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Precision improvement techniques
for the A/D converter of the STM8 microcontroller

Introduction
This application note describes a selection of hardware and software methods for improving 
the precision of the on-chip A/D converter of the STM8 microcontroller (STM8 ADC). It is 
divided into three sections:

■ The first section explains the internal design principle of the STM8 ADC.

■ The next section lists the main types of error that occur in A/D converters and their 
sources. 

■ The last section describes some hardware and software methods for minimizing these 
errors.

Firmware examples (source codes) are provided with this application note showing how to 
implement STM8 ADC routines for minimizing measurement errors.

www.st.com

www.BDTIC.com/ST

http://www.st.com


Content AN2719

2/22   

Content

1 STM8 ADC internal hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 SAR principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 ADC clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Reference voltage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Multiplexer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 ADC errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Linearity errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Differential nonlinearity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Integral nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Offset error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Gain error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Hardware design errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 External resistance design error  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Reference voltage source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Temperature influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.4 AC performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methods for precision improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Hardware methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Analog zooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Adding white noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Hardware design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Software methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Averaging samples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Digital signal filtering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 FFT for AC measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.4 ADC calibration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Design rules for minimizing errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

www.BDTIC.com/ST



AN2719 Content

 3/22

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Appendix - source code examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Project code example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Source code description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2.1 Program flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2.2 Hardware and software requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

www.BDTIC.com/ST



STM8 ADC internal hardware AN2719

4/22   

1 STM8 ADC internal hardware 

STM8 family microcontrollers include an Analog to Digital Converter of the switched-
capacitor type. This ADC type uses the SAR (Successive Approximation Register) principle, 
by which the conversion is performed in several steps. The number of conversion steps is 
equal to the number of bits in the ADC converter.

1.1 SAR principle
Figure 1 to Figure 6 show the first conversion steps.

Figure 1. Basic schematic of switched-capacitor ADC

Figure 2. Sample phase
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Figure 3. Hold phase

Figure 4. Step 1 compare with VREF/2
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Figure 5. Step 2, if MSB = 1 then compare with 3/4 VREF

Figure 6. Step 2 if MSB = 0 then compare with 1/4 VREF
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1.2 ADC clock
The ADC is driven by a clock derived from the MCU master clock through a programmable 
divider. This allows you to select the ADC clock speed according to your application 
requirements. The conversion and sampling speed depends on ADC clock. Each 
conversion step (described in Figure 4 to Figure 6 ) is performed in one ADC clock cycle - so 
10-bit conversion takes 10 cycles. The sampling period is 3 clocks and the synchronisation 
period takes 1 clock. The total conversion time is actually 14 cycles. 

1.3 Reference voltage
The reference voltage is either internally connected to analog power supply pins or 
connected to external pins where you can connect a reference voltage source. This 
reference voltage connection option depends on the given STM8 package and STM8 device 
type. The reference voltage has big influence to ADC precision, therefore care must be 
taken with it in the application design (stability, noise, ...).

1.4 Multiplexer
The ADC has an input multiplexer which is used to select one of the STM8 input pins as the 
analog input to the ADC. 

www.BDTIC.com/ST
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2 ADC errors

2.1 Introduction
This chapter lists the main errors which have an effect on A/D conversion accuracy. These 
types of error occur in all A/D converters and conversion quality depends on eliminating 
them. You can find values for these errors specified in the ADC characteristics section of any 
STM8 datasheet. The datasheets also include sections describing sources of error or 
methods for minimizing them.

2.2 Linearity errors

2.2.1 Differential nonlinearity

Differential nonlinearity (DNL) shows how far a code is from a neighboring code. The 
distance is measured as a change in input voltage magnitude and then converted to LSBs. 
The best ADC performance is specified as "no missing codes". This means that if the input 
voltage is swept over its range, all output code combinations will appear at the converter 
output. A DNL error of <±1LSB guarantees no missing codes. With a DNL equal to -1LSB, 
the ADC does not guarantee to have no missing codes. With a DNL greater than -1, the 
device has missing codes.

Figure 7. DNL: no missing codes

Figure 8. DNL: missing code
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2.2.2 Integral nonlinearity

Integral nonlinearity (INL) is defined as the integral of the DNL errors. So, good INL 
guarantees good DNL. The INL error shows how far from the ideal transfer function value 
the measured converter result is. For example, an INL error of +/-2LSB in a 10-bit system 
means the maximum nonlinearity error may be off by 2/1024 or 0.2%. Note that neither INL 
nor DNL errors can be calibrated or corrected easily.

2.3 Offset error
Offset and gain errors can easily be calibrated by the application firmware. First, apply zero 
volts to the ADC input and perform a conversion, then the conversion result represents the 
zero offset error. Then perform a gain adjustment. A subsequent offset error calibration may 
be required. A useful method for offset and gain calibration is the least square method 
(which calculates the smallest error in all the used range).

2.4 Gain error
Gain error is defined as the full-scale error minus the offset error. Full-scale error is 
measured at the last ADC transition on the transfer-function curve and compared to the 
ideal ADC transfer function. 

Gain error is easily corrected in firmware with this linear function:

y = (k1/k2).x 

where k1 is the slope of the ideal transfer function and k2 is the slope of the measured 
transfer function.

Offset error and gain error can decrease dynamic range. For example this can be observed, 
if a full-scale input voltage is applied and the code obtained is 1010 instead of the ideal 1023 
(for a 10-bit converter), or if the full-scale code 1023 appears with an input voltage less than 
full-scale.

Figure 9. Offset and gain error
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2.5 Hardware design errors

2.5.1 External resistance design error

The input multiplexer has nonzero impedance (Rmpx = max. 1kΩ). Sampling is done by 
switch which has also nonzero impedance (Rsw = max. 30kΩ). Both these impedances, 
together with the sampling capacitance (Csamp = max. 3pF) and external signal source 
resistance (Rext), create a low pass filter. Therefore the external signal source impedance 
(Rext) must be designed so that this low pass filter cut-off frequency will be not too low in 
relation to the ADC sampling time (Ts = 3 ADC clocks).

Figure 10. Analog input circuit
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2.5.2 Reference voltage source

One of the biggest potential sources of errors in an ADC is the reference voltage. It is 
important to look at three reference voltage specifications: temperature drift, voltage noise, 
and load regulation (input resistance of reference input on STM8 ADC converter is >60 kΩ).

2.5.3 Temperature influence

Temperature has a big effect on ADC precision. Mainly two specifications are important: 
offset drift and gain drift. Those errors can be compensated in microcontroller firmware. One 
method is to fully characterize the offset and gain drift and provide a lookup table in memory 
to correct measurement due to temperature change. The ADC in each MCU device must 
then be compensated individually - therefore this calibration takes additional cost and time. 
The second method is to recalibrate the ADC when temperature change reaches given 
values. The effect of temperature on ADC accuracy is usually not specified seperately for 
microcontrollers because it is lower than other effects. It is  included in the values for the 
other error types.

2.5.4 AC performance

Usually ADC performance is good only if input signals are from DC level up to Nyquist 
frequency. This is because an ADC design contains not only resistors but also capacitors 
(and parasitic RLC elements). Therefore frequency response degrades ADC performance if 
frequency increases. In case of AC measurement, the ADC frequency parameters must be 
studied; mainly signal-to-noise ratio (SNR), total harmonic distortion (THD) and spurious-
free dynamic range (SFDR). Additional parameters can be signal-to-noise and distortion 
ratio (SINAD) and effective number of bits (ENOB).

www.BDTIC.com/ST
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3 Methods for precision improvement

3.1 Introduction
ADC converter precision is fixed by its principle, design and implementation but can be also 
improved by several hardware and/or software methods. Hardware methods improve ADC 
results by changing the environment around the ADC (PCB design, RC filters, ...) to obtain 
more accurate ADC output. Software methods try to improve the raw ADC results by 
postprocessing methods. Some CPU power is required to perform these methods, which 
can be implemented in the microcontroller firmware. 

3.2 Hardware methods
● Analog zooming (use appropriate VREF voltage and VREF offset):

– select reference voltage between input signal ranges

– gives full ADC range - min. voltage per bit

● White noise added to measured signal:

– wobbling of input signal over several bits gives the opportunity to use averaging (if 
input signal is very stable)

– white noise gives independence from sampling frequency

● Good hardware design: 

– grounding

– reference voltage filtering

– supply filtering

– preamplifier usage

– frequency independence

– …

3.2.1 Analog zooming

Analog zooming is method which improves precision by proper selection of the reference 
voltage. The reference voltage is selected in the expected range of the signal to be 
measured. 

If the measured signal has an offset, then the reference voltage should also have a similar 
offset. If the measured signal has defined maximum amplitude, then the reference voltage 
should also have a similar maximum value. By matching this reference voltage to the 
measurement signal range we obtain the maximum possible resolution using the full A/D 
converter output range.

In the STM8 ADC the reference voltage is connected to external pins VREF+ and VREF-. 
This makes it possible to match the reference voltage to the measured signal range. 

To VREF- pin you can connect the minimum measured voltage and to VREF+ pin you 
connect the maximum measured voltage. Take care to respect the minimum and maximum 
allowed reference signal levels - these values are specified in the datasheet for the related 
STM8 device type.

www.BDTIC.com/ST
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3.2.2 Adding white noise 

This method combines hardware and software techniques to improve precision. From a 
software point of view, this method uses averaging and from a hardware point of view, it 
uses signal modification/spreading.

Averaging can be used in cases where the input signal is noisy (some signal change is 
necessary in order to be able to calculate an average) and the requirement is to obtain the 
mean value of a signal. A problem can appear when input signal is a very stable voltage 
without noise. In this case, when the input signal is measured, each sample is the same. 
This is because the input signal level is somewhere between two ADC word levels (e.g. 
between 0x14A and 0x14B). Therefore it is not possible to determine the input voltage level 
more precisely (e.g. if the level is near to 0x14A or near to 0x14B level). The solution is to 
add noise to the input signal which pushes its level across 1-bit ADC level (so that the signal 
level changes below 0x14A and above 0x14B level). This causes the ADC results to vary. 
Applying software averaging to the different ADC results, produces the mean value of the 
original input signal. This method is also called oversampling and/or dithering.

Adding a white noise signal gives 0.5LSB more each time you double the number of 
samples. By adding triangle noise, you get +1LSB, which is more efficient. The noise source 
can be the microcontroller itself.

This can be implemented using a noise generator with RC coupling of this noise to the input 
signal. Care must be taken to not modify the mean value of the original input signal - so 
capacitive coupling is used.

A very simple implementation is to design the white noise source as a square (or triangle) 
source which is generated directly by the STM8 microcontroller (Figure 11).

Figure 11. Simple white noise source using a microcontroller output
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3.2.3 Hardware design rules

Good hardware design can remove or minimize many external influences on the measured 
signal and measuring device. Therefore good design is also a method of improving 
precision, or rather a method of minimizing additional errors caused by the external 
hardware. The following lists the main rules for minimizing external influences.

Grounding: 
Care must be taken in the design of the PCB grounding. Ground paths on a PCB have 
nonzero resistance (and impedance) therefore current flowing through these paths 
generates a voltage drop. This voltage drop changes the voltages at points that are 
important for the ADC. For example it changes the reference voltage on the microcontroller 
pins slightly or influences the input signal on the microcontroller analog input pins. Good 
design minimizes this voltage drop. Methods of doing this are: minimizing the ground path 
impedance and minimizing the current through important ground paths (topology).
To minimize ground impedance: use massive ground paths. To minimize current through 
sensitive connections: use star topology, use independent PCB lines from input signal pins 
to microcontroller analog inputs, use independent PCB lines from the reference voltage 
source to microcontroller reference voltage inputs. Simply: supply current should not flow 
through signal ground - use signal ground and power ground in design.

Voltage filtering:
To minimize any external influences on the precise voltage levels used by the ADC, it is 
good to use filters on these voltage sources. Good filters must be applied on the reference 
voltage and on the supply voltage. Filter design depends on the noise amplitude present on 
the voltage sources, the external noise disturbance and the required precision.

Preamplifier usage:
If the measured signal is too small (in comparison to the ADC range) then it is good to use 
external preamplifier. This amplifier can fit the input signal range to the ADC range and can 
also insert offsets between input signal and ADC input. Care must be taken in the 
preamplifier design in order not to generate additional errors (for example additional offset, 
amplifier gain stability, linearity, frequency response, ... ).

Frequency independence:
In cases where an AC signal is measured, frequency is an important characteristic of the 
input signal path. When measuring fast changes in the input signal then the frequency 
response of the signal path must be flat, even at high frequencies. The parasitic resistance 
and parasitic capacitance on PCB signal paths must be minimized. Otherwise, when 
measuring DC signal levels, adding an RC filter to the input signal data path can improve 
robustness against external noise.

www.BDTIC.com/ST
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3.3 Software methods
● Averaging samples:

– averaging decreases speed but can give improved accuracy 

● Digital filtering (50/60 Hz suppression from DC value)

– set proper sampling frequency (the trigger from Timer1 is useful in this case)

– perform software post-processing on sampled data (comb filter)

● Fast Fourier Transform (FFT) for AC measurements:

– to show harmonic parts in measured signal

– slower, due to the use of more computation power

● Calibration of ADC: offset, gain, bit weight calibration

– decreases internal ADC errors

– internal ADC structure must be known

3.3.1 Averaging samples

The principle of this method is to increase ADC precision but decrease ADC conversion 
speed. If the measured analog signal produces unstable ADC values, then the mean value 
of the given input signal can be obtained by averaging a set of values. Variation can be 
caused by signal noise or noise generated by the microcontroller itself (high speed digital 
signals capacitively coupled to the analog input signal).

Averaging is performed by choosing an appropriate number of samples to be averaged. This 
number depends on the required precision, minimum conversion speed and the level of 
other ADC errorsl (if another error has a greater influence on ADC precision, then increasing 
the number of averaging values has no effect on total measurement precision).

The advantage of this method is improving precision without any hardware changes. The 
disadvantages are lower conversion speed and therefore also lower frequency response (it 
is equivalent to decreasing effective sampling frequency). Another disadvantage is the need 
for an analog anti-aliasing filter.

3.3.2 Digital signal filtering

This is modern method which uses digital signal processing techniques. In principle, 
averaging is also a simple digital filter with a specific frequency response. But if the noise 
frequency spectrum is known, a digital filter can be designed which minimizes noise 
influence and maximizes ADC frequency response. For example, if the noise in the 
measured signal is coming from the 50 Hz power lines, then an appropriate digital filter can 
mainly suppress the 50 Hz frequency and deliver a precise 10 Hz input signal response.

The disadvantage of this method is that it needs sufficient microcontroller processing power 
and resources: CPU speed, RAM/ROM memory usage.

3.3.3 FFT for AC measurement

In some specific cases the application needs to know the amplitude of an AC signal with a 
given frequency. In this case the effective value of an AC signal can also be obtained by 
using a relatively slow sampling speed (in comparison to the measured signal frequency). 
For example, when measuring an AC mains signal (which is near-to-sinusoidal and has 
relatively low harmonics content), it is sufficient to choose a sampling frequency 32 times 
greater than the mains frequency (50 Hz). In this case you can obtain harmonics up to the 
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15th order. The amplitude of 15th harmonics in the main signal is very small (the next order 
harmonics can be neglected). The calculated effective value of the mains signal can be 
obtained with high precision because the effective values of harmonics are added to the 
total AC harmonic value as:

So if the 15th harmonics amplitude is only 1% (0.01) from 1st harmonics (50 Hz) then its 
contribution to the total effective value will be only 0.01% (because of above equation - 
square addition: 0.012 = 0.0001).

The principle of this method is therefore to sample the AC signal with a known frequency 
and then perform FFT postprocessing on the data of each measured period. Because the 
number of sampling points per measured signal period is small (32 points for example) then 
the performance needed for FFT processing is not so high (only 32-point FFT for example). 
If there is no requirement for real-time processing, for example, with a stable input signal 
shape, and measuring only one period per second, as in the case of the mains signal, then 
FFT can be calculated even by an 8-bit microcontroller.

Advantages: this method is good for AC measurement of a stable input signal. The 
disadvantage is the requirement for precise signal sampling. The frequency of the measured 
signal must be known and the ADC sampling frequency must be set exactly as a 2n 
multiplier of the measured frequency. The input signal frequency can be measured by 
another method. The ADC sampling frequency can be tuned by programming the prescaler 
and MCU master clock or interpolation can used to insert sample points at the required 
frequency if sampling is performed with an inaccurate clock.

3.3.4 ADC calibration

This method requires knowledge of internal ADC structure and how the ADC converter is 
implemented inside the microcontroller. This knowledge is necessary in order to design a 
physical/mathematical model of the ADC implementation. In case of an unknown ADC 
implementation we can use standard models - linear or polynomic.

A proper physical model (which is usually a schematic diagram) can be used as the base for 
describing it mathematically. From the mathematical model each element in the model can 
be obtained by set of equations (for example, resistor values which represent bit weights). 
To solve these equations is necessary to perform a set of practical measurements and 
obtain a set of solvable equations (for example, measurement: input signal versus the 
proper ADC digital output words). 

From the measured values and mathematical computation of the model, all known values of 
model elements (resistors, voltages, capacitors,...) can be put into the schematic diagram.

So instead of the ADC converter schematic with the designed values you obtain an ADC 
converter schematic with the real values for a given microcontroller.

Computed model parameters can be stored in the microcontroller memory after calibration 
and used in postprocessing to correct ADC values.

Uef U1
2 U2

2 … Un
2

+ + +=
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4 Design rules for minimizing errors

ADC precision can only be significantly improved if external influences on the measurement 
are minimized. Therefore any precision improvement method also includes rules for correct 
design.

Main design rules for minimizing design errors:

● Grounding of analog/digital power:

– star topology

● VDDA, VSSA filtering:

– RC, LC filtering 

– avoid noise from noisy digital power

● VREF selection - offset, value, precision:

– reference voltage source precision and stability matched to application precision 
requirements and ADC capability

– reference voltage source value and precision in line with the expected measured 
range

● Source impedance vs. input impedance knowledge:

– use input buffers for measured signal (if source impedance is too high)

– impedance in relation with required conversion speed

● External preamplifier usage:

– for low (and also high) level signals

– amplifier speed and precision properties

– amplifier dependency on frequency

● Select appropriate ADC mode, speed, trigger

● Software methods: averaging, FFT, …
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5 Conclusion

The Analog to Digital Converter (ADC) in the STM8 microcontroller family is a standard ADC 
converter which can have common errors. To minimize errors and improve precision, the 
main methods and application design rules have been described. You can apply these 
methods to your application. 

The choice of method depends on the application requirements and is always a compromise 
between speed/precision, enough computation power and design topology. Published 
methods lead to precision improvement but strongly depend on the ADC basic properties. 
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6 Appendix - source code examples

6.1 Project code example
A firmware package is linked with this document. It contains source codes in C-language 
which give examples of some of the precision improvement methods described in this 
application note. This complete project is designed for the ST Visual Develop (STVD) 
development environment and Cosmic compiler and using the STM8 evaluation board. With 
these examples you can see how the method is implemented in practice and you can test it 
by comparing ADC precision with the improvement method and without it.

Package name: STM8_ADC_improvement.zip
Project name: STM8_ADC_improvement.stw

6.2 Source code description
The example consists of a complete STVD project. This project contains source codes in 
files:

         

main.c main program file (MCU initialization, main program loop)

ADCAveraging.c

ADCCalibration.c

ADCdriverFFT.c

ADCfncFFT.c

ADCWhiteNoise.c

FFT.c

Filter50Hz.c

testing - each file for given method (uses STM8 library)

mono_lcd.c driver for writing to LCD display (on STM8 evaluation board)

stm8_interrupt_vector.c contains interrupt table address definition

ADCAveraging.h

ADCCalibration.h

ADCdriverFFT.h

ADCfncFFT.h

ADCWhiteNoise.h

FFT.h

Filter50Hz.h

globaldefFFT.h

headers for ADC precision improvements methods 

mono_lcd.h list of LCD functions

stm8_conf.h configuration of STM8 library
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6.2.1 Program flow

In the main.c file is the main program loop - in function main(). At the beginning is the basic 
MCU initialization: GPIO pins (LED diodes, buttons), CPU clock, interrupts. Then the main 
testing loop begins - it consists of the ADC initialization and series of steps (methods).

Each test step contains a write to the LCD display to display information about the running 
test and then contains the test routine itself. The test routines are provided in listed files - 
each file for each method. To continue from one test to the next, the user must press a 
button (joystick select button on evaluation board). After all tests are done, then the ADC is 
reconfigured to higher speed and the test loop runs again.

Tests are:

● TestADCAveraging(); 

– ADC in single mode

– averaging method applied

● TestADCWhiteNoise(); 

– ADC in continuous mode

– averaging method applied

● TestADCDigitalFilter50Hz(); 

– ADC in single mode

– external timer trigger

– simple comb 50 Hz filter applied

● TestADCFFT(); 

– ADC in single mode

– external timer trigger

– 16-point FFT applied

● TestADCCalibration(); 

– ADC in single mode

– software start

– simple linear model applied (offset and gain calibrated)

6.2.2 Hardware and software requirements

To run the project example you must have installed STVD (min. version 3.5.0) and Cosmic 
compiler for STM8 family. Both tools are free for download from STMicroelectronics and 
Cosmic websites.

The hardware requirement is to have STM8 evaluation board with STM8S - 128K chip 
installed. Instead of a real STM8 chip you can use STice emulator. 
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7 Revision history

         

Table 1. Document revision history

Date Revision Changes

27-May-2008 1 Initial release.

28-Oct-2008 2 Updated Figure 2, Figure 4, Figure 5 and Figure 6.
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