AN3276
 Application note

ST solution for efficiency improvement in PFC applications, back current circuit (BC^{2})

Introduction

The challenges for modern high efficiency switching power supplies are to minimize power losses and increase their power density without raising the cost. The goal is to reduce both power conduction and power switching losses.

Minimization of power conduction losses is difficult to achieve without considerably affecting the cost and power density, since more material is required (bigger active and passive components). Unlike the conduction losses, it is easier to reduce the power switching losses without significantly increasing the power supply cost. There are two main ways to achieve this improvement:
■ working on the dynamic behavior of the semiconductor technologies
■ working on circuit topologies
Novel diodes using technologies such as SiC and GaN materials significantly reduce the switching losses. However, their high price makes them not so attractive for applications such as desktop server power supplies, solar inverters and μ inverters.

The patented circuit [see Section 5: References, 1.], described in this Application note is based on the soft switching method and meets market expectations since its efficiency/cost/power, and density/EMI trade-offs are better than high voltage SiC Schottky diodes.

Contents

1 Existing solutions 3
1.1 Diode switch-on losses 3
1.2 Soft switch-on method 4
1.3 Active recovery circuit 5
1.4 Passive recovery circuit 6
2 The new ST solution-BC²: energy recovery circuit 7
2.1 Concept description 7
2.2 Phase timing description 8
2.2.1 Phase before t0 9
2.2.2 Phase to to t1 9
2.2.3 Phase t1 to t2 10
2.2.4 Phase t2 to t3 11
2.2.5 Phase t3 to t4 11
2.2.6 Phase t_{4} to t_{5} 12
2.3 Electrical voltage stress in BC^{2} 13
2.4 Calculation of m 2 and m 1 ratios 13
2.5 Calculation of L 14
2.6 Range of products 14
3 $B C^{2}$ design in 450 W PFC 15
$3.1 \quad B C^{2}$ design 15
$3.2 \quad B C^{2}$ typical waveforms 15
3.3 Efficiency comparison 16
3.4 Thermal measurement 18
4 Conclusion 19
5 References 20
6 Revision history 21

1 Existing solutions

This section describes some existing areas for efficiency improvements in PFC applications.

1.1 Diode switch-on losses

Usually, in mass market applications between 200 W and 2 kW , a power factor corrector (PFC) working in continuous conduction mode (CCM) is mandatory. To improve the power converter density, the switching frequency should be increased. Nevertheless, when the switching frequency increases, power dissipation in the power switch/rectifier commutation cells leads to the major switching losses in the PFC. The main power losses occur during turn-on of the power switch due to both the voltage and current crossing area of the MOSFET and the reverse recovery losses [see Section 5: References, 2.] produced by the PN diode as shown in Figure 1.

Figure 1. Switch-on losses in PN diode behavior

To reduce the losses of the PN rectifier, many semiconductor manufacturers have recently introduced high-voltage Schottky diodes using SiC and GaN technologies. However, it is impossible to completely remove the voltage and current crossing area during transistor turn-on by improving component performance only.

Figure 2. Switch-on losses in SiC or GaN diode behavior

Unlike PN diodes, SiC diodes allow the turn-on dl/dt to be increased without increasing the diode recovery current. Thus, switching time decreases and switch-on losses decrease too, but they are not removed entirely. Today, in PFC designs, the turn-on dl/dt with the SiC diode is around $1000 \mathrm{~A} / \mu$ s maximum to respect EMI standards, whereas the PN diode is used with a dl/dt of $300 \mathrm{~A} / \mu \mathrm{s}$.

1.2 Soft switch-on method

Another way to reduce these losses is to use a soft switching method by adding a small inductor L to control the $\mathrm{dl} / \mathrm{dt}$ slope. This solution removes the current/voltage crossing area and the PN diode recovery current effect during the turn-on of the transistor as shown in Figure 3.

Figure 3. Switch-on losses in current soft switching behavior

This soft switching solution is well known, but it requires that several technical criteria be met:

- Reset the current in the inductor L at each switching period, whatever the variations of the current, and input and output voltages.
- Recover the saved inductive energy without losses.
- Limit any overvoltage and overcurrent stress in the semiconductor devices.
- Keep cost down when adding any device.
- Maintain a similar power supply density.

There are many circuits that are classified in two families of recovery circuits:

- active
- passive

1.3 Active recovery circuit

In the active recovery circuit family, the zero voltage transition (ZVT) [see Section 5: References, 3.] shown in Figure 4 is well known by designers. This circuit allows both switch-on and switch-off power losses to be removed.

Figure 4. Zero voltage transition (ZVT) active recovery circuit

A theoretical study indicates that ZVT is an excellent topology for the PFC application, since all the switch losses are removed. In addition, this circuit can work whatever the input and output power variations. Nevertheless, in practice, the recovery current from the boost diode D_{B} significantly affects the ZVT behavior leading to some constraints on both inductance and minimum duty cycle. During the reset current in the small inductor L , the recovery current from D_{2} involves a high-stress voltage and damping parasitic oscillation. Finally, the dynamic behavior of the PN diode affects the global ZVT efficiency because conduction times in the transistor should increase and a dissipative snubber is mandatory to reduce the electrical stress across the semiconductors.

In terms of cost the ZVT circuit requires an additional power MOSFET and a specific PWM controller. Several derivative circuits of the ZVT circuit have the same technical issue and their higher price makes these circuits less than ideal for mass market applications. Therefore, the passive recovery circuit can be more attractive.

1.4 Passive recovery circuit

In the passive recovery circuit family the electrical schematic shown in Figure 5 is a good example [see Section 5: References, 4.]; only two extra diodes and one resonant capacitor are required.

Figure 5. Passive recovery circuit

This circuit works well under unchanging external conditions. However, it is difficult to design this kind of system in PFC applications since the current reset in the small inductor depends on both boost diode recovery current and the external electrical conditions.

Although, the non-dissipative passive circuit requires fewer components, it is unfortunately technically impractical in PFC applications. These examples highlight that the current snubber method is well known but the technical challenge is to recover the L energy through the application without affecting the five criteria listed in Section 1.2.

2 The new ST solution - BC ${ }^{2}$: energy recovery circuit

The innovative circuit has been designed [see Section 5: References, 1.] to respect the five soft switching criteria in Section 1.2. Figure 6 shows that two additional diodes D_{1} and D_{2} and two auxiliary windings $N_{S 1}$ and $N_{S 2}$ wound around the main boost inductor L_{B} are designed to reset the energy stored in the small inductor L.

Figure 6. Novel energy recovery circuit: B^{2}

2.1 Concept description

The winding $N_{S 1}$ allows the $I_{R M}$ current from the boost diode D_{B} to be recovered in the main boost inductor when the transistor turns on. Since the mains input voltage modulates the L_{B} voltage, it also modulates the reflected voltage across $\mathrm{N}_{\mathrm{S} 1}$. This input voltage also modulates the boost diode current I_{DB} and its associated recovery current I_{RM}. These combined modulations allow the extra current $I_{R M}$ flowing in the inductor L to be reset into the winding $N_{S 1}$ even in the worst case. The winding $N_{S 2}$ allows the extra current of L to be injected into the output capacitor when the transistor turns off. The reflected voltage across $\mathrm{N}_{\mathrm{S} 2}$ is also a function of the input voltage. This reflected voltage reaches its maximum when the AC line voltage is low, corresponding to the maximum value of the inductor L current. These combined variations allow the current flowing in the inductor L to be cancelled in the bulk capacitor through the diode D_{2} even in the worst case. The benefits of these two additional windings $N_{S 1}$ and $N_{S 2}$ are to switch off the diodes D_{1} and D_{2} with a low $\mathrm{dl} / \mathrm{dt}$ (about $10 \mathrm{~A} / \mu \mathrm{s}$) as in a discontinuous mode switching converter. Their recovery currents do not affect the behavior of the $B C^{2}$ circuit.

2.2 Phase timing description

Figure 7. Equivalent timing per phase

The winding ratios m_{1} and m_{2} versus N_{P} winding are those of the windings $N_{S 1}$ and $N_{S 2}$ respectively.

2.2.1 Phase before t_{0}

Figure 8. Equivalent circuit before $\mathbf{t}_{\mathbf{0}}$

Before t_{0}, the $B C^{2}$ circuit has the same behavior as the conventional boost converter. The boost diode D_{B} conducts to send the main inductor energy through the output bulk capacitor.

2.2.2 Phase t_{0} to $\mathrm{t}_{\mathbf{1}}$

Figure 9. Equivalent circuit $\mathrm{t}_{\mathbf{0}}$ to $\mathrm{t}_{\mathbf{1}}$

At t_{0}, the power MOSFET turns on and the current in D_{B} is equal to I_{0}. At $t_{0}+$, the current soft switching occurs, that is to say, the voltage across the power MOSFET decreases to 0 volt under a zero current and no switching losses appear. After t_{0}, the current flowing in L increases linearly until it reaches the input current I_{0} added with the recovery diode I_{RM}, whereas the current flowing in D_{B} decreases linearly down to $-I_{\mathrm{RM}}$.
Figure 7 shows the behavior of these currents taking account of the m_{2} transformer ratio. The simplified dI/dt expression in transistor T_{R} and the boost diode D_{B} can be estimated using,
$\frac{\mathrm{dl}_{\mathrm{DB}}}{\mathrm{dt}} \approx \frac{\mathrm{dl}_{\mathrm{TR}}}{\mathrm{dt}}=\frac{\mathrm{V}_{\text {out }}-\mathrm{V}_{\mathrm{N}_{\mathrm{S} 2}}}{\mathrm{~L}}$
and
$\mathrm{V}_{\mathrm{NS}^{2} 2}=\frac{\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {mains }}\right) \cdot \mathrm{m}_{2}}{1+\mathrm{m}_{2}}$
At $t_{0}+$, the $C_{\text {OSS }}$ capacitance of the power MOSFET is discharged in its $R_{D S(o n)}$. Unlike standard PFC circuits, the voltage applied across the drain is lower because the reflected
$\mathrm{V}_{\text {NS2 }}$ voltage is subtracted from $\mathrm{V}_{\text {OUT }}$. This behavior provides the BC^{2} circuit with a benefit since under the low output load, power saving occurs in the system and it can be evaluated using:
$\mathrm{P}_{\mathrm{COSS}^{-\mathrm{t}_{0}}}=\frac{1}{2} \cdot \mathrm{C}_{\text {OSS }} \cdot\left[\mathrm{V}_{\text {out }}{ }^{2}-\left(\frac{\mathrm{V}_{\text {out }}+\mathrm{V}_{\text {mains }} \cdot m_{2}}{1+\mathrm{m}_{2}}\right)^{2}\right] \cdot F_{\text {switching }}$
Thus, the $B C^{2}$ reduces switch-off losses too.

2.2.3 Phase t_{1} to t_{2}

Figure 10. Equivalent circuit t_{1} to t 2

At $t_{1}+$, the boost diode D_{B} turns off, and an overcurrent I_{RM} is stored in the small inductor. This overcurrent discharges the D_{B} junction capacitance linearly. At the same time, the voltage polarity across the main inductor changes until it reaches D_{1} diode conduction. At this time, the overcurrent I_{RM} is reduced by the transformer ratio m_{1} and is sent to the main inductor.

Thus, the current flowing through $N_{S 1}$ contributes to charge the internal coil magnetization L_{B} at the same time as the N_{p} winding biased by the mains voltage. The I_{RM} current flowing in D_{1} decreases down to reach $0 A$ thanks to the reflected voltage $V_{N S 1}$ that it is given by:
$\mathrm{V}_{\mathrm{NS} 1}=\frac{-\mathrm{V}_{\text {mains }} \cdot \mathrm{m}_{1}}{1-\mathrm{m}_{1}}$
and
$\mathrm{t}_{\mathrm{D} 1-\mathrm{ON}} \approx \frac{\mathrm{I}_{\mathrm{RM}} \cdot \mathrm{L} \cdot\left(1-\mathrm{m}_{1}\right)}{\mathrm{V}_{\text {mains }} \cdot \mathrm{m}_{1}}$
To guarantee a soft switching behavior in discontinuous mode, the current in D_{1} should reach 0 A before time t_{3}. The $t_{D 1}$ _ON time trend supports the PFC application since the $I_{R M}$ current is the largest when the $\mathrm{V}_{\text {mains }}$ voltage in the sinusoidal period is the highest. In addition, to cancel the D_{1} recovery current diode effect, the dl/dt_D1 is always low thanks to the low reflected voltage $\mathrm{V}_{\mathrm{NS} 1}$ and it is given by:
$\frac{\mathrm{dl}_{-\mathrm{D}_{1}}}{\mathrm{dt}} \approx \frac{-\mathrm{V}_{\text {mains }} \cdot \mathrm{m}_{1}}{\left(1-\mathrm{m}_{1}\right) \cdot \mathrm{L}}$
Unfortunately, during this phase a high reverse voltage is applied across the boost diode D_{B} :
$V_{D B _ \text {reverse }}=V_{\text {out }}+V_{N_{S} 1}+V_{N_{S} 2}=V_{\text {out }}+\frac{V_{\text {mains }} \cdot\left(m_{1}+m_{2}\right)}{1-m_{1}}$

This feature requires a specific diode for this application, so ST has developed an optimized diode with an accurate trade-off between the I_{RM} current value and its breakdown voltage.

2.2.4 Phase t_{2} to t_{3}

Figure 11. Equivalent circuit $\mathrm{t}_{\mathbf{2}}$ to $\mathrm{t}_{\mathbf{3}}$

At t_{2}, the current in D_{1} reaches $0 A$ and then the $B C^{2}$ works as a conventional power boost converter. As the power transistor stays on, the current in the main L_{B} and the small L inductor increases up to I_{1} at time t_{3}.

2.2.5 \quad Phase t_{3} to t_{4}

Figure 12. Equivalent circuit t_{3} to t_{4}

At t_{3}, the power transistor turns off. At this time the voltage across the MOSFET increases linearly as its Coss $_{\text {os }}$ capacitance is charged by the current stored in the small inductor L to reach conduction in diode D_{2}. No overvoltage stress occurs on the power switch during the turn off. At the same time, the voltage polarity across the main inductor changes until it reaches D_{B} diode conduction. As soon as the diodes conduct together, the output current is shared as shown in Figure 7. The current in D_{2} starting at I_{1}, decreases due to the reflected voltage from $N_{S 2}$ to reach 0 A with a low $\mathrm{dl} / \mathrm{dt}$. On the other hand, the current in D_{B} rises to reach the nominal current at t_{4}. This shared current is a benefit for the $B C^{2}$ circuit. In the PFC application working under a lower mains voltage such as 90 V rms, the highest
application boost current is shared between D_{B} and D_{1} diodes. Therefore the conduction losses in the rectification stage are reduced. The reflected voltage $V_{N S 2}$ and D_{2} time conduction are given by:
$\mathrm{V}_{\mathrm{N}_{\mathrm{S} 2}}=\frac{-\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {mains }}\right) \cdot \mathrm{m}_{2}}{1+\mathrm{m}_{2}}$
and
$t_{\text {D2_ON }}=\frac{-l_{1} \cdot L \cdot\left(1+m_{2}\right)}{\left(V_{\text {out }}-V_{\text {mains }}\right) \cdot m_{2}}$
The $t_{\text {D2_ON }}$ time trend supports the PFC application since the I_{1} current is largest when the $\mathrm{V}_{\text {mains }}$ voltage range is lowest. Thus the discontinuous mode could be guaranteed in the $B C^{2}$ circuit even under the worst case PFC applications such as high output load current under the minimum $V_{\text {mains }}$ voltage range. In addition, to cancel the D_{2} recovery current diode effect, the dl/dt_ D_{2} is always low due to the low reflected voltage $\mathrm{V}_{\mathrm{NS} 2}$ given by: $\frac{\mathrm{dl}_{-\mathrm{D}_{2}}}{\mathrm{dt}} \approx \frac{-\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {mains }}\right) \cdot \mathrm{m}_{2}}{\left(1+\mathrm{m}_{2}\right) \cdot \mathrm{L}}$

2.2.6 Phase $_{4}$ to t_{5}

Figure 13. Equivalent circuit t_{4} to t_{5}

At t_{4}, the current in the D_{2} reaches 0 A and then the BC^{2} works like a conventional power boost converter. Only the boost diode D_{B} conducts. Due to the reflected voltage of $\mathrm{N}_{\mathrm{S} 2}$, the voltage across the power switch is lower than $\mathrm{V}_{\text {OUT }}$. Thus the $\mathrm{C}_{\text {OSS }}$ capacitor is discharged in the bulk capacitor and power saving occurs as the transistor turns on at t_{0}.

2.3 Electrical voltage stress in BC^{2}

Table 1 summarizes the maximum voltage across each semiconductor versus the phases.
Table 1. Maximum reverse voltage in the $B C^{2}$

Maximum voltages	Phases	Waveform expression	> $\mathrm{V}_{\text {OUT }}$?
$\mathrm{VR}_{\text {TRmax }}$	$t_{3}-t_{4}$	$\mathrm{V}_{\text {OUT }}$	NO
$\mathrm{VR}_{\text {DBmax }}$	$t_{1}-t_{2}$	$\frac{\mathrm{V}_{\text {mainsRMSmax }} \cdot \sqrt{2} \cdot\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{1+\mathrm{m}_{1}}+\mathrm{V}_{\text {OUT }}$	YES
$\mathrm{VR}_{\text {D1 max }}$	$\begin{aligned} & t_{0}-t_{1} \\ & t_{3}-t_{4} \end{aligned}$	$\left.\frac{\left(\mathrm{V}_{\text {mainsRMS }}^{\text {max }}\right.}{} \cdot \sqrt{2}-\mathrm{V}_{\text {OUT }}\right) \cdot\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{V}_{\text {OUT }}$	NO
$\mathrm{VR}_{\text {D2 max }}$	$\begin{aligned} & t_{0}-t_{1} \\ & t_{1}-t_{2} \\ & t_{2}-t_{3} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {OUT }}$	NO

The BC^{2} circuit needs to use a specific diode with a breakdown voltage higher than 600 V . Moreover, its recovery current should be optimized to avoid an higher current in the power transistor during the phase $\left[\mathrm{t}_{1}-\mathrm{t}_{2}\right.$]. ST has developed specific diodes (STTH16BC065C, STTH10BC065C and STTH8BC065) for the BC ${ }^{2}$ circuit. They have been designed to sustain average currents of 5 to 8 A (depending on the application) and a repetitive reverse voltage $\mathrm{V}_{\mathrm{RRM}}$ of 650 V .

2.4 Calculation of m_{2} and m_{1} ratios

To respect the discontinuous operating mode during the timing phases $\left[t_{1}-t_{2}\right]$ and $\left[t_{3}-t_{4}\right]$, the time td1 and td2 shown in Figure 7 should be always positive. According to the typical CCM PFC rules and both $t_{D 1 _}$on and $t_{D 2 _0 N}$ expressions, it becomes easy to define the m_{1} and m_{2} transformer ratio conditions.

$$
m_{2}>\frac{P_{\text {IN }} \max \cdot V_{\text {OUT }} \cdot L \cdot F_{\text {s }}}{V_{\text {mainsRMS }}^{2} \max \cdot\left(V_{\text {OUT }}-V_{\text {mainsRMS }} \max \cdot \sqrt{2}\right)-\left(\text { PiN } \text { max } \cdot V_{\text {OUT }} \cdot L\right)}
$$

and
$m_{1}>\frac{\left(1+m_{2}\right) \cdot I_{\text {IMM }} \text { max } \cdot L \cdot V_{\text {OUT }} \cdot F_{S}}{V_{\text {mains }} \max \cdot \sqrt{2} \cdot\left(V_{\text {OUT }}-V_{\text {mains }} \max \cdot \sqrt{2}\right)}$
Where $P_{I N}$ is the input PFC power, F_{S} is the switching frequency, $V_{\text {mainsRMS }}$ max is the maximum rms voltage range and the I_{RM} max is the maximum current recovery under the turn-on dl/dt at its maximum operating junction condition.

2.5 Calculation of L

There are several ways to rate the inductance L . For instance, its turn-on dl/dt can be rated at $50 \mathrm{~A} / \mu \mathrm{s}$. Then, m_{2} and m_{1} are calculated taking into account the corresponding I_{RM} of diode D_{B}. However, the reverse voltage across the $D_{B}, V_{R D B}$ reverse, must not exceed 75% of $\mathrm{V}_{\text {RRM }}$ to meet the system design rule, $75 \% \times 650=487 \mathrm{~V}$. If $\mathrm{V}_{\text {RDB-reverse }}$ is higher than 487 V , the L value should be reduced. Therefore, the dl/dt of L and the $I_{R M}$ diode of D_{B} increase as well. Thus, m_{1} and m_{2} should be recalculated to get $V_{\text {RDB_reverse }}$ below 487 V . But this calculation method does not optimize the inductance L and its size. Ultimately, a good rating should minimize L size. ST has developed a software tool using all the parameters: the $I_{R M}$ diode of D_{B} versus the $d I / d t$ and junction T_{J}, the L inductance tolerances, and the switch-on power losses. This tool is proposed to help designers to choose the best L inductance for its application. Table 2 shows two PFC examples using the BC^{2} concept.

Table 2. Inductor and size versus the PFC types

	Case 1	Case 2
Input power	$100 \mathrm{~W}<$ Pin $<1.1 \mathrm{~kW}$	$50 \mathrm{~W}<$ Pin $<450 \mathrm{~W}$
$\mathrm{~V}_{\text {mains }} \mathrm{RMS}$	$90 \mathrm{~V}<\mathrm{V}_{\text {mains }} \mathrm{rms}<264 \mathrm{~V}$	$90 \mathrm{~V}<\mathrm{V}_{\text {mains }} \mathrm{rms}<264 \mathrm{~V}$
$\mathrm{~V}_{\text {OUT }}$	400 V	400 V
Fs	95 kHz	95 kHz
Inductor and size		
Core reference	Core DR78381 (Datatronics Limited)	Core DR79124 (Datatronics Limited)

2.6 Range of products

ST offers the BC^{2} technology in a range of products:

- STTH8BC065DI, STTH8BC060D, STTH5BCF060 for applications from 800 W to 2 kW
- STTH16BC065CT, STTH5BCF060 for applications from 400 W to 1 kW
- STTH10BC065CT + STTH3BCF060U for applications from 280 W to 600 W

$3 \quad B C^{2}$ design in 450 W PFC

A universal line range 90 to $264 \mathrm{~V}_{\text {mains }} r m s 450 \mathrm{~W}$ power factor corrector working in hard switch mode using a standard average current mode PWM has been developed to highlight the benefits of the BC^{2} circuit. Switch-on behavior, efficiencies and thermal measurements have been compared with $8 \mathrm{~A} \mathrm{SiC} \mathrm{Schottky} \mathrm{diodes}$.

$3.1 \quad B C^{2}$ design

Specific diodes have been used for the B^{2} circuit such as the STTH8BC065 for D_{B}, the STTH8BC060 for D_{2} and the STTH5BCF060 for D_{1} as shown in Figure 6. The software tool provides the L inductance, m_{1} and m_{2} versus the switching frequency as given in Table 3.

Table 3. $\quad N_{S 1}, N_{S 2}$ and L versus $F s$

Fs	$\mathbf{7 2} \mathbf{~ k H z}$	$\mathbf{1 4 0} \mathbf{~ k H z}$	$\mathbf{2 0 0} \mathbf{~ k H z}$
N_{P}	52 turns, $\mathrm{L}_{\mathrm{B}}=600 \mu \mathrm{H}$, Tore METGLAS 4520MPEC		
$\mathrm{N}_{\mathrm{S} 1}$	2 turns	4 turns	5 turns
$\mathrm{N}_{\mathrm{S} 2}$	8 turns	8 turns	5 turns
L	$8 \mu \mathrm{H}$	$5.1 \mu \mathrm{H}$	$2.7 \mu \mathrm{H}$

$3.2 \quad B C^{2}$ typical waveforms

Figure 14 shows the typical BC^{2} waveforms corresponding to a PFC working at 200 kHz .
At each power MOSFET switch-on, soft current switching occurs. This curve highlights that D_{1} and D_{2} diodes always work in discontinuous mode; D_{1} recovers the $I_{R M}$ current from D_{B} whereas D_{2} sends the current stored in L through the PFC bulk capacitor. As soon as D_{2} turns off, the power voltage drain decreases as previously mentioned in the $\left[\mathrm{t}_{0}-\mathrm{t}_{1}\right]$ and $\left[\mathrm{t}_{4}-\mathrm{t}_{5}\right]$ phases and switch-off power losses are saved.

Figure 14. Typical BC^{2} waveform at $\mathrm{Fs}=200 \mathrm{kHz}$

3.3 Efficiency comparison

BC^{2} and SiC diode efficiency have been compared under two $\mathrm{V}_{\text {mains }}$ levels as shown in Figure $15\left(230 \mathrm{~V}_{\mathrm{RMS}}\right)$ and Figure $16\left(90 \mathrm{~V}_{\mathrm{RMS}}\right)$ with a switching frequency equal to 140 kHz . At $230 \mathrm{~V}_{\mathrm{RMS}}$, the BC^{2} circuit saves up to 2.25 W at full load and 1 W at 100 W compared to the 8 A SiC diode. Under low load, the reflected voltage from $\mathrm{N}_{\mathrm{S} 2}$ still improves the BC^{2} efficiency because the switch-off losses are lower than the SiC as described in the phase time $\left[\mathrm{t}_{0}-\mathrm{t}_{1}\right]$. As soon as the PFC works in discontinuous mode ($<100 \mathrm{~W}$) the SiC and the BC^{2} have the same efficiency as shown in Figure 15.

Figure 15. Efficiency comparison at 230 V rms

At 90 Vrms , the soft switching method benefits plus the power saving in the $\mathrm{C}_{\mathrm{Oss}}$ discharge reinforces the benefit of the BC^{2} circuit. Up to 5.4 W is saved thanks to the BC^{2} at 450 W compared to the SiC diode and under low load, up to 1.7% is saved thanks to the switch-off power saving.

Figure 16. Efficiency comparison at 90 V rms

Figure 17. 450 W PFC efficiency versus three different output powers and three switching frequencies for $\mathrm{V}_{\text {mains }} \mathrm{rms}=90 \mathrm{~V}$

Figure 17 highlights the benefit of the BC^{2} circuit soft switching method added to its $\mathrm{C}_{\text {OsS }}$ discharge power saving especially at low load.

3.4 Thermal measurement

The soft current switching method allows the power dissipation in the switch transistor to be reduced. Figure 18 shows that a high thermal temperature difference ($18{ }^{\circ} \mathrm{C}$) occurs between the BC^{2} and the SiC diode in the PFC application. For the same working junction temperature in the power transistor, the size of the thermal heatsink could be reduced. In this way, the space saving balances out the space from the small L inductor required by the $B C^{2}$ circuit. Therefore, the $B C^{2}$ circuit can have the same power density as the SiC diode solution. Nevertheless, the $B C^{2}$ efficiency decreases due to the power MOSFET R ${ }_{D S}$ (on) thermal rising. Figure 18 shows that 0.75 W should be removed from the 5.4 W measured in the efficiency comparison at 90 V rms. Even in this configuration, the BC^{2} circuit has a better efficiency than the SiC diode. The BC^{2} circuit has a better power density and efficiency criteria than the SiC diode.
Another consideration is that, for the same thermal heatsink, the Power MOSFET size could be reduced to further reduce the PFC cost.

Figure 18. Thermal measurement comparison

4 Conclusion

The $B C^{2}$ circuit uses the soft switching method with a unique non-dissipative recovery circuit. STMicroelectronics has introduced the specific diodes suited for the BC ${ }^{2}$ concept to improve the CCM PFC performance as shown in Table 4.

This circuit supports the actual energy efficiency recommendation at 20\%, 50\% and 100\% of rated power supplies.

Table 4. $B C^{2}$ benefits in 450 W PFC, 140 kHz

Criteria at 90 V rms	SiC diode	BC 2 circuit	Benefits
Efficiency	92.5%	93.7%	$+1.2 \%$
Power MOSFET temperature	$90^{\circ} \mathrm{C}$	$72{ }^{\circ} \mathrm{C}$	$-18^{\circ} \mathrm{C}$
Power density at iso-efficiency	State of art	Improve, save 5.4 W	$+1.2 \%$ gain
EMI	Acceptable with dl/dt $<1000 \mathrm{~A} / \mu \mathrm{s}$	Acceptable with dl/dt $<100 \mathrm{~A} / \mu \mathrm{s}$	Soft switching
Boost rectification cost	$>0.2 €$ per 100 W	$\gg 0.2 €$ per 100 W	Mass market

5 References

1. Benoît Peron, "Auxiliary switching circuit for a chopping converter", Patent No: US 6,987,379 B2, June 2006
2. Bertrand Rivet, "New Solution to Optimize Diode Recovery in PFC Boost Converter", PCIM 2000
3. Jim Noon, UC3855A/B High Performance Power Factor Preregulator -Texas Instrument- application report- SLUA146A
4. Brian T, Irving and M. Jovanovic "Analysis, Design and Performance Evaluation of Flying-Capacitor Passive Lossless Snubber applied to PFC Boost Converter", APEC 2002, pp. 503-508 vol.1.

6 Revision history

Table 5. Document revision history

Date	Revision	Changes	
10-Nov-2010	1	Initial release.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

