AN2859
 Application note

Multiplexed diagnostics of AC switches using two STCC08s

Introduction

The aim of this application note is to present opportunities to reduce the number of input pins used on a microcontroller unit (MCU) to diagnose failures of several AC switches with the STCC08. This document deals with the multiplexed diagnostics of two STCC08 and gives technical recommendations on the implementation of this solution.

STCC08 overview

The STCC08 has been designed to improve home appliance safety. This new device can drive an AC switch (Triac, ACST and ACS) with a gate current I_{GT} up to 10 mA and to send back to the microcontroller unit a signal image of the voltage across the controlled AC switch (this signal defines the AC switch state). The STCC08 has three functional blocks (see Figure 1).

- A "gate driver" block used to drive an AC switch and to interface directly the STCC08 with the MCU (CMOS compatible)
- A "power switch signal shaping" block used to measure the AC switch voltage in both AC line cycles
■ An "AVF driver" block used to give an image of the AC switch voltage to the MCU (digital information)

Figure 1. STCC08 block diagram

For more information about the STCC08, please refer to the ST Application note AN2716.

Contents

1 Multiplexed diagnostics 3
1.1 Principle 3
1.2 Failure mode detection of two AC switches 4
1.3 $\quad \mathrm{V}_{\text {AVF }}$ signal reading synchronization 9
$2 \quad V_{\text {STATE }}$ level definition 11
3 Resistance settings 14
4 Detection windows digital value setting 15
5 Application example 17
6 Conclusion 18
Appendix A AC switch state deduction 19
Appendix B $\quad V_{\text {STATE }}$ signal voltage definition 21
Appendix C Resistance settings 25
C. 1 First case: V_{1} Min $>\mathrm{V}_{0 _ \text {Max }}$ 25
C. 2 Second case: $\mathrm{V}_{2 _ \text {Min }}>\mathrm{V}_{1 _M a x}$ 26
C. 3 Third case: $\mathrm{V}_{2 _ \text {Max }}<\mathrm{V}_{3 _ \text {Min }}$ 27
Revision history 28

1 Multiplexed diagnostics

$1.1 \quad$ Principle

The multiplexed diagnostic allows the detection of the state of several AC switches independently using only one MCU input. In this case, an analog/digital converter input (ADC) of the MCU should be used and must be configured with no pull-up resistor. In this document, only the multiplexed diagnostic of two STCC08 (STCC08 ${ }_{1}$ and STCC08 ${ }_{2}$) is described (see Figure 2). Note that two output pins of an MCU should be used to control each STCC08 (IN1 and IN2).

Figure 2. Multiplexed diagnostic schematic of two STCC08

To distinguish the state of each AC switch (ACS1 and ACS2) a divider bridge is used. Resistors R_{1}, R_{2}, R_{3} and R_{4} are designed to convert the $V_{\text {AVF }}$ digital signal given by each STCC08 ($\mathrm{V}_{\mathrm{AVF} 1}$ and $\mathrm{V}_{\text {AVF2 }}$) into an analog signal ($\mathrm{V}_{\text {STATE }}$). Knowing the control state of each STCC08 (IN1 and IN2), the MCU is able to identify the state of each AC switch by analyzing the $\mathrm{V}_{\text {STATE }}$ signal (see Section 1.2).

Note: \quad The STCC08 AVF output is an open collector output. Resistors R_{1} and R_{3} bias the STCC08 AVF output and limit the collector current to 5 mA . For further information, and in particular, resistor values for $R_{A C}, R_{\text {shunt }}$, and $R_{I G}$, refer to the ST Application note AN2716.

1.2 Failure mode detection of two AC switches

Figure 3 to Figure 12 give the $\mathrm{V}_{\text {STATE }}$ signal level according to the state of each AC switch. V_{0}, V_{1}, V_{2} and V_{3} are levels reached by the parameter $V_{\text {STATE }}$ and depends on $R 1, R 2, R 3$, and R4 resitor values. Table 1 shows that we only need four different levels to define the state of each AC switch.

Figure 3. Case 1: $V_{\text {STATE }}=V_{3}$ (except at each zero crossing of the $A C$ line)

ACS1 and ACS2 are not in conducting state

Figure 4. \quad Case 2: $V_{\text {STATE }}=V_{0}$

Figure 5. Case 3: $\mathrm{V}_{\text {STATE }}=\mathrm{V}_{1}$ (except at each zero crossing of the AC line)

Figure 6. Case 4: $\mathrm{V}_{\text {STATE }}=\mathrm{V}_{\mathbf{2}}$ (except at each zero crossing of the AC line)

Figure 7. \quad Case 5: $V_{\text {STATE }}$ toggles between V_{1} and V_{3} at each AC line cycle (except at each zero crossing of the AC line)

Figure 8. Case 6: $V_{\text {STATE }}$ toggles between V_{2} and V_{3} at each $A C$ line cycle (except at each zero crossing of the AC line)

Figure 9. \quad Case 7: $\mathrm{V}_{\text {STATE }}$ toggles between V_{1} and V_{2} at each AC line cycle (except at each zero crossing of the AC line)

Figure 10. Case 8: $V_{\text {STATE }}$ toggles between V_{0} and V_{3} at each $A C$ line cycle (except at each zero crossing of the AC line)

ACS1 and ACS2 are failed in diode mode on the same AC line polarities

Figure 11. Case 9: $\mathrm{V}_{\text {STATE }}$ toggles between V_{2} and V_{0} at each $A C$ line cycle

ACS1 is failed in diode mode and ACS2 is failed in short circuit

Figure 12. Case 10: $\mathrm{V}_{\text {STATE }}$ toggles between V 1 and V 0 at each AC line cycle

ACS1 is failed in shot circuit and ACS2 is failed in diode mode

Table 1. Variation of the $V_{\text {STATE }}$ signal according to the AC switch states

ACS1 state	ACS2 state	$V_{\text {STATE }}$ status
ON	ON	$\mathrm{V}_{\text {STATE }}=\mathrm{V}_{0}$
ON	OFF	$\mathrm{V}_{\text {STATE }}=\mathrm{V}_{1}$
OFF	ON	$\mathrm{V}_{\text {STATE }}=\mathrm{V}_{2}$
OFF	OFF	$\mathrm{V}_{\text {STATE }}=\mathrm{V}_{3}$

Knowing the control state of each STCC08 (IN1 and IN2) and according to Table 1, the MCU is able to detect the AC switch state by analyzing $\mathrm{V}_{\text {STATE }}$ signal. Appendix A defines the states of each ACS according to the $\mathrm{V}_{\text {STATE }}$ signal level $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}\right.$ and $\left.\mathrm{V}_{3}\right)$ and the control state of each STCC08. In the case of failure of one of the AC switches, the MCU can place the application in a safe configuration by switching off an appliance front-end relay.

1.3 $\quad \mathrm{V}_{\text {AVF }}$ signal reading synchronization

The STCC08 AVF output signal is an image of the AC switch voltage. This signal toggles between V_{CC} and zero level (GND) according to whether the STCC08 AC input current (I_{AC}) is higher or not than $I_{A C T}$ (see AN2716). In case of multiplexed diagnostics the slight $I_{A C T}$ electrical variation between ICs may result in the state of the AVF signal of each STCC08 (either V_{CC} or zero level) not changing at exactly the same time. This has an impact on the $\mathrm{V}_{\text {STATE }}$ signal and on the $A C$ switches state detection (see Figure 13). Note that $\mathrm{I}_{\mathrm{ACT} 1}$ and $\mathrm{I}_{\mathrm{ACT}}$ define respectively the STTCO8 I_{AC} input current for STCCO_{1} and $\mathrm{STCCO8}_{2}$ to allow $\mathrm{V}_{\mathrm{AVF}}$ signal to toggle between VCC and GND. For example, if the two STCC08 are not controlled $(I N 1=I N 2=0)$ and $A C 1$ and $A C 2$ are not in conducting state the AC1 and AC2 can be interpreted (see Table 1) as failed in short circuit if $\mathrm{V}_{\text {STATE }}$ is read between t_{0} and t_{1} $\left(\mathrm{V}_{\text {STATE }}=\mathrm{V}_{0}\right)$.

Figure 13. $\mathrm{V}_{\text {STATE }}$ signal variation due to the $\mathrm{I}_{\mathrm{ACT}}$ parameter dispersion

The $V_{\text {STATE }}$ should be read between times t_{2} and t_{3}. To simplify the $A C$ switches detection, it is advised to read the $\mathrm{V}_{\mathrm{AVF}}$ signal around the AC line peak voltage to avoid any inappropriate interpretation of the AC switches state. Note that when the IN1 and/or IN2 signals are removed, a parasitic detection of the AC switch state exists up to the next AC load current zero crossing (see AN2716). Anyway to ensure a reliable detection of the AC switch state when the IN1 and/or IN2 control is removed, the AVF reading should be read 10 ms after the IN1 and/or IN2 control has been removed and at the next peak mains voltage.

Note: It is recommended that the AVF signal be read during several AC line cycles around the AC line peak voltage.

$2 \quad V_{\text {State }}$ level definition

According to the state of each AC switch, $\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ and V_{3} levels are defined by equations 1, 2, 3 and 4 (see also Appendix B). In this document $\mathrm{V}_{\text {AVF1_L }}$ and $\mathrm{V}_{\text {AVF2_L }}$ are respectively the STCCO_{1} and STCCO_{2} AVF output at the low level. The minimum and maximum values of $A V F$ at low level are respectively 0 V and 1 V .

Equation 1

ACS1 and ACS2 are on
$\mathrm{V}_{0}=\frac{\left(\mathrm{V}_{\text {AVF } 1 _} \cdot \mathrm{R}_{2}+\mathrm{V}_{\text {AVF } 2} \mathrm{~L} \cdot \mathrm{R}_{4}\right)}{\mathrm{R}_{2}+\mathrm{R}_{4}}$

Equation 2

ACS1 is on and ACS2 is off

$$
V_{1}=\frac{V_{\mathrm{CC}} \cdot R_{4}+\mathrm{V}_{\mathrm{AVF} 1} \mathrm{~L} \cdot\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{R_{1}+\mathrm{R}_{2}+\mathrm{R}_{4}}
$$

Equation 3

ACS2 is on and ACS1 is off

$$
V_{2}=\frac{V_{C C} \cdot R_{2}+V_{\text {AVF2 } 2} \cdot\left(R_{3}+R_{4}\right)}{R_{2}+R_{3}+R_{4}}
$$

Equation 4

ACS1 and ACS2 are off

$$
V_{3}=V_{C C}
$$

The tolerance of the resistors (R_{1}, R_{2}, R_{3} and R_{4}), the STCC08 output AVF signal electrical dispersion and the DC power supply characteristics induce a dispersion on V_{0}, V_{1}, V_{2} and V_{3} levels (see Table 2).

Table 2. Variation of the $\mathrm{V}_{\text {STATE }}$ signal according to the AC switch states

ACS1 state	ACS2 state	$\mathrm{V}_{\text {STATE }}$ status
ON	ON	$\mathrm{V}_{0 _ \text {Min }}<\mathrm{V}_{\text {STATE }}<\mathrm{V}_{0 _ \text {Max }}$
ON	OFF	$\mathrm{V}_{1 _ \text {Min }}<\mathrm{V}_{\text {STATE }}<\mathrm{V}_{1 \text { _Max }}$
OFF	ON	$\mathrm{V}_{2 \text { _Min }}<\mathrm{V}_{\text {STATE }}<\mathrm{V}_{2 _ \text {Max }}$
OFF	OFF	$\mathrm{V}_{3 \text { _Max }}>\mathrm{V}_{\text {STATE }}>\mathrm{V}_{3-\mathrm{Min}}$

Knowing the previous equations 1,2,3 and 4, the resistors standard value and the tolerance of the resistors, $\mathrm{V}_{\mathrm{x}_{-} \text {Max }}$ and $\mathrm{V}_{\mathrm{x}_{-} \operatorname{Min}}(\mathrm{x}=0,1,2$, or 3$)$ values are defined respectively by equations 5, 6, 7, $8,9,10,11$ and 12.
$\mathrm{V}_{\text {CC_Min }}$ and $\mathrm{V}_{\text {CC_Max }}$ are respectively the minimum and maximum power supply voltage of the application. $X_{R-M a x}$ and $X_{R \text { Min }}$ are the tolerances of the resistors. For example, with 5% resistor tolerance $\bar{X}_{R _M a x}$ and $\bar{X}_{R-M i n}$ are respectively 1.05 and 0.95 . $V_{\text {AVF_L_Max }}$ and $V_{\text {AVF_L_Min }}$ values are fixed by the STCC08 AVF output electrical dispersion at low level with:
$\mathrm{V}_{\text {AVF_L_Max }}=\mathrm{V}_{\text {AVF1_L_Max }}=\mathrm{V}_{\text {AVF2_L_Max }}=1 \mathrm{~V}$
and
$\mathrm{V}_{\text {AVF_L_Min }}=\mathrm{V}_{\text {AVF1_L_Min }}=\mathrm{V}_{\text {AVF2_L_Min }}=0 \mathrm{~V}$

Equation 5

ASC1 is on and ACS2 is on.

$$
V_{0 _M a x}=V_{\text {AVF_L_Max }} \cdot \frac{\left(R_{2}+R_{4}\right) \cdot X_{R_{_} M a x}}{\left(R_{2}+R_{4}\right) \cdot X_{R_{-} M i n}}=V_{A V F_{L} L _M a x} \cdot \frac{X_{R_{_} M a x}}{X_{R_{_} M i n}}
$$

Equation 6

ASC1 is on and ACS2 is on.
$V_{0 _M i n}=V_{\text {AVF_L_Min }} \cdot \frac{\left(R_{2}+R_{4}\right) \cdot X_{R _M i n}}{\left(R_{2}+R_{4}\right) \cdot X_{R _M a x}}=0 \quad \mathrm{~V}$

Equation 7

ASC1 is on and ACS2 is off.

$$
V_{1 _ \text {Max }}=\frac{V_{C_{C C}-M a x} \cdot R_{4} \cdot X_{R_{-} \operatorname{Max}}+V_{\text {AVF_L_Max }} \cdot\left(R_{1}+R_{2}\right) \cdot X_{R_{-} M a x}}{\left(R_{1}+R_{2}+R_{4}\right) \cdot X_{R_{-} \operatorname{Min}}}
$$

Equation 8

ASC1 is on and ACS2 is off.

$$
V_{1 _ \text {Min }}=\frac{V_{\text {CC_Min }} \cdot R_{4} \cdot X_{R_{_} \text {Min }}+V_{A_{\text {AVF_L_Min }}} \cdot\left(R_{1}+R_{2}\right) \cdot X_{R_{_} \text {Min }}}{\left(R_{1}+R_{2}+R_{4}\right) \cdot X_{R_{_} \text {Max }}}
$$

Equation 9

ASC1 is off and ACS2 is on.
$V_{\text {2_Max }}=\frac{V_{\text {CC_Max }} \cdot R_{2} \cdot X_{R_{\text {_Max }}}+V_{\text {AVF_L_Max }} \cdot\left(R_{3}+R_{4}\right) \cdot X_{R_{\text {_Max }}}}{\left(R_{2}+R_{3}+R_{4}\right) \cdot X_{R_{_} \text {Min }}}$

Equation 10

ASC1 is off and ACS2 is on.

$$
V_{2 _ \text {Min }}=\frac{V_{\text {CC_Min }} \cdot R_{2} \cdot X_{R_{_} \text {Min }}+V_{\text {AVF_L_Min }} \cdot\left(R_{3}+R_{4}\right) \cdot X_{R_{_} \text {Min }}}{\left(R_{2}+R_{3}+R_{4}\right) \cdot X_{R_{_}} \text {Max }}
$$

Equation 11

ASC1 is off and ACS2 is off.
$\mathrm{V}_{\text {B_Max }}=\mathrm{V}_{\text {CC_Max }}$

Equation 12

ASC1 is off and ACS2 is off.
$\mathrm{V}_{3 \text { _Min }}=\mathrm{V}_{\mathrm{CC} \text { _Min }}$

3 Resistance settings

Equation 13 shows how to select values for R_{1} and R_{3} resistances. $I_{\text {AVF_Max }}$ is the maximum current sunk by the STCC08 AVF pin and should be lower than 5 mA .

Equation 13

$R_{1}=R_{3}=R \geq \frac{2 \cdot V_{C C _M a x}}{I_{\text {AVF_Max }}}$
Knowing the R_{1} and R_{3} resistor standard values, the tolerance of the resistors, the STCC08 AVF output electrical dispersion and the DC power supply characteristic, R_{2} and R_{4} resistances value should be chosen by using equations 14 , 15 , and 16 (see also Appendix C).

Equation 14

$$
\left\{\begin{array}{l}
\Rightarrow V_{1 _ \text {Min }}>V_{D_{\text {_Max }}} \\
\Rightarrow R_{4}>\frac{\left(R+R_{2}\right) \cdot\left[V_{\text {AVF_L_Max }} \cdot\left(\frac{X_{R _M a x}}{X_{\text {R_Min }}}\right)^{2}-V_{\text {AVF_L_Min }}\right]}{V_{\text {CC_Min }}-V_{\text {AVF_L_Max }} \cdot\left(\frac{X_{R _M a x}}{X_{R _M i n}}\right)^{2}}
\end{array}\right.
$$

Equation 15

$$
\begin{aligned}
& \int \mathrm{V}_{\text {2_Min }}>\mathrm{V}_{1 \text { _Max }}
\end{aligned}
$$

Equation 16

$$
\begin{aligned}
& {\left[\Rightarrow V_{3_{-} \text {Min }}>\mathrm{V}_{\text {2_Max }}\right.} \\
& \Rightarrow R_{4}>\frac{R_{2} \cdot\left[V_{C C _M a x}-V_{\text {CC_Min }} \cdot \frac{X_{\text {R_Min }}}{X_{R-M a x}}\right]}{X}-R \\
& V_{\text {CC_Min }} \cdot \frac{X_{\text {R_Min }}}{X_{\text {R_Max }}}-V_{\text {AVF_L_Max }}
\end{aligned}
$$

4 Detection windows digital value setting

To detect the state of both AC switches, an MCU analog/digital converter input (ADC) should be used. The conversion result ($\mathrm{N}_{\text {ADC }}$) of the $\mathrm{V}_{\text {STATE }}$ signal depends on the ADC size (N) and of the MCU voltage reference ($\mathrm{V}_{\text {Ref }}$). Note that the ADC transfer function is considered as ideal (see Equation 17).

Equation 17

$N_{\text {ADC }}=\frac{V_{\text {STATE }}}{V_{\text {Ref }}} \cdot 2^{N}$
According to the state of the AC switches, the $\mathrm{V}_{\text {STATE }}$ signal is not directly dependent on the value of V_{CC} (see equations 1, 2 and 3). This has an impact on the conversion result if the voltage reference of the ADC transfer function depends directly on V_{Cc}. In this case, the detection levels to implement in the MCU firmware should be determined by taking into account the $D C$ power supply variation with $V_{\text {REF }}=V_{C C}$ (see equations 18, 19, 20, 21, 22, 23 and 24).

Equation 18

ASC1 is on and ACS2 is on.

$$
\left\{\begin{array}{l}
\Rightarrow N_{0}=\frac{V_{\text {AVF_L }}}{V_{C C}} \cdot \frac{\left(R_{2}+R_{4}\right)}{\left(R_{2}+R_{4}\right)} \cdot 2^{N} \\
\Rightarrow N_{O_{-} M a x}=\frac{V_{\text {AVF_L_Max }}}{V_{\text {CC_Min }}} \cdot \frac{\left(R_{2}+R_{4}\right) \cdot X_{R_{-} M a x}}{\left(R_{2}+R_{4}\right) \cdot X_{R_{-} \operatorname{Min}}} \cdot 2^{N}=\frac{V_{\text {AVF_L_Max }}^{V_{C_{C _M i n}}} \cdot \frac{X_{R_{_} M a x}}{X_{R_{-M i n}}} \cdot 2^{N}}{}
\end{array}\right.
$$

Equation 19

ASC1 is on and ACS2 is on.
$\mathrm{N}_{0 \text { _Min }}=0$

Equation 20

ASC1 is on and ACS2 is off.

$$
\left\{\begin{array}{l}
\Rightarrow N_{1}=\left[\frac{R_{4} \cdot V_{C C}+V_{\text {AVF_L }} \cdot\left(R_{1}+R_{2}\right)}{V_{C C} \cdot\left(R_{1}+R_{2}+R_{4}\right)}\right] \cdot 2^{N} \\
\Rightarrow N_{1 _M a x}=\left[R_{4}+\frac{V_{\text {AVF_L_Max }} \cdot\left(R_{1}+R_{2}\right)}{V_{C C _M i n}}\right] \cdot \frac{2^{N} \cdot X_{R_{_} M a x}}{\left(R_{1}+R_{2}+R_{4}\right) \cdot X_{R_{_} M i n}}
\end{array}\right.
$$

Equation 21

ASC1 is on and ACS2 is off.

$$
\left\{\begin{array}{l}
\Rightarrow N_{1}=\left[\frac{R_{4} \cdot V_{C C}+V_{\text {AVF_L }} \cdot\left(R_{1}+R_{2}\right)}{V_{C C} \cdot\left(R_{1}+R_{2}+R_{4}\right)}\right] \cdot 2^{N} \\
\Rightarrow N_{1 _\operatorname{Min}}=\left[R_{4}+\frac{V_{\text {AVF_L_Min }} \cdot\left(R_{1}+R_{2}\right)}{V_{\text {CC_Max }}}\right] \cdot \frac{2^{N} \cdot X_{R_{_} \operatorname{Min}}}{\left(R_{1}+R_{2}+R_{4}\right) \cdot X_{R_{_} \operatorname{Max}}}
\end{array}\right.
$$

Equation 22

ASC1 is off and ACS2 is on.

Equation 23

ASC1 is off and ACS2 is on.

$$
\left\{\begin{array}{l}
\Rightarrow N_{2}=\left[\frac{R_{2} \cdot V_{C C}+V_{\text {AVF_L }} \cdot\left(R_{3}+R_{4}\right)}{V_{C C} \cdot\left(R_{2}+R_{3}+R_{4}\right)}\right] \cdot 2^{N} \\
\Rightarrow N_{1 _\operatorname{Min}}=\left[R_{2}+\frac{V_{\text {AVF_L_Min }} \cdot\left(R_{3}+R_{4}\right)}{V_{C C _M a x}}\right] \cdot \frac{2^{N} \cdot X_{R_{_} \operatorname{Min}}}{\left(R_{2}+R_{3}+R_{4}\right) \cdot X_{R _M a x}}
\end{array}\right.
$$

Equation 24

ASC1 is off and ACS2 is off.

$$
N_{3 _ \text {Max }}=N_{3 _M i n}>N_{2 _M a x}
$$

5 Application example

Table 3. Defined values of the application

Symbol	Value	Unit
I AVF_Max	5	mA
$\mathrm{~V}_{\text {CC_Min }}$	4.5	V
$\mathrm{~V}_{\text {CC_Max }}$	5.5	V
V AVF_L_Min	0	V
V AVF_L_Max $^{\mathrm{N}(M C U \text { ADC resolution })}$	1	V

The first step is to calculate R_{1} and R_{3} resistor values using Equation 13. The second step is to choose the R_{2} and R_{4} resistor values to fulfil equations 14 and 15 (see also Table 4).

Table 4. $\quad R_{1}, R_{2}, R_{3}$ and R_{4} resistor values

Resistor settings	Standard value (5\% tolerance)
$R_{1}=R_{3}>1.1 \mathrm{k} \Omega$	$2.2 \mathrm{k} \Omega$
R_{2}	$15 \mathrm{k} \Omega$
R_{4}	$6.8 \mathrm{k} \Omega$

The third step is to calculate the window detection levels (see Table 5) according to equations $5,6,7,8,9,10,11,18,19,20,21,22,23$ and 24 . The window detection digital levels will be stored in the MCU firmware to distinguish the state of each AC switch.

Table 5. Detection window values

Windows detection level	Analog values (Volts)		Equivalent digital values	
	Max.	Min.	Max.	Min.
V_{0}	1.105	0	252	0
$\mathrm{~V}_{1}$	2.514	1.154	501	262
$\mathrm{~V}_{2}$	4.214	2.545	802	579
$\mathrm{~V}_{3}$	5.5	4.5	1024	>802

6 Conclusion

This application note illustrates how designers can diagnose the state of two AC switches with only one single microcontroller ADC input. The way to implement this solution in the application and the external resistor choice is described in this document.

This solution is used to detect the failure modes of two AC switches and to inform the MCU so that appropriate actions to put the system into a safe state can be taken. This function improves the system safety by detecting "diode mode" in both polarities of the AC mains, "short circuit" and "open circuit" of each AC switch independently.
The main benefit of this solution is to reduce the cost of the microcontroller when a platform needs to monitor several AC switches because it requires one less pin.

Appendix A AC switch state deduction

Table 6. \quad AC switch states when $\operatorname{IN} 1=\operatorname{IN} 2=0$

IN1	IN2	$\mathbf{V}_{\text {STATE }}$ value	ACS1 diagnostic	ACS2 diagnostic
0	0	$\mathrm{~V}_{0}$	Shorted circuit	Shorted circuit
0	0	$\mathrm{~V}_{1}$	Shorted circuit	OFF
0	0	$\mathrm{~V}_{2}$	OFF	Shorted circuit
0	0	$\mathrm{~V}_{3}$	OFF	OFF
0	0	Toggle between V_{3} and V_{2}	OFF	Diode mode
0	0	Toggle between V_{3} and V_{1}	Diode mode	OFF
0	0	Toggle between V_{3} and V_{0}	Diode mode	Diode mode
0	0	Toggle between V_{2} and V_{1}	Diode mode	Diode mode
0	Toggle between V_{2} and V_{0}	Diode mode	Shorted circuit	
0	Toggle between V_{1} and V_{0}	Shorted circuit	Diode mode	

Table 7. AC switch states when IN1 = 0 and $\operatorname{IN} 2=1$

IN1	IN2	$\mathbf{V}_{\text {STATE }}$ value	ACS1 diagnostic	ACS2 diagnostic
0	1	V_{0}	Shorted circuit	ON
0	1	V_{1}	Shorted circuit	OPEN circuit
0	1	V_{2}	OFF	ON
0	1	V_{3}	OFF	OPEN circuit
0	1	Toggle between V_{3} and V_{2}	OFF	NA
0	1	Toggle between V_{3} and V_{1}	Diode mode	OPEN circuit
0	1	Toggle between V_{3} and V_{0}	Diode mode	NA
0	1	Toggle between V_{2} and V_{1}	Diode mode	NA
0	Toggle between V_{2} and V_{0}	Diode mode	ON	
Toggle between V_{1} and V_{0}	Shorted circuit	NA		

Table 8. AC switch states when $\operatorname{IN} 1=1$ and $\operatorname{IN} 2=0$

IN1	IN2	$\mathbf{V}_{\text {STATE }}$ value	ACS1 diagnostic	ACS2 diagnostic
1	0	V_{0}	ON	Shorted circuited
1	0	V_{1}	ON	OFF
1	0	V_{2}	Open circuit	Shorted circuited
1	0	V_{3}	Open circuit	OFF
1	0	Toggle between V_{3} and V_{2}	Open circuit	Diode mode
1	0	Toggle between V_{3} and V_{1}	NA	OFF
1	0	Toggle between V_{3} and V_{0}	NA	Diode mode
1	0	Toggle between V_{2} and V_{1} V_{2} and V_{0}	NA	Diode mode
1	Toggle between V_{1} and V_{0}	ON	Diode mode	
1		0	NA	Shorted circuit

Table 9. $\quad \mathrm{AC}$ switch states when $\mathrm{IN} 1=\mathrm{IN} 2=1$

IN1	IN2	$\mathrm{V}_{\text {STATE }}$ value	ACS1 diagnostic	ACS2 diagnostic
1	1	$\mathrm{~V}_{0}$	ON	ON
1	1	$\mathrm{~V}_{1}$	ON	OPEN circuit
1	1	$\mathrm{~V}_{2}$	Open circuit	ON
1	1	$\mathrm{~V}_{3}$	Open circuit	OPEN circuit
1	1	Toggle between V_{3} and V_{2}	Open circuit	NA
1	1	Toggle between V_{3} and V_{1}	NA	OPEN circuit
1	1	Toggle between V_{3} and V_{0}	NA	NA
1	Toggle between V_{2} and V_{1}	NA	NA	
1	Toggle between V_{2} and V_{0}	NA	ON	
1	Toggle between V_{1} and V_{0}	ON	NA	

Appendix B $\quad \mathrm{V}_{\text {STATE }}$ signal voltage definition

The $\mathrm{V}_{\text {State }}$ voltage is defined according to the theorem of superposition applied on the linear circuits defined on Figures 14, 15, 16 and 17 (according to the state of each AC switch). The voltage resulting ($\mathrm{V}_{\text {STATE }}$) from each source is calculated separately, and the results are added algebraically. The input current of the MCU A/D conversion block ($I_{A / D}$) is neglected.

Figure 14. Equivalent circuit ACS1 and ACS2 are on

Equation 25

$$
\mathrm{V}_{\text {STATE }}=\mathrm{V}_{0}=\mathrm{V}_{\text {AVF1_L }} \cdot \mathrm{V}_{\text {AVF2_L }} \cdot \frac{\mathrm{R}_{4}}{\mathrm{R}_{4}+\mathrm{R}_{2}}
$$

Equation 26

$V_{0_{-} \text {Max }}=V_{\text {AVF_L_Max }} \cdot \frac{\left(R_{2}+R_{4}\right) \cdot X_{R_{-} \text {Max }}}{\left(R_{2}+R_{4}\right) \cdot X_{R_{\text {_Min }}}}$

Equation 27

$V_{O_{-} \text {Min }}=V_{\text {AVF_L_Min }} \cdot \frac{\left(R_{2}+R_{4}\right) \cdot X_{R_{-} \text {Min }}}{\left(R_{2}+R_{4}\right) \cdot X_{R_{-M a x}}}=0$

Figure 15. Equivalent circuit ACS1 is on and ACS2 is off

Equation 28

$V_{\text {STATE }}=V_{1}=\frac{R_{4}}{R_{4}+R_{2}+R_{1}} \cdot V_{C C}+\frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{4}} \cdot V_{\text {AVF1 } _L}$

Equation 29

$V_{1 _ \text {Max }}=\frac{V_{C_{C _M a x ~}} \cdot R_{4} \cdot X_{R_{\text {_Max }}}+V_{\text {AVF_L_Max }} \cdot\left(R_{1}+R_{2}\right) \cdot X_{R_{\text {_Max }}}}{\left(R_{1}+R_{2}+R_{4}\right) \cdot X_{\text {R_Min }}}$

Equation 30

$$
V_{1 _ \text {Min }}=\frac{V_{\mathrm{CC}_{-} \operatorname{Min}} \cdot R_{4} \cdot X_{R_{_} \operatorname{Min}}+V_{\text {AVF_L_Min }} \cdot\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \cdot X_{R_{-} \operatorname{Min}}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{4}\right) \cdot \mathrm{X}_{\mathrm{R}_{-} \operatorname{Max}}}
$$

Figure 16. Equivalent circuit ACS2 is on and ACS1 is off

Equation 31

$$
V_{\text {STATE }}=V_{2}=\frac{R_{2}}{R_{2}+R_{4}+R_{3}} \cdot V_{C C}+\frac{R_{3}+R_{4}}{R_{3}+R_{4}+R_{2}} \cdot V_{\text {AVF2 } _L}
$$

Equation 32

$$
V_{2 _M a x}=\frac{V_{C_{C} _ \text {Max }} \cdot R_{2} \cdot X_{R_{\text {_Max }}}+V_{\text {AVF_L_Max }} \cdot\left(R_{3}+R_{4}\right) \cdot X_{R_{-} \operatorname{Max}}}{\left(R_{2}+R_{3}+R_{4}\right) \cdot X_{R_{-} \text {Min }}}
$$

Equation 33

$$
V_{2_{-} \operatorname{Min}}=\frac{V_{\text {CC_Min }^{\prime}} \cdot R_{2} \cdot X_{R_{_} \text {Min }}+V_{\text {AVF_L_Min }} \cdot\left(R_{3}+R_{4}\right) \cdot X_{R_{-} \operatorname{Min}}}{\left(R_{2}+R_{3}+R_{4}\right) \cdot X_{R_{_} \operatorname{Max}}}
$$

Figure 17. Equivalent circuit ACS1 and ACS2 are off

Equation 34

$$
V_{\text {STATE }}=V_{3}=V_{C C} \cdot \frac{R_{3}+R_{4}}{R_{1}+R_{2}+R_{3}+R_{4}}+V_{C C} \cdot \frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{3}+R_{4}}=V_{C C}
$$

Equation 35

$V_{3_{-} M a x}=V_{\text {CC_Max }}$

Equation 36
$\mathrm{V}_{\text {__Min }}=\mathrm{V}_{\mathrm{CC} \text { _Min }}$

Appendix C Resistor settings

Figure 15, and equations 37, 38 and39 define conditions to identify the state of each AC switch.

Equation 37
$V_{1 _ \text {Min }}>V_{0 _M a x}$

Equation 38

$\mathrm{V}_{\text {2_Min }}>\mathrm{V}_{1 _ \text {Max }}$

Equation 39

$V_{\text {2_Max }}<\mathrm{V}_{3 _ \text {Min }}$

C. 1 First case: $\mathrm{V}_{1 _ \text {Min }}>\mathrm{V}_{\mathbf{0 _ M a x}}$

Equations 26 and 30 define respectively $\mathrm{V}_{0 _ \text {Max }}$ and $\mathrm{V}_{1 \text { _Min }}$ (see Appendix A). To take into account R_{1} resistor's standardized values (see Equation 13), the resistor's tolerance (X_{R}), the STCC08 AVF output electrical dispersion and the DC power supply characteristic, the condition on R_{2} and R_{4} resistors is defined in Equation 42.

Equation 40

$V_{1 _ \text {Min }}>V_{0 _M a x}$

Equation 41

$\frac{V_{C_{C-M i n}} \cdot R_{4} \cdot X_{R_{-} \text {Min }}+V_{\text {AVF_L_Min }} \cdot\left(R_{1}+R_{2}\right) \cdot X_{R_{-} \text {Min }}}{\left(R_{1}+R_{2}+R_{4}\right) \cdot X_{R_{_} \text {Max }}}>V_{\text {AVF_L_Max }}$

Equation 42

$R_{4}>\frac{\left(R_{1}+R_{2}\right) \cdot\left[V_{\text {AVF_L_Max }} \cdot\left(\frac{X_{R _M a x}}{X_{\text {R_Min }}}\right)-V_{\text {AVF_L_Min }}\right]}{V_{\text {CC_Min }}-V_{\text {AVF_L_Max }} \cdot\left(\frac{X_{\text {R_Max }}}{X_{\text {R_Min }}}\right)}$

C. 2 Second case: $\mathbf{V}_{\mathbf{2} \text { Min }}>\mathbf{V}_{1 _M a x}$

Equations 29 and 33 define respectively V_{1} Max and $\mathrm{V}_{2 \text { _Min }}$ (see Appendix A). To take into account R_{3} resistor's standardized values, the resistor's tolerance (X_{R}), the STCC08 AVF output electrical dispersion and the DC power supply characteristic, the condition on R_{2} and R_{4} resistors is defined by Equation 46.

Equation 43

$\mathrm{V}_{\text {2_Min }}>\mathrm{V}_{1 _ \text {Max }}$

Equation 44

$$
V_{2_{-} \operatorname{Min}}=\frac{V_{C_{C _M i n}} \cdot R_{2} \cdot X_{R_{-} \operatorname{Min}}+V_{\text {AVF_L_Min }} \cdot\left(R+R_{4}\right) \cdot X_{R_{-} \text {Min }}}{\left(R_{2}+R_{3}+R_{4}\right) \cdot X_{R_{_} \operatorname{Max}}}
$$

Equation 45

$$
V_{1 _M a x}=\frac{V_{C_{C _M a x}} \cdot R_{4} \cdot X_{R_{_} \operatorname{Max}}+V_{\text {AVF_L_Max }} \cdot\left(R_{1}+R_{2}\right) \cdot X_{R_{_} \operatorname{Max}}}{\left(R_{1}+R_{2}+R_{4}\right) \cdot X_{R_{_}} \operatorname{Min}}
$$

Equation 46

C. 3 Third case: $\mathbf{V}_{\mathbf{2} \text { Max }}<\mathrm{V}_{\mathbf{3} \text { _Min }}$

Equations 32 and 36 define respectively $\mathrm{V}_{2 \text { Max }}$ and $\mathrm{V}_{3 \text { Min }}$ (see Appendix A). To take into account R_{3} resistor's standardized values, the resistors' tolerance (X_{R}), the STCC08 AVF output electrical dispersion and the DC power supply characteristic, the condition on R_{2} and R_{4} resistors is defined in Equation 49.

Equation 47

$V_{\text {2_Max }}<V_{3 _M i n}$

Equation 48

$\frac{V_{C C _M a x} \cdot R_{2} \cdot X_{R_{_} M a x}+V_{\text {AVF_L_Max }} \cdot\left(R_{3}+R_{4}\right) \cdot X_{R_{-} \text {Max }}}{\left(R_{2}+R_{3}+R_{4}\right) \cdot X_{R_{-} \text {Min }}}<V_{C_{C-M i n}}$
Equation 49
$R_{4}>\frac{R_{2} \cdot\left[V_{\text {CC_Max }}-V_{\text {CC_Min }} \cdot \frac{X_{R_{\text {RMM }}}}{X_{\text {R_Max }}}\right]}{V_{\text {CC_Min }} \cdot \frac{X_{\text {R_Min }}}{X_{\text {R_Max }}}-V_{\text {AVF_L_Max }}}-R_{3}$

Revision history

Table 10. Document revision history

Date	Revision	Changes	
08-Dec-2009	1	Initial release.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

