
October 2010 Doc ID 17985 Rev 1 1/20

AN3281
Application note

STM8 I2C optimized examples

Introduction
This document describes how to use the following I2C optimized examples

■ Hardware configuration example of a common I2C bus

■ Master firmware examples in polling mode

■ Master firmware examples with interrupt

■ Slave firmware examples

Reference documents
■ I2C-bus specification, version 2.1, January 2000, NXP

■ RM0016 (STM8S microcontroller family reference manual)

■ RM0031 (STM8L15x and STM8L16x microcontroller family reference manual)

■ RM0013 (STM8L101xx microcontroller family reference manual)

■ RM0009 (STM8A microcontroller family reference manual)

www.st.com

www.BDTIC.com/ST

http://www.st.com

Contents AN3281

2/20 Doc ID 17985 Rev 1

Contents

1 Hardware configuration example of a common I2C bus 5

1.1 Software . 5

2 Master firmware examples in polling mode . 6

2.1 Application layer example . 6

2.2 Data link layer example . 6

2.2.1 Examples of data link functions predefined for the application layer 7

3 Master firmware examples with interrupt . 13

3.1 Application layer example . 13

3.2 Data link layer example . 13

3.2.1 Examples of data link functions predefined for the application layer . . . 13

3.3 Application layer example . 16

3.4 Data link layer example . 16

3.4.1 Application layer customizable function examples 16

3.5 Data link layer flowchart . 18

4 Revision history . 19

www.BDTIC.com/ST

AN3281 List of tables

Doc ID 17985 Rev 1 3/20

List of tables

Table 1. Document revision history . 19

www.BDTIC.com/ST

List of figures AN3281

4/20 Doc ID 17985 Rev 1

List of figures

Figure 1. Hardware configuration example of a common I2C bus . 5
Figure 2. N-data byte write sequences preceeded by a one-command byte. 7
Figure 3. One-datum or command byte write sequence . 7
Figure 4. Flowchart of data-write sequences made by the I2C_WriteRegister()

function . 8
Figure 5. N-data byte read sequences preceeded by a one-command byte . 9
Figure 6. N-data byte random read sequences (without any command) . 10
Figure 7. Flowchart of data read sequences made by the I2C_RandomRead() function 11
Figure 8. I2C state machine flowchart . 15
Figure 9. Data link layer flowchart . 18

www.BDTIC.com/ST

AN3281 Hardware configuration example of a common I2C bus

Doc ID 17985 Rev 1 5/20

1 Hardware configuration example of a common I2C
bus

Firmware examples provided with this application note illustrate the basics of I2C
communication protocol on STM8 microcontrollers. In these examples, the I2C peripheral is
used to communicate between two STM8 devices. The I2C can also be reused and
customized to fit a specific application which requires I2C communication with another
device using the I2C protocol. In these examples, the master and slave work together and
transmit data through the bus. At all times, the I2C protocol is respected (see the I2C-bus
specification). Figure 1 shows the hardware configuration which must be followed.

Figure 1. Hardware configuration example of a common I2C bus

1. Legend:
VCC = supply voltage, typically ranging from 1.8 V to 5 V
SDA = Serial data (I2C data line)
SCL = Serial clock (I2C clock line)
Rp1, Rp2 = Pull-up resistor used to set the bus idle voltage to VCC. Also called the I2C termination.
Rs1, Rs2 = Optional 100 Ohm serial resistor used to ease differentiation between master and slave when analyzing
communication waveforms on the oscilloscope. These resistors must be placed on one extremity of the bus (on the master
or slave side).

1.1 Software
The software of all I2C firmware examples is divided into two basic levels:

● An application layer (main.c) - which is an example of how to implement all the I2C
procedures. It must be replaced by the usercode in the final application.

● A data link layer (I2C_xxx.c) - which manages the data flow process and hardware
control. The user should not change the software at this level. All processes at data link
level are managed by a set of predifined functions contained in the data link layer.
These functions are called from the application level.

www.BDTIC.com/ST

Master firmware examples in polling mode AN3281

6/20 Doc ID 17985 Rev 1

2 Master firmware examples in polling mode

2.1 Application layer example
This layer simulates an I2C memory access with an offset command. It should be used with
the example of the provided I2C slave.

After peripheral initialisation, the program runs in a testing loop. This sends a sucession of
bytes to be stored in the slave memory and then reads them back. After each loop, all sent
and received values are compared for integrity checking purposes. The first byte of every
message is used as a memory offset command for the data storage register.

All read and write procedures performed on the I2C bus are managed by calling dedicated
functions from the data link layer. Their execution times are guarded by a timout which is
serviced by a dedicated timer. This timout is reset at the start of every testing loop and is
checked at the end of every loop. If the timer counter reaches 0, it means that one I2C
comunication is stuck.

2.2 Data link layer example
All I2C activities of the data link layer except errors are performed and checked by polling.
Errors are handled by the I2C interrupt service. The specific functions for I2C flow control are
predefined in this part of the firmware. They are called by the application layer to control all
I2C processes. These procedures follow specific processes which cover all the known I2C
errata issues (see Figure 4 and Figure 7).

www.BDTIC.com/ST

AN3281 Master firmware examples in polling mode

Doc ID 17985 Rev 1 7/20

2.2.1 Examples of data link functions predefined for the
application layer

I2C_WriteRegister function

Prototype

void Function I2C_WriteRegister (u8 offset_command, u8
number_of_data_bytes, u8 *data_field_address);

The I2C write register function sends, one byte (offset_command value) followed by a
defined number of data bytes from a specific data field. This function can also be used to
send one byte if it is called with zero number of data bytes. In the example in Figure 2, the
first (command) byte is interpreted as an offset from which data is stored in the slave device.

Figure 2. N-data byte write sequences preceeded by a one-command byte

1. Legend: S = start, P = stop, H = high, L = low

Figure 3. One-datum or command byte write sequence

1. Legend: S = start, P = stop, H = high, L = low

www.BDTIC.com/ST

Master firmware examples in polling mode AN3281

8/20 Doc ID 17985 Rev 1

Figure 4. Flowchart of data-write sequences made by the I2C_WriteRegister()
function

1. Legend: SB = start bit, RW = read/write bit

www.BDTIC.com/ST

AN3281 Master firmware examples in polling mode

Doc ID 17985 Rev 1 9/20

I2C_ReadRegister function

This function sends one byte (offset_command value) to the slave. It then restarts the bus
and continues communication by reading a defined number of data bytes. Bytes are stored
in a specific data field starting from a specified address. The offset_command value
depends on the slave device interpretation. In this example, it is used as a memory offset. It
can be used in other applications as a command for specific I2C peripherals.

Prototype

void Function I2C_ReadRegister (u8 offset_command, u8
number_of_data_bytes, u8 *data_field_address)

Parameters

offset_command : First byte to send during communication. Can be
used as offset, command, or first datum

number_of_data_bytes: Number of bytes to read. Value from 0 to
255

*data_field_address : pointer to first address of data to send
 buffer

Figure 5. N-data byte read sequences preceeded by a one-command byte

1. Legend: S = start, P = stop, H = high, L = low

2. Stop is not mandatory in this sequence and can be skipped by defining the “NO_RESTART” constant in the driver header
file (I2C_master_poll.h).

www.BDTIC.com/ST

Master firmware examples in polling mode AN3281

10/20 Doc ID 17985 Rev 1

I2C_RandomRead function

Prototype

void Function I2C_RandomRead (u8 number_of_data_bytes, u8
*data_field_address)

This function reads directly requested data from the slave. No offset or command byte is
written previously. It can be used as a standard or continuous read (where auto-
incrementation of addresses is available on the slave side). Received bytes are stored in
data fields starting from specified data field addresses.

Figure 6. N-data byte random read sequences (without any command)

1. Legend: S = start, P = stop, H = high, L = low

www.BDTIC.com/ST

AN3281 Master firmware examples in polling mode

Doc ID 17985 Rev 1 11/20

Figure 7. Flowchart of data read sequences made by the I2C_RandomRead() function

1. Legend: SB = start bit, RW = read/write bit

www.BDTIC.com/ST

Master firmware examples in polling mode AN3281

12/20 Doc ID 17985 Rev 1

The I2C read register function is the succession of one I2C write register function call and
one I2C random read function call (see Figure 4: Flowchart of data-write sequences made
by the I2C_WriteRegister() function and Figure 4: Flowchart of data-write sequences made
by the I2C_WriteRegister() function).

www.BDTIC.com/ST

AN3281 Master firmware examples with interrupt

Doc ID 17985 Rev 1 13/20

3 Master firmware examples with interrupt

3.1 Application layer example
The function and purpose of this layer is the same as for polling mode. After peripheral
initialization, the program stays in a testing loop. This sends a succession of bytes to be
stored into the slave memory and then reads back from the slave. After each loop, all sent
and received values are compared for integrity checking purposes. For more details, please
refer to Section 2.1: Application layer example.

3.2 Data link layer example
All I2C activities of the data link layer are handled by the I2C interrupt service. This interrupt
routine is managed by the internal state machine (see Figure 8: I2C state machine
flowchart). The procedures included in this flowchart follow specific processes which cover
all known I2C errata issues (see Figure 4 and Figure 7). It is highly recommended not to
change this layer to ensure that the application handles specific states on the I2C bus. The
specific functions for I2C flow control are predefined in this part of the firmware. They are
called by the application layer to control all I2C processes.

3.2.1 Examples of data link functions predefined for the application layer

I2C_WriteRegister function

This function sets up and starts the state machine to perform an I2C write process. It returns
1 when the process is started or 0 when the peripheral or line is busy.

Prototype

u8 I2C_WriteRegister(u16 SlaveAdd, u8 AddType, u8 NoStop, u8
NumByteToWrite, u8 *DataBuffer)

Parameters

● SlaveAdd: unsigned short number address of the slave

● AddType: 7-bit (SEV_BIT_ADDRESS) or 10-bit addressing (TEN_BIT_ADDRESS)

● NoStop: stop is/is not performed after the transmission (STOP; NOSTOP)

● NumByteToWrite: number of bytes to be sent

● DataBuffer: first data buffer address

Returns

● 0 is returned if the write process is not started due to other I2C opperations

● 1 is returned if the write process is started

www.BDTIC.com/ST

Master firmware examples with interrupt AN3281

14/20 Doc ID 17985 Rev 1

I2C_ReadRegister function

This function sets up and starts the state machine to perform an I2C read process. It returns
1 when the process is started or 0 when the peripheral or line is busy.

Prototype

u8 I2C_ReadRegister(u16 SlaveAdd, u8 AddType, u8 NoStop, u8
NumByteToRead, u8 *DataBuffer);

Parameters

● SlaveAdd: unsigned short number address of the slave

● AddType: 7-bit (SEV_BIT_ADDRESS) or 10-bit addressing (TEN_BIT_ADDRESS)

● NoStop: stop is/is not performed before the transmission (used for 10-bit addressing
mode when the complete address or header is sent depending on the STOP or
NOSTOP flag).

● NumByteToRead: number of bytes to be received

● DataBuffer: first data buffer address

Returns

● 0 is returned if the read process is not started due to other I2C opperations

● 1 is returned if the read process is started

ErrProc function

This function is called from I2C interrupt routines each time an error is detected. It can be
customized according to the application needs.

Prototype

void ErrProc (void)

www.BDTIC.com/ST

AN3281 Master firmware examples with interrupt

Doc ID 17985 Rev 1 15/20

Figure 8. I2C state machine flowchart

1. Legend: SB = start bit, W = write, R = read

2. The text in blue indicates the parts of this State machine which must be protected from interrupt by software disabling (see
the device errata sheet).

www.BDTIC.com/ST

Master firmware examples with interrupt AN3281

16/20 Doc ID 17985 Rev 1

Warning: For a 10-bit address random read, a WriteRegister function
call (without data and STOP) should be performed before a
ReadRegister function call.

Example

// Send 10-bit slave address

I2C_WriteRegister (0x3F0,TEN_BIT_ADDRESS,NOSTOP,0,Buff);

// Read data from slave

I2C_ReadRegister (0x3F0,TEN_BIT_ADDRESS,STOP,3,Buf)f;

3.3 Application layer example
This layer simulates an I2C memory with an offset command example. The first datum
received is interpreted as a command (memory offset). Interation with the data link layer is
made using specific customizable functions (see Section 3.4.1: Application layer
customizable function examples). These functions can be modified depending on the
application needs.

3.4 Data link layer example
All I2C activities of the data link layer are handled by the I2C interrupt service. All procedures
in this interrupt service follow specific processes which cover all known I2C errata issues
(see Figure 4 and Figure 7). It is highly recommended not to change this layer to ensure that
the application handles specific states on the I2C bus. All customizations must be performed
in the application layer using the customizable functions described in the examples below.

3.4.1 Application layer customizable function examples

I2C_transaction_begin

This function is called every time a transaction with the slave begins (slave address
recognised).

Prototype

void I2C_transaction_begin (void)

I2C_transaction_end

This function is called every time a transaction with the slave ends (stop or Nack detected).

Prototype

void I2C_transaction_end (void)

www.BDTIC.com/ST

AN3281 Master firmware examples with interrupt

Doc ID 17985 Rev 1 17/20

I2C_byte_received

This function is called every time a byte is received by the I2C peripheral.
This example stores data in the memory.

Prototype

void I2C_byte_received (u8 u8_RxData)

I2C_byte_write

This function is called every time a byte needs to be sent. It must return a u8 value which
corresponds to the byte to be written on the I2C line. In this example, the function returns
selected stored data from the memory.

Prototype

u8 I2C_byte_write(void)

Return

To be customized according to the application needs. The returned value is the datum which
is written on the I2C line.

ErrProc function

This function is called from the I2C interrupt routines each time an error is detected. It can
be customized according to the application needs.

Prototype

void ErrProc (void)

www.BDTIC.com/ST

Master firmware examples with interrupt AN3281

18/20 Doc ID 17985 Rev 1

3.5 Data link layer flowchart

Figure 9. Data link layer flowchart

www.BDTIC.com/ST

AN3281 Revision history

Doc ID 17985 Rev 1 19/20

4 Revision history

Table 1. Document revision history

Date Revision Changes

20-Oct-2010 1 Initial release

www.BDTIC.com/ST

AN3281

20/20 Doc ID 17985 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

www.BDTIC.com/ST

	1 Hardware configuration example of a common I2C bus
	Figure 1. Hardware configuration example of a common I2C bus
	1.1 Software

	2 Master firmware examples in polling mode
	2.1 Application layer example
	2.2 Data link layer example
	2.2.1 Examples of data link functions predefined for the application layer
	Figure 2. N-data byte write sequences preceeded by a one-command byte
	Figure 3. One-datum or command byte write sequence
	Figure 4. Flowchart of data-write sequences made by the I2C_WriteRegister() function
	Figure 5. N-data byte read sequences preceeded by a one-command byte
	Figure 6. N-data byte random read sequences (without any command)
	Figure 7. Flowchart of data read sequences made by the I2C_RandomRead() function

	3 Master firmware examples with interrupt
	3.1 Application layer example
	3.2 Data link layer example
	3.2.1 Examples of data link functions predefined for the application layer
	Figure 8. I2C state machine flowchart

	3.3 Application layer example
	3.4 Data link layer example
	3.4.1 Application layer customizable function examples

	3.5 Data link layer flowchart
	Figure 9. Data link layer flowchart

	4 Revision history
	Table 1. Document revision history

