
October 2008 Rev 2 1/22

AN2719
Application note

Precision improvement techniques
for the A/D converter of the STM8 microcontroller

Introduction
This application note describes a selection of hardware and software methods for improving
the precision of the on-chip A/D converter of the STM8 microcontroller (STM8 ADC). It is
divided into three sections:

■ The first section explains the internal design principle of the STM8 ADC.

■ The next section lists the main types of error that occur in A/D converters and their
sources.

■ The last section describes some hardware and software methods for minimizing these
errors.

Firmware examples (source codes) are provided with this application note showing how to
implement STM8 ADC routines for minimizing measurement errors.

www.st.com

www.BDTIC.com/ST

http://www.st.com

Content AN2719

2/22

Content

1 STM8 ADC internal hardware . 4

1.1 SAR principle . 4

1.2 ADC clock . 7

1.3 Reference voltage . 7

1.4 Multiplexer . 7

2 ADC errors . 8

2.1 Introduction . 8

2.2 Linearity errors . 8

2.2.1 Differential nonlinearity . 8

2.2.2 Integral nonlinearity . 9

2.3 Offset error . 9

2.4 Gain error . 9

2.5 Hardware design errors . 10

2.5.1 External resistance design error . 10

2.5.2 Reference voltage source . 11

2.5.3 Temperature influence . 11

2.5.4 AC performance . 11

3 Methods for precision improvement . 12

3.1 Introduction . 12

3.2 Hardware methods . 12

3.2.1 Analog zooming . 12

3.2.2 Adding white noise . 13

3.2.3 Hardware design rules . 14

3.3 Software methods . 15

3.3.1 Averaging samples . 15

3.3.2 Digital signal filtering . 15

3.3.3 FFT for AC measurement . 15

3.3.4 ADC calibration . 16

4 Design rules for minimizing errors . 17

www.BDTIC.com/ST

AN2719 Content

 3/22

5 Conclusion . 18

6 Appendix - source code examples . 19

6.1 Project code example . 19

6.2 Source code description . 19

6.2.1 Program flow . 20

6.2.2 Hardware and software requirements . 20

7 Revision history . 21

www.BDTIC.com/ST

STM8 ADC internal hardware AN2719

4/22

1 STM8 ADC internal hardware

STM8 family microcontrollers include an Analog to Digital Converter of the switched-
capacitor type. This ADC type uses the SAR (Successive Approximation Register) principle,
by which the conversion is performed in several steps. The number of conversion steps is
equal to the number of bits in the ADC converter.

1.1 SAR principle
Figure 1 to Figure 6 show the first conversion steps.

Figure 1. Basic schematic of switched-capacitor ADC

Figure 2. Sample phase

S1

Sb
CLK

D Q

CLR

PRA

S2

Sa

Vref
Vin

ADCclk

ADCdata

ADCclk

S3 S4 S5 S6 S7 S8 S9

C C/2 C/4 C/8 C/16 C/32 C/64 C/128 C/128

S1

A

S2

Sa

Vref
Vin

A

2C
Vin

Vcomp = 0

Equivalent circuit:

S3 S4 S5 S6 S7 S8 S9

C C/2 C/4 C/8 C/16 C/32 C/64 C/128 C/128

Sb

www.BDTIC.com/ST

AN2719 STM8 ADC internal hardware

 5/22

Figure 3. Hold phase

Figure 4. Step 1 compare with VREF/2

S1

A

S2

Sa

Vref
Vin

Sb

A

2C
Vcomp = - Vin

Equivalent circuit:

S3 S4 S5 S6 S7 S8 S9

C C/2 C/4 C/8 C/16 C/32 C/64 C/128 C/128

C

S1

A

C/2

S2

C/4

S3

C/8

S4

C/16

S5

C/32

S6

C/64

S7

C/128

S8

Sa

Vref

Vin

C/128

S9

Sb

AC

C
Vref

Vcomp = - Vin + Vref/2

Equivalent circuit:

www.BDTIC.com/ST

STM8 ADC internal hardware AN2719

6/22

Figure 5. Step 2, if MSB = 1 then compare with 3/4 VREF

Figure 6. Step 2 if MSB = 0 then compare with 1/4 VREF

S1

A

S2

Sa

Vref
Vin

Sb

A3C/2

C/2
Vref

Vcomp = - Vin + 3/4 Vref

Equivalent circuit:

S3 S4 S5 S6 S7 S8 S9

C C/2 C/4 C/8 C/16 C/32 C/64 C/128 C/128

S1

A

S2 S3

Sa

Vref
Vin

Sb

AC/2

3C/2

Vref

Vcomp = - Vin + 1/4 Vref

Equivalent circuit:

C C/2 C/4 C/8 C/16 C/32 C/64 C/128 C/128

S4 S5 S6 S7 S8 S9

www.BDTIC.com/ST

AN2719 STM8 ADC internal hardware

 7/22

1.2 ADC clock
The ADC is driven by a clock derived from the MCU master clock through a programmable
divider. This allows you to select the ADC clock speed according to your application
requirements. The conversion and sampling speed depends on ADC clock. Each
conversion step (described in Figure 4 to Figure 6) is performed in one ADC clock cycle - so
10-bit conversion takes 10 cycles. The sampling period is 3 clocks and the synchronisation
period takes 1 clock. The total conversion time is actually 14 cycles.

1.3 Reference voltage
The reference voltage is either internally connected to analog power supply pins or
connected to external pins where you can connect a reference voltage source. This
reference voltage connection option depends on the given STM8 package and STM8 device
type. The reference voltage has big influence to ADC precision, therefore care must be
taken with it in the application design (stability, noise, ...).

1.4 Multiplexer
The ADC has an input multiplexer which is used to select one of the STM8 input pins as the
analog input to the ADC.

www.BDTIC.com/ST

ADC errors AN2719

8/22

2 ADC errors

2.1 Introduction
This chapter lists the main errors which have an effect on A/D conversion accuracy. These
types of error occur in all A/D converters and conversion quality depends on eliminating
them. You can find values for these errors specified in the ADC characteristics section of any
STM8 datasheet. The datasheets also include sections describing sources of error or
methods for minimizing them.

2.2 Linearity errors

2.2.1 Differential nonlinearity

Differential nonlinearity (DNL) shows how far a code is from a neighboring code. The
distance is measured as a change in input voltage magnitude and then converted to LSBs.
The best ADC performance is specified as "no missing codes". This means that if the input
voltage is swept over its range, all output code combinations will appear at the converter
output. A DNL error of <±1LSB guarantees no missing codes. With a DNL equal to -1LSB,
the ADC does not guarantee to have no missing codes. With a DNL greater than -1, the
device has missing codes.

Figure 7. DNL: no missing codes

Figure 8. DNL: missing code

Ideal ADC

Real ADC

DNL = - 0.5 LSB
no missing code

ADC output
[code]

110

101

100

011

010

001

000 Input voltage
[V]

Ideal ADC

Real ADC

DNL = - 1.5 LSB
missing code 011

ADC output
[code]

110

101

100

011

010

001

000 Input voltage
[V]

www.BDTIC.com/ST

AN2719 ADC errors

 9/22

2.2.2 Integral nonlinearity

Integral nonlinearity (INL) is defined as the integral of the DNL errors. So, good INL
guarantees good DNL. The INL error shows how far from the ideal transfer function value
the measured converter result is. For example, an INL error of +/-2LSB in a 10-bit system
means the maximum nonlinearity error may be off by 2/1024 or 0.2%. Note that neither INL
nor DNL errors can be calibrated or corrected easily.

2.3 Offset error
Offset and gain errors can easily be calibrated by the application firmware. First, apply zero
volts to the ADC input and perform a conversion, then the conversion result represents the
zero offset error. Then perform a gain adjustment. A subsequent offset error calibration may
be required. A useful method for offset and gain calibration is the least square method
(which calculates the smallest error in all the used range).

2.4 Gain error
Gain error is defined as the full-scale error minus the offset error. Full-scale error is
measured at the last ADC transition on the transfer-function curve and compared to the
ideal ADC transfer function.

Gain error is easily corrected in firmware with this linear function:

y = (k1/k2).x

where k1 is the slope of the ideal transfer function and k2 is the slope of the measured
transfer function.

Offset error and gain error can decrease dynamic range. For example this can be observed,
if a full-scale input voltage is applied and the code obtained is 1010 instead of the ideal 1023
(for a 10-bit converter), or if the full-scale code 1023 appears with an input voltage less than
full-scale.

Figure 9. Offset and gain error

Ideal ADC

Real ADC

ADC output
[code]

110

101

100

011

010

001

000 Input voltage
[V]

max. code

Gain error

offset error

www.BDTIC.com/ST

ADC errors AN2719

10/22

2.5 Hardware design errors

2.5.1 External resistance design error

The input multiplexer has nonzero impedance (Rmpx = max. 1kΩ). Sampling is done by
switch which has also nonzero impedance (Rsw = max. 30kΩ). Both these impedances,
together with the sampling capacitance (Csamp = max. 3pF) and external signal source
resistance (Rext), create a low pass filter. Therefore the external signal source impedance
(Rext) must be designed so that this low pass filter cut-off frequency will be not too low in
relation to the ADC sampling time (Ts = 3 ADC clocks).

Figure 10. Analog input circuit

If the ADC converter has 10-bit precision (n=10) then the maximum precision is 1/2 LSB
level (0.5/1024 from full range). So the acceptable error caused by charging Csamp through
all resistors is 0.5/1024 (during 3 cycles of fADC clock). Then the maximum resistor value
Rmax=Rext+Rsw+Rmpx is obtained from following equation:

for worst case: fADC = 2 MHz and required 10-bit resolution (n = 10) the maximum serial
resistor is:

and the maximum external resistor is:

The external parasitic PCB and package capacitance must also be taken into account.
Therefore the maximum resistance of external signal source Rext is lower, and in practice
Rext < 20 kΩ is suggested.

Rsw Rmpx Rext+ +() Csamp⋅ Ts«

STM8 ADC

SWsamp

Csamp

input
Rext

AIN

error
Uc Ui–()

Ui
-----------------------= e

3
fADC

Rmax Csamp⋅
---------------------------------–

1 2⁄
n

----------==

Rmax
3

fADC Csamp
1 2⁄

n
----------⎝ ⎠

⎛ ⎞ln⋅ ⋅
--–=

Rmax
3

2 106⋅() 3 10 12–⋅() 1 2⁄
1024
-------------⎝ ⎠

⎛ ⎞ln⋅ ⋅
---–= 66kΩ≅

Rext Rmax Rsw– Rmpx– 66 30– 1– 35kΩ= = =

www.BDTIC.com/ST

AN2719 ADC errors

 11/22

2.5.2 Reference voltage source

One of the biggest potential sources of errors in an ADC is the reference voltage. It is
important to look at three reference voltage specifications: temperature drift, voltage noise,
and load regulation (input resistance of reference input on STM8 ADC converter is >60 kΩ).

2.5.3 Temperature influence

Temperature has a big effect on ADC precision. Mainly two specifications are important:
offset drift and gain drift. Those errors can be compensated in microcontroller firmware. One
method is to fully characterize the offset and gain drift and provide a lookup table in memory
to correct measurement due to temperature change. The ADC in each MCU device must
then be compensated individually - therefore this calibration takes additional cost and time.
The second method is to recalibrate the ADC when temperature change reaches given
values. The effect of temperature on ADC accuracy is usually not specified seperately for
microcontrollers because it is lower than other effects. It is included in the values for the
other error types.

2.5.4 AC performance

Usually ADC performance is good only if input signals are from DC level up to Nyquist
frequency. This is because an ADC design contains not only resistors but also capacitors
(and parasitic RLC elements). Therefore frequency response degrades ADC performance if
frequency increases. In case of AC measurement, the ADC frequency parameters must be
studied; mainly signal-to-noise ratio (SNR), total harmonic distortion (THD) and spurious-
free dynamic range (SFDR). Additional parameters can be signal-to-noise and distortion
ratio (SINAD) and effective number of bits (ENOB).

www.BDTIC.com/ST

Methods for precision improvement AN2719

12/22

3 Methods for precision improvement

3.1 Introduction
ADC converter precision is fixed by its principle, design and implementation but can be also
improved by several hardware and/or software methods. Hardware methods improve ADC
results by changing the environment around the ADC (PCB design, RC filters, ...) to obtain
more accurate ADC output. Software methods try to improve the raw ADC results by
postprocessing methods. Some CPU power is required to perform these methods, which
can be implemented in the microcontroller firmware.

3.2 Hardware methods
● Analog zooming (use appropriate VREF voltage and VREF offset):

– select reference voltage between input signal ranges

– gives full ADC range - min. voltage per bit

● White noise added to measured signal:

– wobbling of input signal over several bits gives the opportunity to use averaging (if
input signal is very stable)

– white noise gives independence from sampling frequency

● Good hardware design:

– grounding

– reference voltage filtering

– supply filtering

– preamplifier usage

– frequency independence

– …

3.2.1 Analog zooming

Analog zooming is method which improves precision by proper selection of the reference
voltage. The reference voltage is selected in the expected range of the signal to be
measured.

If the measured signal has an offset, then the reference voltage should also have a similar
offset. If the measured signal has defined maximum amplitude, then the reference voltage
should also have a similar maximum value. By matching this reference voltage to the
measurement signal range we obtain the maximum possible resolution using the full A/D
converter output range.

In the STM8 ADC the reference voltage is connected to external pins VREF+ and VREF-.
This makes it possible to match the reference voltage to the measured signal range.

To VREF- pin you can connect the minimum measured voltage and to VREF+ pin you
connect the maximum measured voltage. Take care to respect the minimum and maximum
allowed reference signal levels - these values are specified in the datasheet for the related
STM8 device type.

www.BDTIC.com/ST

AN2719 Methods for precision improvement

 13/22

3.2.2 Adding white noise

This method combines hardware and software techniques to improve precision. From a
software point of view, this method uses averaging and from a hardware point of view, it
uses signal modification/spreading.

Averaging can be used in cases where the input signal is noisy (some signal change is
necessary in order to be able to calculate an average) and the requirement is to obtain the
mean value of a signal. A problem can appear when input signal is a very stable voltage
without noise. In this case, when the input signal is measured, each sample is the same.
This is because the input signal level is somewhere between two ADC word levels (e.g.
between 0x14A and 0x14B). Therefore it is not possible to determine the input voltage level
more precisely (e.g. if the level is near to 0x14A or near to 0x14B level). The solution is to
add noise to the input signal which pushes its level across 1-bit ADC level (so that the signal
level changes below 0x14A and above 0x14B level). This causes the ADC results to vary.
Applying software averaging to the different ADC results, produces the mean value of the
original input signal. This method is also called oversampling and/or dithering.

Adding a white noise signal gives 0.5LSB more each time you double the number of
samples. By adding triangle noise, you get +1LSB, which is more efficient. The noise source
can be the microcontroller itself.

This can be implemented using a noise generator with RC coupling of this noise to the input
signal. Care must be taken to not modify the mean value of the original input signal - so
capacitive coupling is used.

A very simple implementation is to design the white noise source as a square (or triangle)
source which is generated directly by the STM8 microcontroller (Figure 11).

Figure 11. Simple white noise source using a microcontroller output

C

R2

Vin

MCU
AIN

OUT

Vdd

t

Vin
Uin

t

Uout

R1

www.BDTIC.com/ST

Methods for precision improvement AN2719

14/22

3.2.3 Hardware design rules

Good hardware design can remove or minimize many external influences on the measured
signal and measuring device. Therefore good design is also a method of improving
precision, or rather a method of minimizing additional errors caused by the external
hardware. The following lists the main rules for minimizing external influences.

Grounding:
Care must be taken in the design of the PCB grounding. Ground paths on a PCB have
nonzero resistance (and impedance) therefore current flowing through these paths
generates a voltage drop. This voltage drop changes the voltages at points that are
important for the ADC. For example it changes the reference voltage on the microcontroller
pins slightly or influences the input signal on the microcontroller analog input pins. Good
design minimizes this voltage drop. Methods of doing this are: minimizing the ground path
impedance and minimizing the current through important ground paths (topology).
To minimize ground impedance: use massive ground paths. To minimize current through
sensitive connections: use star topology, use independent PCB lines from input signal pins
to microcontroller analog inputs, use independent PCB lines from the reference voltage
source to microcontroller reference voltage inputs. Simply: supply current should not flow
through signal ground - use signal ground and power ground in design.

Voltage filtering:
To minimize any external influences on the precise voltage levels used by the ADC, it is
good to use filters on these voltage sources. Good filters must be applied on the reference
voltage and on the supply voltage. Filter design depends on the noise amplitude present on
the voltage sources, the external noise disturbance and the required precision.

Preamplifier usage:
If the measured signal is too small (in comparison to the ADC range) then it is good to use
external preamplifier. This amplifier can fit the input signal range to the ADC range and can
also insert offsets between input signal and ADC input. Care must be taken in the
preamplifier design in order not to generate additional errors (for example additional offset,
amplifier gain stability, linearity, frequency response, ...).

Frequency independence:
In cases where an AC signal is measured, frequency is an important characteristic of the
input signal path. When measuring fast changes in the input signal then the frequency
response of the signal path must be flat, even at high frequencies. The parasitic resistance
and parasitic capacitance on PCB signal paths must be minimized. Otherwise, when
measuring DC signal levels, adding an RC filter to the input signal data path can improve
robustness against external noise.

www.BDTIC.com/ST

AN2719 Methods for precision improvement

 15/22

3.3 Software methods
● Averaging samples:

– averaging decreases speed but can give improved accuracy

● Digital filtering (50/60 Hz suppression from DC value)

– set proper sampling frequency (the trigger from Timer1 is useful in this case)

– perform software post-processing on sampled data (comb filter)

● Fast Fourier Transform (FFT) for AC measurements:

– to show harmonic parts in measured signal

– slower, due to the use of more computation power

● Calibration of ADC: offset, gain, bit weight calibration

– decreases internal ADC errors

– internal ADC structure must be known

3.3.1 Averaging samples

The principle of this method is to increase ADC precision but decrease ADC conversion
speed. If the measured analog signal produces unstable ADC values, then the mean value
of the given input signal can be obtained by averaging a set of values. Variation can be
caused by signal noise or noise generated by the microcontroller itself (high speed digital
signals capacitively coupled to the analog input signal).

Averaging is performed by choosing an appropriate number of samples to be averaged. This
number depends on the required precision, minimum conversion speed and the level of
other ADC errorsl (if another error has a greater influence on ADC precision, then increasing
the number of averaging values has no effect on total measurement precision).

The advantage of this method is improving precision without any hardware changes. The
disadvantages are lower conversion speed and therefore also lower frequency response (it
is equivalent to decreasing effective sampling frequency). Another disadvantage is the need
for an analog anti-aliasing filter.

3.3.2 Digital signal filtering

This is modern method which uses digital signal processing techniques. In principle,
averaging is also a simple digital filter with a specific frequency response. But if the noise
frequency spectrum is known, a digital filter can be designed which minimizes noise
influence and maximizes ADC frequency response. For example, if the noise in the
measured signal is coming from the 50 Hz power lines, then an appropriate digital filter can
mainly suppress the 50 Hz frequency and deliver a precise 10 Hz input signal response.

The disadvantage of this method is that it needs sufficient microcontroller processing power
and resources: CPU speed, RAM/ROM memory usage.

3.3.3 FFT for AC measurement

In some specific cases the application needs to know the amplitude of an AC signal with a
given frequency. In this case the effective value of an AC signal can also be obtained by
using a relatively slow sampling speed (in comparison to the measured signal frequency).
For example, when measuring an AC mains signal (which is near-to-sinusoidal and has
relatively low harmonics content), it is sufficient to choose a sampling frequency 32 times
greater than the mains frequency (50 Hz). In this case you can obtain harmonics up to the

www.BDTIC.com/ST

Methods for precision improvement AN2719

16/22

15th order. The amplitude of 15th harmonics in the main signal is very small (the next order
harmonics can be neglected). The calculated effective value of the mains signal can be
obtained with high precision because the effective values of harmonics are added to the
total AC harmonic value as:

So if the 15th harmonics amplitude is only 1% (0.01) from 1st harmonics (50 Hz) then its
contribution to the total effective value will be only 0.01% (because of above equation -
square addition: 0.012 = 0.0001).

The principle of this method is therefore to sample the AC signal with a known frequency
and then perform FFT postprocessing on the data of each measured period. Because the
number of sampling points per measured signal period is small (32 points for example) then
the performance needed for FFT processing is not so high (only 32-point FFT for example).
If there is no requirement for real-time processing, for example, with a stable input signal
shape, and measuring only one period per second, as in the case of the mains signal, then
FFT can be calculated even by an 8-bit microcontroller.

Advantages: this method is good for AC measurement of a stable input signal. The
disadvantage is the requirement for precise signal sampling. The frequency of the measured
signal must be known and the ADC sampling frequency must be set exactly as a 2n
multiplier of the measured frequency. The input signal frequency can be measured by
another method. The ADC sampling frequency can be tuned by programming the prescaler
and MCU master clock or interpolation can used to insert sample points at the required
frequency if sampling is performed with an inaccurate clock.

3.3.4 ADC calibration

This method requires knowledge of internal ADC structure and how the ADC converter is
implemented inside the microcontroller. This knowledge is necessary in order to design a
physical/mathematical model of the ADC implementation. In case of an unknown ADC
implementation we can use standard models - linear or polynomic.

A proper physical model (which is usually a schematic diagram) can be used as the base for
describing it mathematically. From the mathematical model each element in the model can
be obtained by set of equations (for example, resistor values which represent bit weights).
To solve these equations is necessary to perform a set of practical measurements and
obtain a set of solvable equations (for example, measurement: input signal versus the
proper ADC digital output words).

From the measured values and mathematical computation of the model, all known values of
model elements (resistors, voltages, capacitors,...) can be put into the schematic diagram.

So instead of the ADC converter schematic with the designed values you obtain an ADC
converter schematic with the real values for a given microcontroller.

Computed model parameters can be stored in the microcontroller memory after calibration
and used in postprocessing to correct ADC values.

Uef U1
2 U2

2 … Un
2

+ + +=

www.BDTIC.com/ST

AN2719 Design rules for minimizing errors

 17/22

4 Design rules for minimizing errors

ADC precision can only be significantly improved if external influences on the measurement
are minimized. Therefore any precision improvement method also includes rules for correct
design.

Main design rules for minimizing design errors:

● Grounding of analog/digital power:

– star topology

● VDDA, VSSA filtering:

– RC, LC filtering

– avoid noise from noisy digital power

● VREF selection - offset, value, precision:

– reference voltage source precision and stability matched to application precision
requirements and ADC capability

– reference voltage source value and precision in line with the expected measured
range

● Source impedance vs. input impedance knowledge:

– use input buffers for measured signal (if source impedance is too high)

– impedance in relation with required conversion speed

● External preamplifier usage:

– for low (and also high) level signals

– amplifier speed and precision properties

– amplifier dependency on frequency

● Select appropriate ADC mode, speed, trigger

● Software methods: averaging, FFT, …

www.BDTIC.com/ST

Conclusion AN2719

18/22

5 Conclusion

The Analog to Digital Converter (ADC) in the STM8 microcontroller family is a standard ADC
converter which can have common errors. To minimize errors and improve precision, the
main methods and application design rules have been described. You can apply these
methods to your application.

The choice of method depends on the application requirements and is always a compromise
between speed/precision, enough computation power and design topology. Published
methods lead to precision improvement but strongly depend on the ADC basic properties.

www.BDTIC.com/ST

AN2719 Appendix - source code examples

 19/22

6 Appendix - source code examples

6.1 Project code example
A firmware package is linked with this document. It contains source codes in C-language
which give examples of some of the precision improvement methods described in this
application note. This complete project is designed for the ST Visual Develop (STVD)
development environment and Cosmic compiler and using the STM8 evaluation board. With
these examples you can see how the method is implemented in practice and you can test it
by comparing ADC precision with the improvement method and without it.

Package name: STM8_ADC_improvement.zip
Project name: STM8_ADC_improvement.stw

6.2 Source code description
The example consists of a complete STVD project. This project contains source codes in
files:

main.c main program file (MCU initialization, main program loop)

ADCAveraging.c

ADCCalibration.c

ADCdriverFFT.c

ADCfncFFT.c

ADCWhiteNoise.c

FFT.c

Filter50Hz.c

testing - each file for given method (uses STM8 library)

mono_lcd.c driver for writing to LCD display (on STM8 evaluation board)

stm8_interrupt_vector.c contains interrupt table address definition

ADCAveraging.h

ADCCalibration.h

ADCdriverFFT.h

ADCfncFFT.h

ADCWhiteNoise.h

FFT.h

Filter50Hz.h

globaldefFFT.h

headers for ADC precision improvements methods

mono_lcd.h list of LCD functions

stm8_conf.h configuration of STM8 library

www.BDTIC.com/ST

Appendix - source code examples AN2719

20/22

6.2.1 Program flow

In the main.c file is the main program loop - in function main(). At the beginning is the basic
MCU initialization: GPIO pins (LED diodes, buttons), CPU clock, interrupts. Then the main
testing loop begins - it consists of the ADC initialization and series of steps (methods).

Each test step contains a write to the LCD display to display information about the running
test and then contains the test routine itself. The test routines are provided in listed files -
each file for each method. To continue from one test to the next, the user must press a
button (joystick select button on evaluation board). After all tests are done, then the ADC is
reconfigured to higher speed and the test loop runs again.

Tests are:

● TestADCAveraging();

– ADC in single mode

– averaging method applied

● TestADCWhiteNoise();

– ADC in continuous mode

– averaging method applied

● TestADCDigitalFilter50Hz();

– ADC in single mode

– external timer trigger

– simple comb 50 Hz filter applied

● TestADCFFT();

– ADC in single mode

– external timer trigger

– 16-point FFT applied

● TestADCCalibration();

– ADC in single mode

– software start

– simple linear model applied (offset and gain calibrated)

6.2.2 Hardware and software requirements

To run the project example you must have installed STVD (min. version 3.5.0) and Cosmic
compiler for STM8 family. Both tools are free for download from STMicroelectronics and
Cosmic websites.

The hardware requirement is to have STM8 evaluation board with STM8S - 128K chip
installed. Instead of a real STM8 chip you can use STice emulator.

www.BDTIC.com/ST

AN2719 Revision history

 21/22

7 Revision history

Table 1. Document revision history

Date Revision Changes

27-May-2008 1 Initial release.

28-Oct-2008 2 Updated Figure 2, Figure 4, Figure 5 and Figure 6.

www.BDTIC.com/ST

AN2719

22/22

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

www.BDTIC.com/ST

	Content
	1 STM8 ADC internal hardware
	1.1 SAR principle
	1.2 ADC clock
	1.3 Reference voltage
	1.4 Multiplexer

	2 ADC errors
	2.1 Introduction
	2.2 Linearity errors
	2.2.1 Differential nonlinearity
	2.2.2 Integral nonlinearity

	2.3 Offset error
	2.4 Gain error
	2.5 Hardware design errors
	2.5.1 External resistance design error
	2.5.2 Reference voltage source
	2.5.3 Temperature influence
	2.5.4 AC performance

	3 Methods for precision improvement
	3.1 Introduction
	3.2 Hardware methods
	3.2.1 Analog zooming
	3.2.2 Adding white noise
	3.2.3 Hardware design rules

	3.3 Software methods
	3.3.1 Averaging samples
	3.3.2 Digital signal filtering
	3.3.3 FFT for AC measurement
	3.3.4 ADC calibration

	4 Design rules for minimizing errors
	5 Conclusion
	6 Appendix - source code examples
	6.1 Project code example
	6.2 Source code description
	6.2.1 Program flow
	6.2.2 Hardware and software requirements

	7 Revision history

