mathrm{v}_{1}$, and $\mathrm{v}_{\mathrm{L} 1}$ theoretical waveforms

The figure above also highlights the $\mathrm{v}_{\mathrm{L} 1}$ voltage. This is the voltage across L_{1} and it is achieved considering the difference between V_{dc} and v_{1}.
Now focusing the attention on only one half-period of v_{1} as showed in fig. 14, it is evident that the area $A 2$ must be equal to the area $A 1$ because v_{1} and $V_{d c}$ must have the same average value.

Figure 14: v_{1} waveforms

A1 can be written as:

$$
\begin{equation*}
A 1=V_{d c} \frac{T}{2} \tag{6.30}
\end{equation*}
$$

A2 can be written as:

$$
\begin{array}{r}
A 2=\int_{0}^{\frac{T}{2}} V 1 \max \operatorname{sen}\left(\frac{2 \pi}{T}\right) t d t= \\
=\frac{T}{2 \pi} V 1_{\max }\left[-\cos \left(\frac{2 \pi}{T}\right) t\right]_{0}^{\frac{T}{2}}=\frac{T}{\pi} V_{1 \max } \tag{6.31}
\end{array}
$$

considering:

$$
\begin{equation*}
\mathrm{A} 1=\mathrm{A} 2 \tag{6.32}
\end{equation*}
$$

$$
\begin{equation*}
V \frac{T}{2}=\frac{T}{\pi} V_{1 \max } \Rightarrow V_{1 \max }=\frac{\pi}{2} V_{d c} \tag{6.33}
\end{equation*}
$$

$\mathrm{v}_{\mathrm{c} 2 \text { max }}$ can be written as:

$$
\begin{equation*}
V_{2 \max }=\pi \cdot V_{d c} \tag{6.34}
\end{equation*}
$$

$v_{c 2 m a x}$ is also the maximum voltage value between the collector-emitter vices of Q_{1} or Q_{2}.
The theoretical voltages and the currents waveforms of Q_{1} or Q_{2} are shown below.

Figure 15: Q_{1} and Q_{2} theoretical waveforms

Ic1 and Ic2 can be written as:

$$
\begin{align*}
& I_{\text {c1 } \max }=I_{2 \max } \frac{N_{2}}{N_{1} / 2} \tag{6.35}\\
& P_{\text {out }}=R_{\text {Lamp }}\left(\frac{I_{\max }}{\sqrt{2}}\right)^{2} \tag{6.36}
\end{align*}
$$

$$
\begin{gather*}
I_{2 \max }=\sqrt{2 \frac{P_{\text {out }}}{R_{\text {Lamp }}}} \tag{6.37}\\
I_{\text {c } 1 \text { max }}=\frac{N_{2}}{N_{1} / 2} \sqrt{2 \frac{P_{\text {out }}}{R_{\text {Lamp }}}} \tag{6.38}
\end{gather*}
$$

R_{1} and R_{2} can be also used to adjust the $I_{b 1 o n}$ and $I_{b 2 o n}$.
Now focusing the attention on only one half-period of $\mathrm{v}_{\mathrm{L} 1}$:

Figure 16: $\mathrm{v}_{\mathrm{L} 1}$ theoretical waveform detail

After the lamps strike ' I ' fluctuates around its average value:

$$
\begin{equation*}
I_{\max }-I=I-I_{\min }=\Delta I \tag{6.39}
\end{equation*}
$$

because:

$$
\begin{equation*}
v_{\text {med }}=0 \tag{6.40}
\end{equation*}
$$

where $v_{\text {med }}$ is the average value of L_{1}.
$v_{\text {med }}$ can be written as:

$$
\begin{equation*}
v_{\text {med }}=\frac{(A+D-B-C)}{T} \tag{6.41}
\end{equation*}
$$

T is the period of $\mathrm{v}_{\mathrm{L} 1}$.

$$
\begin{gather*}
A+D=B+C \tag{6.42}\\
A=B \tag{6.43}\\
C=B, D=A \tag{6.44}
\end{gather*}
$$

$v_{\mathrm{L} 1}$ can be written as:

$$
\begin{equation*}
v_{L 1}=V_{d c}-\frac{\pi}{2} V_{d c} \cdot \operatorname{sen}\left(\frac{2 \cdot \pi}{T} t\right) \tag{6.45}
\end{equation*}
$$

t^{\prime} is the time when $\mathrm{v}_{\mathrm{L} 1}$ is zero:

$$
\begin{gather*}
0=V_{d c}-\frac{\pi}{2} V_{d c} \cdot \operatorname{sen}\left(\frac{2 \cdot \pi}{T} t^{\prime}\right) \tag{6.46}\\
t^{\prime}=\frac{T}{2 \cdot \pi} \operatorname{arcsen}\left(\frac{2}{\pi}\right) \tag{6.47}
\end{gather*}
$$

Considering that:

$$
\begin{gather*}
\Delta I_{\max \%}=\frac{\Delta I_{\max }}{I_{\operatorname{med}}} \tag{6.48}\\
\Delta I_{\max \%} \cdot I_{\operatorname{med}}=\Delta I_{\max } \tag{6.49}
\end{gather*}
$$

Considering the Lenz law:

$$
\begin{equation*}
v_{\text {med }}=L_{\operatorname{lmin}} \frac{\Delta l_{\max }}{\Delta t} \tag{6.50}
\end{equation*}
$$

It is possible to achieve $L_{\text {min }}$ (the minimum L_{1} value that allows the established current ripple to be obtained) as:

$$
\begin{equation*}
L_{\min }=\frac{\Delta t}{\Delta \operatorname{Im} a x} v_{\operatorname{med}} \tag{6.51}
\end{equation*}
$$

During the time interval $0-t^{\prime}$ I increases by:

$$
\begin{equation*}
\frac{\Delta I_{\max }}{2} \tag{6.52}
\end{equation*}
$$

$\mathrm{v}_{\text {med }}$ can be written as:

$$
\begin{gather*}
v_{m e d}=\frac{1}{t^{\prime}} \int_{0}^{t^{\prime}} v_{L 1} \cdot d t=\frac{1}{t^{\prime}} \int_{0}^{t^{\prime}}\left[V_{d c}-\frac{\pi}{2} V_{d c} \cdot \operatorname{sen}\left(\frac{2 \cdot \pi}{T} t\right)\right] d t \tag{6.53}\\
v_{m e d}=\frac{1}{t^{\prime}}\left\{V_{d c} \cdot t^{\prime}-\frac{T}{4} V_{d c}\left[1-\cos \left(\frac{2 \cdot \pi}{T} t^{\prime}\right)\right]\right\} \tag{6.54}
\end{gather*}
$$

$L_{1 \text { min }}$ can be written as:

$$
\begin{equation*}
L_{I \min }=\frac{2}{\Delta I_{\max }}\left\{V_{d c} \cdot t^{\prime}-\frac{T}{4} V_{d c}\left[1-\cos \left(\frac{2 \cdot \pi}{T} t^{\prime}\right)\right]\right\} \tag{6.55}
\end{equation*}
$$

7. EXAMPLE OF AN EMERGENCY LAMP APPLICATION

The following example takes into consideration a real emergency lamp application with a PUSH-PULL current FED converter topology using a 24 W lamp and powered with $6 \mathrm{~V}_{\mathrm{dc}}$ with STSA851.
The graph below shows I_{C}, I_{b}, and $V_{c e}$ waveforms of the STN851 device when the lamp is connected.

Figure 17: Steady state of STSA851

The following graphs show the turn-off and turn-on switch modes respectively.

Figure 18: Turn-off of STSA851

Figure 19: Turn-on of STSA851
(Teksomp 100MS/s

In these graphs it is possible to see that the operation frequency is around $30 \mathrm{KHz}, \mathrm{I}_{\mathrm{c}}$ is around 2.4 A and that $I_{b o n}$ is around 70 mA . The I_{b} spike during the turn-on switch mode is due to the collector-base junction charge, while, the negative I_{b} spike during the turn-off switch mode is due to the storage charges extraction. Furthermore, in this example, during the turn-off switch mode, the dissipated energy is due to a C_{2}, discharging on the power bipolar device, that decelerates I_{C} decreasing. Sometimes, in order to decrease the turn-off dissipated energy, two capacitors between the vices of the collector-emitter of both devices are connected.
The figure below shows the steady state of the STSA851 device without the lamp.
Figure 20: Steady state of STSA851 without the lamp

In this case the operation frequency is around 60 KHz .
The current and the voltage values measured on the power bipolar device are inside the STSA851 specifics.

The next graphs show the $v_{L 1}$, 'I' and $v_{c 2}$ waveforms with and without lamp respectively.
Figure 21: $\mathrm{v}_{\mathrm{L} 1}$ and I Waveforms With Lamp Connected

Figure 22: $\mathrm{v}_{\mathrm{c} 2}$ Waveform With Lamp Connected

Figure 23: $\mathrm{v}_{\mathrm{L} 1}$ and I Waveforms Without Lamp Connected

Figure 24: $\mathrm{v}_{\mathrm{c} 2}$ Waveform Without Lamp Connected

8. FORWARD VOLTAGE FED CONVERTER TOPOLOGY

As previously exposed, another topology solution for emergency lighting applications is the FORWARD voltage FED converter solution that uses a transformer with three windings.
Figure 25: FORWARD Voltage FED Converter Schematic Circuit

As shown in the PUSH-PULL current FED converter solution, the components values of capacitors, resistors, and inductors are designed in order to have an operation frequency of around 30 KHz , after the lamp strike and before too, in order to supply the right voltages to the load before and after the lamp strike considering the voltage value of the battery.
When the board is powered, a suitable trigger circuitry, usually consisting of a small signal bipolar transistor and a resistor, enables Q_{1} and, immediately after, a current flows through the $V_{\text {tr2a }}$ primary winding of the transformer $T_{r 2}$ and the same transistor. During the Q_{1} on state, the input battery voltage $V_{d c}$ is applied to the $V_{t r 2 a}$ vices winding and the same voltage appears in the vice of the second winding $T_{r 2 b}$, in fact, the coils number of the both windings is the same, but no current flows through $T_{r 2 b}$ because the diode D_{2} is disabled. At the same time, a voltage appears in the winding $V_{t r 2 c}$ and a current flows through the same winding depending on the output impedance. The $V_{\text {tr2c }}$ voltage depends on the input voltage battery V_{dc} by means of the N_{2} / N_{1} rapport.
In particular, $\mathrm{V}_{\text {tr2 }}$ can be written as:

$$
\begin{equation*}
V_{\mathrm{tt} 2 \mathrm{c}}=\mathrm{V}_{\mathrm{dc}} \frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}} \tag{8.1}
\end{equation*}
$$

$I_{1 \text { eff }}$, the RMS of the primary winding current, can be written as:

$$
\begin{equation*}
\mathrm{I}_{\text {eff }}=\mathrm{I}_{2 \text { eff }} \frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}} \tag{8.2}
\end{equation*}
$$

where N_{1} and N_{2} are the turn numbers of $V_{\text {tr2a }}$ and $V_{\text {tr2c }}$ respectively, $I_{\text {eff }}$ is the RMS of the lamp current and can be written as:

$$
\begin{equation*}
I_{\text {efff }}=\frac{V_{\mathrm{tr} 2 \mathrm{c}}}{Z_{\text {eq }}} \tag{8.3}
\end{equation*}
$$

where $Z_{\text {eq }}$ is the output impedance.

At the beginning, before the lamp strike, the lamp resistance is very high and the equivalent circuit can be showed as in the figure below.

Figure 26: Schematic Circuit Before the Lamp Strikes

Usually, the capacitor value of C_{3} is higher compared to the same of C_{2}, so that the simplified schematic circuit can be showed as in fig. 27.

Figure 27: Simplified Schematic Circuit Before the Lamp Strikes

It is also possible to consider an equivalent circuit as in fig. 28 where the output impedance is transferred in the primary of the transformer.
Figure 28: Equivalent Schematic Circuit Before the Lamp Strikes

The series net $\mathrm{K}^{2} \mathrm{C}_{2}-\mathrm{L}_{2} / \mathrm{K}^{2}$ can be written as:

$$
\begin{equation*}
\mathrm{j} \frac{\omega \cdot L_{2}}{K^{2}}-\mathrm{j} \frac{1}{\omega \cdot K^{2} C_{2}}=\mathrm{j} \frac{\omega^{2} L_{2} C_{2}-1}{\omega \cdot K^{2} \mathrm{C}_{2}} \tag{8.4}
\end{equation*}
$$

The equivalent impedance can be written as:

$$
\begin{equation*}
Z_{\text {eq }}=j \frac{?^{3} L_{1} L_{2} C_{2}-? \cdot L_{1}}{?^{2} \cdot C_{2}\left(L_{1} K^{2}+L_{2}\right)-1} \tag{8.5}
\end{equation*}
$$

Deriving $Z_{\text {eq }}$ from ω it is possible to obtain the resonance frequency.

$$
\begin{gather*}
\partial Z e q / \partial \omega=0 \tag{8.6}\\
\omega^{2}=1 / L_{2} C_{2} \Rightarrow f=1 / 2 \cdot \pi \sqrt{ } L_{2} C_{2} \tag{8.7}
\end{gather*}
$$

In order to know the resonance frequency after the lamp starts up, it is necessary to consider the schematic circuit with a short circuit condition.

Figure 29: Schematic circuit considering a short circuit condition

Furthermore, it is possible to consider the equivalent schematic circuit as in fig. 30 transferring the output impedance in the primary winding.

Figure 30: Equivalent Schematic Circuit Considering a Short Circuit Condition

The resonance frequency in this condition can be written as:

$$
\begin{equation*}
?^{2}=\frac{1}{L_{1} C_{2} K^{2}} \Rightarrow f=\frac{1}{2 \cdot p \sqrt{L_{1} C_{2} K^{2}}} \tag{8.8}
\end{equation*}
$$

Usually, the resonance frequency considering the output short circuit condition is lower compared to the resonance frequency before the lamp start-up condition. The resonance frequency after the lamp start-up has got a value which is between the frequency before the lamp start-up and the output short circuit frequency.

$$
\begin{equation*}
\frac{1}{2 \cdot p \sqrt{L_{1} C_{2} K^{2}}}<f<\frac{1}{2 \cdot p \sqrt{L_{2} C_{2}}} \tag{8.9}
\end{equation*}
$$

However, after the start-up, the resonance frequency is almost equal to the resonance frequency before the lamp start-up. Fig. 31 shows the resonance frequency after the lamp start-up considering several loads.

Figure 31: Resonance Frequency After the Lamp Start-up vs. Resistance Load

During the positive half-wave, i_{2} is the same as I_{b} because this flows through the base of the power bipolar transistor; instead, during the negative half-wave, when the current inverts its direction, i_{2} flows through the net $R_{1}-D_{1}$. At the same time, the voltages across $T_{r 2 a}, T_{r 2 b}$ and $T_{r 2 c}$ windings invert their directions, Q_{1} switches off, I_{c} drops to zero, and $V_{c e}$ increases up to:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ce}}=2 \mathrm{~V}_{\mathrm{dc}} \tag{8.10}
\end{equation*}
$$

the sum of the input battery voltage V_{dc} and the third winding voltage:

$$
\begin{equation*}
V_{\mathrm{tt} 2 \mathrm{a}}=\mathrm{V}_{\mathrm{dc}} \tag{8.11}
\end{equation*}
$$

However, after Q_{1} switches off, an extra-voltage can appear across collector-emitter vices due to a quick decrease in the I_{C} that flows through the $V_{\text {tr2a }}$ winding. In order to avoid this effect, $V_{\text {tr2b }}$ enables D_{2} and the current passing through it creates a magnetic force $N_{3} I_{3}$ opposed to $N_{1} I_{c}\left(N_{3}\right.$ and I_{3} are the turn number and the current that flows through $\mathrm{T}_{\mathrm{r} 2 \mathrm{~b}}$).

The graph below shows the output schematic circuit and the theoretical waveforms before the lamp strike.

Figure 32: Output Schematic Circuit Before the Lamp Strike and Theoretical Waveforms of the Main Output Electrical Parameter

The voltage across $V_{\text {tr2c }}$ generates an i_{2} having the same phase. $v_{c 2}$ (the voltage across C_{2}) is $+90^{\circ}$ out-phase compared to the i_{2}, while $\mathrm{v}_{\mathrm{L} 2}$ (the voltage across L_{2}) is -90° out-phase compared to i_{2}. The graph below shows the $I_{b}, V_{c e}$ and I_{c} theoretical waveforms of Q_{1}.

Figure 33: Q_{1} Theoretical Waveformsr

Note: a circuit similar to the Forward Voltage FED Converter shown in Fig. 25 is also described in the Italian Patent N. 1285621 in the name of Beghelli S.p.A.

9. TRANSFORMER DESCRIPTION

The transformer has three windings. The primary winding vices are connected to the input voltage and the other vice to the collector of Q_{1}, while the secondary winding vices are connected to the load. The third winding vices are connected between the input voltage and the cathode of D_{2}. The schematic of the transformer can be shown as in fig. 34.

Figure 34: Transformer Detailr

The FORWARD converter works during the Q_{1} on state (in this graph the switch T_{1} is the equivalent component of Q_{1}). In such operation condition, current flows through the turn N_{1} and a flux is generated.

$$
\begin{equation*}
\Phi=\frac{N_{1} \mathrm{I}}{\Re} \tag{9.1}
\end{equation*}
$$

This flux flows through the magnetic core of the transformer creating a link respectively with the turns N_{2} and N_{3} and it generates the voltages v_{2} and v_{3}.

$$
\begin{align*}
& \mathrm{v}_{3}=-\mathrm{N}_{3} \frac{\Delta \Phi}{\Delta \mathrm{t}} \tag{9.2}\\
& \mathrm{v}_{2}=-\mathrm{N}_{2} \frac{\Delta \Phi}{\Delta \mathrm{t}} \tag{9.3}
\end{align*}
$$

However, during the Q_{1} on state, no current flows through the third winding because the diode D_{2} is disabled, while output current flows through the secondary winding and the load. The voltage across the primary winding, equal to V_{dc}, can be written as:

$$
\begin{equation*}
\mathrm{v}_{1}=\mathrm{V}_{\mathrm{dc}}=-\mathrm{L}_{\mathrm{ml}} \frac{\Delta \mathrm{l}}{\mathrm{t}_{\mathrm{on}}} \tag{9.4}
\end{equation*}
$$

$L_{m 1}$ is the inductance of the primary winding and $t_{o n}$ is the time during the Q_{1} on state.
When the secondary winding current inverts its direction, Q_{1} switches off, the current 'l' suddenly
becomes zero and an overvoltage appears across the turn N_{1}. However, during the Q_{1} switching off, a magnetic force appears across the third winding opposing the primary winding magnetic force and avoiding the extra voltage on Q1 (see fig. 35).

$$
\begin{equation*}
\mathrm{N}_{1} \mathrm{I}=\mathrm{N}_{3} \mathrm{I}_{3} \tag{9.5}
\end{equation*}
$$

Figure 35: Transformer Detail When T_{1} Switches on

It is important to highlight that the current ' I ' is the sum of the currents I_{m} and I ' (see fig. 36). The extra voltage on Q_{1} is due to I_{m}.

Figure 36: Detail of the Transformer Highlighting $I_{m 1}$ and I^{\prime}

In the FORWARD converter it is important to consider the right turn N_{3} and the right duty cycle, it is possible to have an increasing current I_{m} and a saturation of the transformer core might occur.
Figure 37: Theoretical Behavior of I_{m} Involving the Transformer Core Saturation

In fact, the $B-H$ characteristic, where B is the induction vector and H is the magnetic vector, can be represented as in fig. 38.
Figure 38: Theoretical B-H characteristic

H can be written as:

$$
\begin{equation*}
\mathrm{H}=\frac{\mathrm{N}_{\mathrm{t}} \mathrm{I}}{\mathrm{l}} \tag{9.6}
\end{equation*}
$$

When 'l' increases then also H increases, and if H overcomes an established value even if H keeps increasing, B remains constant.
In order to avoid the core saturation, it is necessary to choose a right N_{3} and duty cycle. The right limit
case is shown in fig. 39.
Figure 39: Theoretical Behavior of I_{m} Considering the Right Limit Case

In this condition, v_{1} and v_{3} can be written as:

$$
\begin{gather*}
\mathrm{v}_{1}=\mathrm{v}_{3}=\mathrm{V}_{\mathrm{dc}}=-\mathrm{N}_{1} \frac{\Delta \Phi}{\mathrm{t}_{\text {on }}}=-\mathrm{N}_{3} \frac{\Delta \Phi}{\mathrm{t}_{\text {off }}} \tag{9.7}\\
\frac{\mathrm{N}_{1}}{\mathrm{t}_{\text {on }}}=\frac{\mathrm{N}_{3}}{\mathrm{t}_{\text {off }}} \Rightarrow \frac{\mathrm{t}_{\text {on }}}{\mathrm{N}_{1}}=\frac{\mathrm{t}_{\text {off }}}{\mathrm{N}_{3}}=\frac{\mathrm{T}}{\mathrm{~N}_{3}}-\frac{\mathrm{t}_{\text {on }}}{\mathrm{N}_{3}} \tag{9.8}\\
\delta=\frac{\mathrm{t}_{\text {on }}}{\mathrm{T}}=\frac{1}{1+\frac{\mathrm{N}_{3}}{\mathrm{~N}_{1}}} \tag{9.9}
\end{gather*}
$$

Usually, N_{1} and N_{3} are equal so that the minimum duty cycle that avoids the saturation of the core is:

$$
\begin{equation*}
\delta=\frac{1}{2} \tag{9.10}
\end{equation*}
$$

The Emergency Lamp applications using the FORWARD topology work in resonance mode and their duty cycle is, obviously, 0.5.

10. EXAMPLE OF AN EMERGENCY LAMP APPLICATION WITH FORWARD TOPOLOGY

The following example analyzes a real emergency lamp application with FORWARD voltage FED converter topology using 8W lamp and powered with $3.6 \mathrm{~V}_{\mathrm{dc}}$ and using also STSA851 (when the application is powered with the battery the output power on the lamp is around 30% of the nominal power lamp). In the graph below the steady state of Q_{1}, after the lamp strike, is showed.

Figure 40: Steady State of STSA851

The following graphs show the turn-off and the turn-on switch modes respectively.

Figure 41: Turn-off of STSA851

Figure 42: Turn-on of STSA8511

The graph below shows the waveforms of $\mathrm{V}_{\mathrm{tr} 2 \mathrm{a}}, \mathrm{V}_{\mathrm{tr} 2 \mathrm{~b}}$ and $\mathrm{V}_{\mathrm{tr} 2 \mathrm{c}}$ after the lamp strike.
Figure 43: Voltages on $\mathrm{V}_{\mathrm{tr} 2 \mathrm{a}}, \mathrm{V}_{\mathrm{tr} 2 \mathrm{~b}}$ and $\mathrm{V}_{\mathrm{tr} 2 \mathrm{c}}$ Windings1

During Q_{1} on state, the voltage on $\mathrm{V}_{\text {tr2a }}$ is imposed by the battery ($\mathrm{Vdc}=3.6 \mathrm{~V}$) so that no noise is observed, instead, during Q_{1} off state noise is highlighted on $V_{\text {tr2a }}$ and $V_{\text {tr2b }}$. The next graph shows the waveforms of the electrical parameters considering the output impedance after the lamp strike.

Figure 44: $\mathrm{V}_{\mathrm{tr} 2 \mathrm{c}}, \mathrm{V}_{\mathrm{c} 2}, \mathrm{~V}_{\mathrm{L} 2}$ and $\mathrm{i}_{\mathbf{2}}$ Waveforms1

The graph below shows the lamp current and the current l_{b} waveforms.

Figure 45: $\mathrm{i}_{\mathbf{2}}$ and I_{b} Waveforms

The graphs below show the steady state of Q_{1} and the electrical parameters waveforms of the output stage before the lamp strike.

Figure 46: Steady State of STSA851 Before the Lamp Strike

Figure 47: $I_{2}, V_{\text {tr2c }}, V_{\text {tr2a }}$ and $V_{\text {Lamp }}$ Waveforms Before the Lamp Strike

11. CONCLUSIONS

Today the Emergency Lighting applications are used in all public places and private homes due to new safety rules. Such applications use fluorescent tubes and are powered with 3.6 Vdc or 6 Vdc input voltages. Usually, the output power can be 8 W or 24 W but, sometimes, the Emergency Lamp applications can be used also to drive 58W fluorescent tubes. In this last case, however, the applications supply only around $10-15 \%$ to the nominal lamp power. The main topologies used are PUSH-PULL current FED and FORWARD. In the first solution, the frequency before the lamp strike is about 60 KHz , while after the lamp strike is about 30 KHz , the current Ic is about 2.5 A , Ibon around 80 mA and Vcemax around 15 V considering an input voltage of 6 Vdc . Using the second topology solution and a $3,6 \mathrm{Vdc}$ input voltage, the current Ic is about $1,7 \mathrm{~A}$, Vcemax 10 V , Ibon around 70 mA and the operation frequency, before and after the lamp strike, is around 30 Khz . However, considering both topology solutions, the power bipolar device STSA851 can be used because the voltages and currents values are inside the SOA area.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics.
> All other names are the property of their respective owners
© 2004 STMicroelectronics - Printed in Italy - All rights reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
http://www.st.com

35/35

