
July 2011 Doc ID 018905 Rev 1 1/37

AN3411
Application note

IEEE 1588 precision time protocol demonstration
for STM32F107 connectivity line microcontroller

1 Introduction

To synchronize Ethernet network devices, an option to use the IEEE1588 (“Precision Time
Protocol” - PTP) synchronization protocol is available. Many embedded MCUs and Ethernet
PHYs available today in the market are equipped with the PTP HW time stamping unit. The
PTP hardware time stamping unit allows very precise time synchronization compared to the
SW solution. The hardware solution allows typically sub-microseconds time synchronization
precision, the SW solution typically “only” sub-milliseconds range precision. IEEE1588
hardware unit itself is a must for precise synchronization results. In order to meet the
IEEE1588 standard requirements, there must be a SW protocol stack running in the
microcontroller on top of the HW.

One of the advanced features of the STM32F107's Ethernet MAC controller is the time
stamping of the incoming and the outgoing packets by hardware. In this application note,
you can find a real application that uses this feature: IEEE1588 PTP HW unit, Figure 1. The
objective of this application note is to present a demonstration package built on top of the
free lwIP TCP/IP stack and the free PTP stack - PTPd. Support for two hardware platforms
is presented, Figure 2.

This software package content is:

● An implementation of IEEE 1588-2002 commonly named PTP v1 over IPv4/UDP using
end-to-end delay mechanism.

● An implementation of IEEE 1588-2008 commonly named PTP v2 over IPv4/UDP using
both end-to-end and Peer-to-Peer delay mechanisms.

● A target time example, which generates external trigger events at precise time.

Figure 1. STM32F107 PTP HW unit and its interaction with the application software

www.st.com

www.BDTIC.com/ST

http://www.st.com

Contents AN3411

2/37 Doc ID 018905 Rev 1

Contents

1 Introduction . 1

2 Description . 6

3 STM32F107 PTP stack implementation software resources 7

3.1 Precision time protocol (PTP) . 7

3.1.1 lwIP stack overview . 7

3.1.2 PTPd stack overview . 8

4 STM32F107 PTP hardware unit set-up . 9

4.1 Initialization of the STM32F107 hardware time stamping unit 9

4.2 Correction methods for the local clock . 9

4.3 Data format of the time stamp . 10

4.4 Computing the default values of the time stamp unit registers 10

4.5 Generating trigger events . 12

5 Software porting of the PTPd stack for STM32F107 14

5.1 Modifications of the STM32F107 Ethernet MAC low level driver 14

5.2 Modifications of the lwIP stack . 14

5.3 Modifications of the PTPd stack . 15

5.4 Periodic PTPd tasks . 15

5.5 lwIP configuration . 15

5.6 PTPd configuration . 15

6 Getting started with the demonstration software 17

6.1 Package directories . 17

6.2 Configuration of the demonstration boards . 17

6.2.1 STEVAL-PCC010V1 hardware configuration . 18

6.2.2 STM3210C-EVAL hardware configuration . 20

6.3 Configuration of the PTPd SW project . 20

6.3.1 HW platform selection . 21

6.3.2 MAC and IP address settings . 22

6.3.3 PTPd settings . 22

www.BDTIC.com/ST

AN3411 Contents

Doc ID 018905 Rev 1 3/37

6.3.4 Compiling the project and flashing the HW platform 23

6.4 Application boards connections . 23

6.4.1 Back-to-back connection of two boards . 24

6.4.2 Boundary clock switch option . 24

6.4.3 Linux LiveUSB . 25

6.5 How to use the precise time information in the customer application . . . 28

6.5.1 PTPd operation overview . 28

6.5.2 Target time as external trigger example . 29

6.6 PTPd project example structure . 30

6.7 Precision of the PTPd system . 30

7 Conclusion . 34

8 References . 35

9 Revision history . 36

www.BDTIC.com/ST

List of tables AN3411

4/37 Doc ID 018905 Rev 1

List of tables

Table 1. Examples of different default addend register values vs. increment register value
for SysClk = 72 MHz . 11

Table 2. STEVAL-PCC010V1 MII/RMII interface STM32F107 add-on board selection
by solder bridges SB1, SB2 and SB3 . 19

Table 3. PTPd STM32F107 test set-up . 31
Table 4. Document revision history . 36

www.BDTIC.com/ST

AN3411 List of figures

Doc ID 018905 Rev 1 5/37

List of figures

Figure 1. STM32F107 PTP HW unit and its interaction with the application software 1
Figure 2. Supported evaluation boards (STM3210C-EVAL and STEVAL-PCC010V1). 6
Figure 3. Simple master - slave clock hierarchy (M - master clock, S - slave clock) 7
Figure 4. PTP time stamp data format . 10
Figure 5. Fine correction method . 12
Figure 6. PTPd software package directory structure . 17
Figure 7. STEVAL-PCC010V1 - ST802RT1 board configuration . 18
Figure 8. STEVAL-PCC010V1 - STM32F107 demonstration board set-up . 19
Figure 9. STM3210C-EVAL configuration for MII functionality in PTPd application example 20
Figure 10. Change the project compilation defines according to the board used (RIDE7) 21
Figure 11. Both addresses, MAC and IP, are derived from constant CLIENT_ADDR

(/src/netconf.c) . 22
Figure 12. PTPd settings . 23
Figure 13. Back-to-back connection of the two boards . 24
Figure 14. Two boards connection through boundary clock switch, packet sniffing in PC. 25
Figure 15. STM3210C-EVAL connected to a PC running Linux LiveUSB distribution

with software PTPd daemon. 26
Figure 16. PTPd running in the Linux console window . 26
Figure 17. Wireshark - PTP packet analysis . 27
Figure 18. PTPd operation overview . 29
Figure 19. PTPd project example structure . 30
Figure 20. PTPd STM32F107 test set-up . 31
Figure 21. Precision reached using the default crystal and built in oscillator, the synchronization

interval has been set to 1 second . 32
Figure 22. Precision reached using the external oscillator on the STM3210C-EVAL,

the synchronization interval has been set to 1 second . 32
Figure 23. Precision reached using the default crystal and built in oscillator, the synchronization

interval has been set to 0.125 second . 33
Figure 24. Precision reached using the external oscillator on the STM3210C-EVAL,

the synchronization interval has been set to 0.125 second . 33

www.BDTIC.com/ST

Description AN3411

6/37 Doc ID 018905 Rev 1

2 Description

This application note presents implementation of the IEEE1588-2008 PTP protocol for
STM32F107 microcontroller. IEEE1588 – 2008 is not backward compatible to the older
IEEE1588 - 2002 version of this specification. IEEE1588-2002 implementation example is
also available in source codes for STM32F107, but it is not described in this application
note. Industrializations focus of the customers today is IEEE1588-2008.

The PTP daemon (PTPd) implements the precision time protocol (PTP) as defined in the
IEEE1588 specification. The PTPd Version 1 implements IEEE 1588-2002 compliant
functionality, and the PTPd Version 2 implements newer IEEE 1588-2008 specification.
PTPd was developed to provide a precise time coordination of LAN connected computers.
PTPd can run on most 32-bit and 64-bit processors. It does not require any FPU, therefore it
is by definition easy to be used in small embedded processors. The PTPd originally runs on
Linux, μClinux™, FreeBSD®, and NetBSD operating systems. It is also easy to port it to
other platforms. The PTPd time stamping unit is originally software based and therefore for
the STM32 use it has been adapted in order to benefit from the STM32 PTP hardware unit.

Figure 2. Supported evaluation boards (STM3210C-EVAL and STEVAL-PCC010V1)

The SW implementation of PTPd is based on STMicroelectronics™ application note
AN3102 (lwIP TCP/IP stack demonstration for STM32F107xx connectivity line
microcontrollers) as available from ST website www.st.com/stm32. The AN3102 source
codes of the project have been modified for operation with the PTPd protocol stack.

www.BDTIC.com/ST

AN3411 STM32F107 PTP stack implementation software resources

Doc ID 018905 Rev 1 7/37

3 STM32F107 PTP stack implementation software
resources

3.1 Precision time protocol (PTP)
The IEEE 1588 standard defines a protocol that allows precise clock synchronization in
measurement and control systems implemented with technologies such as network
communication, local computing and distributed objects. The protocol applies to systems
that communicate by local area networks supporting multicast messaging, including
Ethernet. This protocol is used to synchronize systems that include clocks of different
precision, resolution and stability. The protocol supports system-wide synchronization
accuracy in the sub-microsecond range with a minimum network and local clock computing
resources. The message-based protocol, known as the precision time protocol (PTP), is
transported over UDP/IP. The system or network (example in Figure 3) is classified into
master and slave nodes for distributing the timing/clock information.

Figure 3. Simple master - slave clock hierarchy (M - master clock, S - slave clock)

The precision time protocol uses multicast messaging over UDP/IP. The underlying TCP/IP
stack should have multicast support functionality or at least has to pass multicast messages.
There are at least two free implementations of the TCP/IP stacks - lwIP (Light weight IP) and
μIP. The lwIP TCP/IP stack has been chosen for the PTPd demonstration because of its
support for multicast and IGMP messages. The μIP TCP/IP stack can also work, but it does
not have support for IGMP protocol so it is not suitable for networks where switches with
IGMP snooping are used. The IEEE1588 protocol itself has at least one free implementation
with many derivates. Its name is PTPd and it is designed for Linux and FreeBSD systems.

3.1.1 lwIP stack overview

The lwIP TCP/IP stack is a free TCP/IP stack developed by Adam Dunkels at the Swedish
Institute of Computer Science (SICS) and is licensed under the BSD license. The source
code can be downloaded from http://savannah.nongnu.org/projects/lwip/. The lwIP TCP/IP
stack supports the following protocols: IPv4, IPv6, UDP, TCP, ICMP, IGMP, SNMP, ARP and
PPP.

www.BDTIC.com/ST

STM32F107 PTP stack implementation software resources AN3411

8/37 Doc ID 018905 Rev 1

The lwIP offers three types of API (“Application Programming Interface”):

● A raw API: it is the native API used by the lwIP stack itself to interface with the different
protocols.

● A NETCONN API: it is a sequential API with a higher level of abstraction than the raw
API.

● A socket API: it is a Berkeley-like API

The API used to build the PTPd demonstration with STM32F107 is the raw API. The raw
API selection has been made because of the standalone implementation of the lwIP TCP/IP
stack example. Nevertheless the achievable time synchronization precision should be the
same for all three APIs, but neither Netconn nor socket API has been used and changed to
reflect the needs of timestamps in this PTPd implementation example. Only the raw API has
been modified to work with the PTPd software stack. Both, the Netconn and the Socket APIs
need an operating system. More information about the lwIP protocol version for the
STM32F107 microcontroller can be found in the application note AN3102 available from the
STMicroelectronics website http://www.st.com/stm32.

3.1.2 PTPd stack overview

The PTP daemon (PTPd) is a free implementation of the precision time protocol (PTP) as
defined by the IEEE 1588 (2002/2008) standards. PTPd is complete implementation of the
IEEE 1588 specification for standard (non-boundary) clock. The source code for PTPd is
freely available under a BSD-style license. The source code can be downloaded from
www.ptpd.sourceforge.net. The PTPd has two versions. PTP Version 1 implements IEEE
1588-2002 specification, and PTP Version 2 implements IEEE 1588-2008 specification. As
mentioned, the PTPd protocol has to be adapted to work with the PTP HW time stamping
unit of the STM32F107 microcontroller.

www.BDTIC.com/ST

AN3411 STM32F107 PTP hardware unit set-up

Doc ID 018905 Rev 1 9/37

4 STM32F107 PTP hardware unit set-up

This chapter describes in details the STM32F107 PTP hardware unit initial set-up,
programming steps for the fine correction method and resources for the PTP information
triggering in the customer application.

4.1 Initialization of the STM32F107 hardware time stamping unit
The first step is the initialization of the time stamping unit of the embedded Ethernet MAC
interface of STM32F107. The startup sequence is prepared in ETH_PTPStart function. This
enables the time stamping ability of MAC controller, then it set ups default values of the time
stamping registers, namely the addend and the increment registers. Finally it sets the
current time to 0 s.

1. Mask the time stamp trigger interrupt by setting bit 9 in the MACIMR register.

2. Program time stamp register bit 0 to enable time stamping.

3. Program the sub-second increment register based on the PTP clock frequency.

4. Program the time stamp addend register and set time stamp control register bit 5
(addend register update).

5. Poll the time stamp control register until bit 5 is cleared.

6. To select the fine correction method program time stamp control register bit 1.

7. Program the time stamp high update and time stamp low update registers with the
appropriate time value. (can be zero)

8. Set time stamp control register bit 2 (time stamp init).

9. The time stamp counter starts operation as soon as it is initialized with the value written
in the time stamp update register.

10. Enable the MAC receiver and transmitter for proper time stamping.

4.2 Correction methods for the local clock
There are two possible methods of the clock correction supported in the STM32F107
IEEE1588 time stamping unit: fine and coarse correction methods. In the here described
implementation example the fine correction method is used because it allows more precise
synchronization results in comparison with the coarse correction method. The correction
method should be selected in the initialization step of the hardware time stamping in
function ETH_PTPStart. After that only the appropriate functions should be used for the
clock correction.

If coarse method is used, only the ETH_PTPTime_UpdateOffset function can be used to
perform local time corrections. In contrast if the fine correction method is used, only the
ETH_PTPTime_SetTime and ETH_PTPTime_AdjFreq can be used.

ETH_PTPTime_UpdateOffset updates the current clock by the relative difference. The
function call argument is added to or subtracted from the current time.

ETH_PTPTime_SetTime sets the absolute time. The function call argument is set as the
current time.

ETH_PTPTime_AdjFreq adjusts the addend register value. The argument is the relative
change of the default clock frequency in ppb (parts per 109 - billion). If the crystal used in

www.BDTIC.com/ST

STM32F107 PTP hardware unit set-up AN3411

10/37 Doc ID 018905 Rev 1

final application is for example 5 ppm off, then setting this value to the 5000 will compensate
the error.

Following steps are used to perform the update of the addend register in function AdjFreq:

1. Calculate addend register value.

2. Update the time stamp addend register “ETH_PTPTSAR” with calculated value.

3. Enable the time stamp addend register by setting bit TSARU in ETH_PTPTSCR.

4.3 Data format of the time stamp
The registers holding the time stamps are using specific 64-bit format. The highest 32-bit
register is unsigned integer holding number of seconds. Lowest 31 bits in the second 32-bit
register are used for the fractional part of second and the 32nd bit is a negative sign.

Figure 4. PTP time stamp data format

In order to use the registers value in PTP stack it is necessary to convert these values to
another format. Structure with signed, both seconds and nanoseconds, is used. So it is also
necessary to convert the subseconds to nanoseconds and vice versa. For this purpose
functions ETH_PTPSubSecond2NanoSecond and ETH_PTPNanoSecond2SubSecond are
implemented.

This 64-bit data format is used in all time stamp related registers (ETH_PTPTSHR,
ETH_PTPTSLR), time stamp update registers (ETH_PTPTSHUR, ETH_PTPTSLUR),
Target time registers (ETH_PTPTTHR, ETH_PTPTTLR) and also in the DMA descriptors.

4.4 Computing the default values of the time stamp unit
registers
If using the Fine correction method, the default values of the addend and the increment
registers can be computed as follow.

Equation 1

For example, if SysClk is 72 MHz, we can chose tick approximately 20 ns.

tick Increment 10
9⋅

2
31

--=

Adden d Increment⋅() 263

SysClk
--------------------=

www.BDTIC.com/ST

AN3411 STM32F107 PTP hardware unit set-up

Doc ID 018905 Rev 1 11/37

Equation 2

We can see that tick is not precisely 20 ns as we choose because of rounding increment
value. Using the next equation, we can compute default value of the addend register.

Equation 3

Value of the tick can be selected differently but it is necessary to validate the range of the
increment and addend registers. The increment register is of data type unsigned char (8-bit)
and the addend register is of data type unsigned long (32-bit). It is also necessary to
validate the regulation range of the addend register.

Table 1. Examples of different default addend register values vs. increment
register value for SysClk = 72 MHz

Tick Increment Addend

119 ns 255 0x1DF170C7

100 ns 215 0x238391AA

50 ns 107 0x475C1B20

20 ns 43 0xB191D856

14 ns 30 0xFE843E9E

Increment 20 2
31⋅

10
9

---------------------- 42.94 43 0x2B()≅= =

tick 43
109

2
31

---------⋅ 20.023ns= =

Addend 263

SysClk Increment⋅
---=

Addend 263

72M 43⋅
-------------------------- 2979125334.90= =

Addenddefault 2979125335 0xb191d857()=

www.BDTIC.com/ST

STM32F107 PTP hardware unit set-up AN3411

12/37 Doc ID 018905 Rev 1

Figure 5. Fine correction method

4.5 Generating trigger events
In the example delivered with this application note we have used an easy way to generate
external trigger events. To enable this feature timer TIM2 should be properly configured
following these steps.

1. Remap ITR1 input of TIM2 to the output of target time event by resetting bit
TIM2ITR1_IREMAP of register AFIO_MAPR.

2. Set the prescaler, period and counter mode of TIM2.

3. Configure appropriate timer output to PWM1 mode.

4. Enable fast output compare state.

5. Select one pulse mode of TIM2.

6. Select ITR1 as input trigger for TIM2.

7. Select slave mode for TIM2.

If the timer TIM2 is configured to generate the target time events, interrupts can be enabled
by unmasking interrupt bit TSTIM in register ETH_MACIMR.

www.BDTIC.com/ST

AN3411 STM32F107 PTP hardware unit set-up

Doc ID 018905 Rev 1 13/37

Scheduling of the trigger event can be done by the following steps.

1. Set the target time registers ETH_PTPTTLR and ETH_PTPTTHR (the time which will
occur later from the current - it is the time when you want to perform the scheduled
event).

2. Enable bit TSITE in register ETH_PTPTSCR.

When the time is greater than the target time, event will be generated and the appropriate
output pin will generate pulse. Every time the next trigger event would be scheduled these
two steps should be repeated.

www.BDTIC.com/ST

Software porting of the PTPd stack for STM32F107 AN3411

14/37 Doc ID 018905 Rev 1

5 Software porting of the PTPd stack for STM32F107

The application note AN3102 describes management of all basic needs for the PTP protocol
- the lwIP TCP/IP stack implementation for STM32F107, but it has not been originally
considered that it will be ever extended with the PTP functionality. Some minor changes to
the original lwIP code has been done. The same is valid for the original Ethernet MAC low
level driver. Changes which have been done to the original code as presented in AN3102
are briefly described in the following sections.

5.1 Modifications of the STM32F107 Ethernet MAC low level
driver
Low level function for transmission of the packets is slower than the original one (without
time stamping) because it must wait until the timestamp is known. The time stamp is
measured at the beginning of the packet transmission (when the physical raw frame
preamble is present at the MII, RMII interface).

A set of functions to convert hardware internal subsecond value to PTP nanosecond value
were added (ETH_PTPSubSecond2NanoSecond, ETH_PTPNanoSecond2SubSecond).
Functions to get and to set the precise time were added (ETH_PTPTimeStampGetTime,
ETH_PTPTimeStampSetTime). Functions to adjust time base in fine correction method
mode (ETH_PTPTimeStampAdjFreq) and in the Coarse correction method mode
(ETH_PTPTimeStampUpdateOffset) were also added.

Function ETH_PTPTimeStampAdjFreq is the equivalent of adjtimex, ntp_adjtime or
SetSystemTimeAdjustment known from operating systems. Its argument is the time
correction in units of ppb (parts per 109).

It is also essential to enable multicast frames on the interface. To do that the Ethernet
controller has to be initialized with ETH_MulticastFramesFilter =
ETH_MulticastFramesFilter_None; This disables the multicast filter completely. All multicast
packets are passed through.

5.2 Modifications of the lwIP stack
The official release of lwIP does not allow passing time stamps from the Ethernet interface
to the user application. Additional fields to the packet structure (pbuf) have been added
(seconds and nanoseconds fields). It was also necessary to modify the source of UDP
packet handling (Utilities\lwip-1.3.1\src\core\udp.c) to ensure relaying of timestamps of the
transmitted packets.

The other modification is related to the handling of the packet timestamps (interaction of the
low level MAC driver with the lwIP stack). All functions in the ethernetif.c file (under
Utilities\lwip-1.3.1\src\netif) have now their equivalents with PTP prefix, namely
ETH_PTPTxPkt_ChainMode and ETH_PTPRxPkt_ChainMode which are the core functions
for handling of the packet timestamps.

www.BDTIC.com/ST

AN3411 Software porting of the PTPd stack for STM32F107

Doc ID 018905 Rev 1 15/37

5.3 Modifications of the PTPd stack
The official release of the PTPd does not provide any porting to any microcontroller. The
PTPd however comes with two parts. The PTP stack itself and OS (“Operation System”)
dependent functions. These functions could be rewritten to support a specified architecture.
These OS dependent functions have been rewritten to work without the OS using only
interrupts and the lwIP stack. Two separate packet queues have been created for event and
general messages. This is done because executing whole PTP stack takes long time and it
is not efficient to execute it at interrupt level.

PTPd expects time stamping of packets only for incoming messages. Outgoing messages
are transferred through the internal loopback of the Ethernet interface. This method is used
in the original PTPd stack code because time stamping is not considered to be precise (SW
time stamping). The modified stack for STM32F107 uses both time stamps for incoming and
outgoing frames captured by the HW because they are both very precise. Additional
changes have been done in protocol.c.

5.4 Periodic PTPd tasks
Only minimal part of handling incoming messages is done at interrupt level. Packet is added
to the corresponding queue and the program control is returned back to the lwIP stack.
Whole PTP stack is executed periodically in ptp_Periodic_Handle function. This function
polls both packet queues and also checks all running internal timers.

If there is some packet in the queue it is handled. If some timer has expired, an appropriate
event is executed. If the queue is full, the next packets are discarded until the PTP stack
processes the packet in the queue and frees its space.

5.5 lwIP configuration
The lwIP can be tuned to suit the application's requirements. The default parameters of the
stack can be found in the opt.h file, located under the lwIP directory at src\include\lwIP\.

To modify these settings a new file is defined, lwipopts.h, based on the opt.h file, and located
under the lwIP directory at port\. It contains the lwIP configuration for the STM32F107
project. A new configuration constant “LWIP_PTP” is introduced. Enabling this directive will
cause the lwIP stack to handle timestamps. This directive is enabled in our example by
default. SYS_LIGHTWEIGHT_PROT has been enabled and new functions
sys_arch_protect and sys_arch_unprotect have been implemented.

5.6 PTPd configuration
Parameters of the PTPd stack can be changed at compile time by setting default values in
file constants.h, located under the PTPd directory at src\.

These settings can be overridden in file ptpd.c, located under the PTPd directory at src\.

Some of these parameters can be change at runtime by PTP management messages. This
is implemented only in v1 implementation of the PTPd.

www.BDTIC.com/ST

Software porting of the PTPd stack for STM32F107 AN3411

16/37 Doc ID 018905 Rev 1

Important parameters, that can be modified are

● Sync interval (v1, v2)

● Announce interval (v2)

● Delay mechanism (v2)

● Clock priority

– ClockPreferred (v1)

– ClockStratum (v1)

– SlaveOnly (v1, v2)

– Priority1, priority2 (v2)

– ClockQuality (v2)

● Display stats (v1, v2)

● Domain name (v1), number (v2)

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 17/37

6 Getting started with the demonstration software

This section describes the necessary steps which have to be followed in order to run
successfully the PTPd demonstration software on the STM32F107 platforms. Description of
the package directories, STM32F107 boards configuration, software project configurations /
compilation and application HW set-up is described in details.

6.1 Package directories
The software implementation of the PTPd is based on STMicroelectronics application note
AN3102 (lwIP TCP/IP stack demonstration for STM32F107xx connectivity line
microcontrollers) as available from ST website www.st.com/stm32. The AN3102 source
codes of the project have been modified for operation with the PTPd protocol stack. The
software package has the same structure as the AN3102 project structure, shown in
Figure 6, with support files and directories added for the PTPd stack operation.

Figure 6. PTPd software package directory structure

6.2 Configuration of the demonstration boards
In this chapter, the hardware configuration of the demonstration boards is presented. The
PTPd STM32f107 project has been tested on STM3210C-EVAL and STEVAL-PCC010V1
demonstration boards. Nevertheless support for Keil™ MCBSTM32C evaluation board is
also available, hardware set-up description is not described in this chapter, please refer to
the appropriate documentation.

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

18/37 Doc ID 018905 Rev 1

6.2.1 STEVAL-PCC010V1 hardware configuration

Figure 7. STEVAL-PCC010V1 - ST802RT1 board configuration

MII configuration settings:

JP11 - High

JP12, JP13, JP14, JP15, JP10, JP9, JP8, JP16, JP17, JP18 - Low

Validate the soldering position of solder bridges SB1,SB2 and SB3 on the STM32F107
controller board as described in Table 2. MII configuration has to be selected.

For more information regarding the possible HW set-up scenario (e.g. RMII mode use),
please refer to UM0819 - Getting started with STEVAL-PCC010V1, ST802RT1 TX mode
Ethernet PHY demonstration kit.

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 19/37

Figure 8. STEVAL-PCC010V1 - STM32F107 demonstration board set-up

Table 2. STEVAL-PCC010V1 MII/RMII interface STM32F107 add-on board selection
by solder bridges SB1, SB2 and SB3

SB1 SB2 SB3

MII Remove Remove Fit

RMII Fit Fit Remove

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

20/37 Doc ID 018905 Rev 1

6.2.2 STM3210C-EVAL hardware configuration

Figure 9. STM3210C-EVAL configuration for MII functionality in PTPd application
example

STM3210C-EVAL board HW set-up:

● JP3, JP10, JP11, JP12, JP13 are in 2<->3 position.

● JP4, JP14 are in 1<->2 position.

● JP2 is open. (NC)

For more information regarding the possible HW set-up scenario, please refer to UM0600 -
STM3210C-EVAL evaluation board.

6.3 Configuration of the PTPd SW project
There are two options prepared in terms of software development tools support. Everybody
can decide to use either the RIDE7 or Keil μVision environment. In this chapter,
a description of how to configure the project properly is described for RIDE7. In order to run
the PTPd demonstration software, you need to customize several constants in the project
file structure. All necessary and few optional steps are described in the following chapters.

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 21/37

6.3.1 HW platform selection

This example is designed to work with two STM32F107 target platforms. In the project you
will find support for three Ethernet PHY chips, which can be selected using
USE_ST802RT1_PHY, USE_LAN8700_PHY or USE_DP83848_PHY directive.

Depending on the hardware configuration, RMII or MII mode should be selected by
directives RMII_MODE and MII_MODE in stm32f107.c file, located under the project
directory in src\. It is strongly recommended to use MII interface in order to limit additional
latency and non-determinism in the system.

In the project file there are also prepared configurations for two development boards,
namely USE_STM3210C_EVAL and USE_PCC010V1_EVAL.

Figure 10. Change the project compilation defines according to the board used
(RIDE7)

With respect to the hardware platform selected, the project must be modified to follow the
HW features. Use the project properties (Ctrl+Alt+Enter) to change the compilation options
(Figure 10) for the demo board used (GCC compiler / defines):

USE_PCC010V1_EVAL (MII/RMII)

USE_STM3210C_EVAL (MII/RMII)

USE_MCBSTM32C_EVAL (only RMII supported) - configuration and implementation details
are not described in this application note

Ethernet PHY selection:

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

22/37 Doc ID 018905 Rev 1

USE_ST802RT1_PHY (STEVAL-PCC010V1)

USE_DP83848_PHY (STM3210C-EVAL)

USE_ DP83848_PHY (MCBSTM32C)

6.3.2 MAC and IP address settings

Both addresses, the MAC and IP are derived from CLIENT_ADDR constant. Every device in
the network must have an unique MAC address. If it is not true, this implementation of PTP
will not work. The IP address is static 192.168.0.xx where the last number is the
CLIENT_ADDR. The CLIENT_ADDR is also the last number of MAC address, Figure 10.

The UUID parameter is evaluated by the best master clock (BMC). UUID is derived from the
MAC address so it is also modified by the CLIENT_ADDR constant. In other words the
higher number of CLIENT_ADDR will cause lower priority of the device in BMC algorithm.
For example using two evaluation kits with default parameters: one board with
CLIENT_ADDR=1 will be the master clock if the other board has CLIENT_ADDR>1. If the
other board has also CLIENT_ADDR=1 synchronization will not work. It is necessary to
compile the PTPd project specifically for each board in the system.

Figure 11. Both addresses, MAC and IP, are derived from constant CLIENT_ADDR
(/src/netconf.c)

6.3.3 PTPd settings

In order to achieve the correct functionality of the software example; PTP version, sync
interval, announce interval, domain and delay mechanism should be equal for all nodes that
are designed to communicate together.

Using another synchronization interval is possible in order to achieve a better
synchronization result. The default synchronization interval (DEFAULT_SYNC_INTERVAL,
Figure 12) in the project is 1 s (one second), file ptpd.c. The sync interval can be any value

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 23/37

of power of 2. For example the sync interval 0.125 s is 2-3, the correct setting would be
rtOpts.syncInterval = -3 in the ptpd.c file, Figure 12.

Figure 12. PTPd settings

For the STM3210C-EVAL board it is also possible to switch on/off the on board LCD that
displays the PTPd information. In ptpd-2.0.0/src/ptpd.c there is an option for it:

rtOpts.stats = PTP_TEXT_STATS;

or

rtOpts.stats = PTP_NO_STATS;

6.3.4 Compiling the project and flashing the HW platform

There two IDE project options prepared in the PTPd project hierarchy located in directory
/Project/STM32F107_LwIP_PTPv2; here you can find RIDE7 and RVMDK (Keil μVision)
project files at your convenience. Open the appropriate project file, configure the project as
described in the previous chapters, compile it for each board and flash it.

6.4 Application boards connections
This section shows several different application scenarios, connection of the hardware
platforms, with short description of the application hints. In order to use the demonstration
firmware, at least two hardware platforms are required. The first device is a board with the
PTPd firmware (STM3210C-EVAL, STEVAL-PCC010V1) and the second platform can be
another board or other PTP capable device, e.g. Linux PC with PTPd daemon. In case of
using two boards with the PTPd firmware, each board should have its own unique MAC

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

24/37 Doc ID 018905 Rev 1

address and all other PTP parameters should be kept the same, see Section 6.2 and
Section 6.3.

6.4.1 Back-to-back connection of two boards

When connecting the boards directly, back-to-back, one of them will become a master and
the other one a slave (if all parameters but the MAC address are the same, the master will
be device with lower MAC address). After few PTP synchronization cycles the boards are
synchronized. Both boards (in case of using STM3210C-EVAL platforms) should show its
state (one should show master and the other should show slave). Slave board should also
show measured transfer time of message from master to slave (mean path delay), current
expected offset from master and measured crystal oscillator frequency relative difference
from the master in ppm (pulse per million).

For each of the two boards you have to configure the SW project as described in chapters
7.2 and 7.3. The RS232 cable connection is optional and available only for STM3210C-
EVAL board, Figure 13. In order to use it with a PC COM terminal, it is required to configure
the ptpd-2.0.0/src/dep/constants_dep.h file, to uncomment PTPD_DBGV directive before
the compilation. It is also possible to combine different HW platforms i.e. one STM3210C-
EVAL and one STEVAL-PCC010V1 board.

Figure 13. Back-to-back connection of the two boards

6.4.2 Boundary clock switch option

In comparison with the back-to-back connection option, this configuration allows to connect
two boards and more. You can also involve e.g. a packet analysis tool running in your PC for
packet sniffing (e.g. Wireshark). This configuration requires an Ethernet switch with
boundary clock functionality. Using standard Ethernet switch brings uncertainty (jitter) in the
system and causes degradation of the best achievable synchronization results.

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 25/37

Figure 14. Two boards connection through boundary clock switch, packet sniffing in
PC

6.4.3 Linux LiveUSB

Many embedded microcontrollers (MCUs) and Ethernet physical layer chips (PHYs)
available today in the market are equipped with a PTP HW time stamping unit allowing
achieve time synchronization in sub-microsecond range. Pure SW solutions (with no
dedicated PTP HW) allow achieve synchronization “only” typically in microseconds. An
alternative to the previous two hardware options is therefore to use the Linux LiveUSB when
not having at least two boards for demonstration. The PTPd software, according to the
IEEE1588-2008 standard, can be include as object code in the scope of supply and thus
enables a quick and easy introduction to the IEEE 1588 technology. The Linux LiveUSB
distributions are widely used. An extensive list of the live distributions is presented at
www.livecdlist.com website. The PTPd source codes can be compiled for use with the
desired Linux LiveUSB distribution.

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

26/37 Doc ID 018905 Rev 1

Figure 15. STM3210C-EVAL connected to a PC running Linux LiveUSB distribution with
software PTPd daemon

The PTPd use in the Linux LiveUSB distribution is very easy. You can run the PTPd daemon
from the console window, Figure 16.

Figure 16. PTPd running in the Linux console window

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 27/37

You can kill the ptpd process if needed by using system/performance monitor. You can see
the PTP message traffic in the Wireshark (www.wireshark.com) packet analyzer if you add it
in your LiveUSB customization, Figure 17.

Figure 17. Wireshark - PTP packet analysis

PTPd daemon in Linux LiveUSB

This chapter gives a short overview and tips about how to use and configure the PTPd
application in the Linux LiveUSB environment. It is considered that you run PTPd from
a Linux console. PTPv2d runs on UDP/IP and by default in P2P (Peer-to-Peer) mode. PTPd
is using communication ports 319, 320 therefore it is required to run in it in super user mode.

Customization of the ptpd application run:

-b eth2 bind PTP to network interface name (e.g. eth2)

-c runs ptpd in command line (non-daemon) mode

-f FILE sends its output to the desired file

-h runs ptpd in E2E delay mechanism

-g runs the ptpd in slave mode only (PC can never become a master)

-t do not adjust the system clock (valuable when you want to observe the slave to
master time drift)

-l specify inbound and outbound latency startup value in nanoseconds

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

28/37 Doc ID 018905 Rev 1

-n PTP specify announce interval

-y specify sync interval as power of 2 (-1 is equal to 0.5 seconds, etc.)

-d displays statistics in the console

-D statistics in .csv data format

Timestamp (year and time), state (master/slave), clock ID, one way delay, offset from
master, slave to master delay, master to slave delay, drift

PTP clock settings (clock description according to IEEE1588 spec.)

-v specify system clock variance

-r specify system clock accuracy

-s specify system clock class

-p specify priority 1 attribute

-q specify priority 2 attribute

Servo settings:

-a specify clock servo P and I attenuations

-w specify one way delay filter stiffness

The basic implementations of PTP operate only as ordinary clock application running on top
of the network protocol stack. Timestamps are generated at the Kernel level and transferred
to SW. Protocol stack and HW reaction delays variations bring precision (jitter) errors in
these timestamps. These errors can be in the microseconds to hundred microseconds
range depending on the hardware and the operating system architecture. The negative
effect of this delay fluctuation can be eliminated by suitable design of the clock servo
mechanism.

Examples:

ptpd2 -c -g -D -b eth2

-g run as a slave only (not master capable)

-D display statistic in .csv format

ptpd2 -c -d -t -b eth2 -p 100

-p 100 increases priority of the PC to become master

More information can be found at http://ptpd.sourceforge.net/ project website.

6.5 How to use the precise time information in the customer
application

6.5.1 PTPd operation overview

When a frame is received, the Ethernet interface layer extracts the data and the timestamps
and sends them to the PTP stack. This is ensured by the ethernetif.c file. The lwIP stack
handles the packets at the interrupt level. If the packet is targeted to the PTP protocol stack,
it is added to the appropriate (event or general) packet queue. If the packet is for another
application, it is handled by that application and not processed by the PTP stack. Outside of

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 29/37

the interrupt, the PTP packet queues are polled for new packets. If there are new packets in
the queue, they are processed by the PTP stack and deleted from the queue. The PTP stack
is executed also if some of its timers have expired.

Figure 18. PTPd operation overview

The whole PTP stack is executed in function ptpd_Periodic_Handle. If this function is not
executed as often as needed, some incoming packets could be lost because of the full
queue. If only few packets are lost, the protocol stack simply doesn't use them. The
synchronization will be degraded but not lost.

6.5.2 Target time as external trigger example

The timer TIM2 can be configured to be triggered by the target time event. Demonstration
firmware is set-up to generate such event every second. This functionality is started by
“TargetTime_Init function”. The functional behavior can be changed in function
“ETH_IRQHandler” where the new trigger event is calculated and prepared. The output
event is propagated to output of TIM2 depending on selected board. Using STM3210C-
EVAL the output pin is “TIM2_CH1” (PA15).

The precision of the generated output signal depends only on the granularity of timestamps.
All signals are routed in hardware with no intervention of the CPU therefore deterministic. To
validate the synchronization accuracy there is an option to measure the “Pulse Per Second”
(PPS) output (PB5) of each board. This signal is generated directly from the PPT hardware.
The difference of the rising edges of these pulses should be near the value of measured
offset from the master.

Target time can be configured to generate event at any time in the future. If the time is set to
the past event is generated immediately after setting bit TSITE of register ETH_PTPTSCR.

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

30/37 Doc ID 018905 Rev 1

6.6 PTPd project example structure

Figure 19. PTPd project example structure

6.7 Precision of the PTPd system
Demonstration firmware has been tested using the version 2 of the IEEE1588 PTP protocol
with the “Point-to-Point” delay mechanism (P2P). The synchronization interval has been set
to 1 second and in the other case to 0.125 ms. Non-equal send and receive path delays
have been observed so configuration parameter of the PTP stack “OutboundLatency” has
been set to 160 ns, because the mean offset has been 80 ns.

The first test has been done with the STM3210C-EVAL board connected with precise
PTPv2 master clock device, Figure 20. The synchronization interval has been set to
1 second. In Figure 21, there is a histogram showing the measured offset from the master.
The offset measured for this hardware set-up shows minimum and maximum offset from -
600 ns to 200 ns. These variations depend on the default crystal quality used on the
STM3210C-EVAL board. The second part of this test has been done with modified
STM3210C-EVAL board using external low cost crystal oscillator (built from the original
on-board crystal and 74HC04 inverters) connected to the X1 pin of the MCU. The on-board
crystal has been removed. In Figure 22 there is a histogram of the measured offset from the
master. The offset measured for this hardware set-up shows the minimum and maximum
offset from -70 ns to 70 ns. Because the oscillator drifts only by the temperature changes
and the frequency does not change rapidly, the synchronization with master is better
compared to the use of the default crystal and the built in oscillator.

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 31/37

Table 3. PTPd STM32F107 test set-up

Figure 20. PTPd STM32F107 test set-up

Parameter Value

Protocol version IEEE 1588-2008

Sync interval 1 s, 0.125 s

Connection Direct (back-to-back) connection without switch

Master clock Meinberg LANTIME M600

Delay mechanism P2P (Point-to-Point)

OutboundLatency correction 160 ns

www.BDTIC.com/ST

Getting started with the demonstration software AN3411

32/37 Doc ID 018905 Rev 1

Figure 21. Precision reached using the default crystal and built in oscillator, the
synchronization interval has been set to 1 second

Figure 22. Precision reached using the external oscillator on the STM3210C-EVAL,
the synchronization interval has been set to 1 second

The second test has been done again with the STM3210C-EVAL board connected with the
precise PTPv2 master clock device, Figure 20. The synchronization interval has been set to
0.125 second. In Figure 23, there is a histogram showing the measured offset from the
master. The offset measured for this hardware set-up shows minimum and maximum offset
from -130 ns to 10 ns, average -17 ns. These variations depend again on the default crystal
quality used on the STM3210C-EVAL board. The second part of this test has been done
with modified STM3210C-EVAL board using external crystal oscillator connected to the X1
pin of the MCU. The on-board crystal has been removed. In Figure 24 there is a histogram

www.BDTIC.com/ST

AN3411 Getting started with the demonstration software

Doc ID 018905 Rev 1 33/37

of the measured offset from the master. The offset measured for this hardware set-up shows
the minimum and maximum offset from -40 ns to 20 ns, average -8 ns. Because the
oscillator drifts only by the temperature changes and the frequency does not change rapidly,
the synchronization with master is better compared to the use of the default crystal and the
built in oscillator.

Figure 23. Precision reached using the default crystal and built in oscillator, the
synchronization interval has been set to 0.125 second

Figure 24. Precision reached using the external oscillator on the STM3210C-EVAL,
the synchronization interval has been set to 0.125 second

www.BDTIC.com/ST

Conclusion AN3411

34/37 Doc ID 018905 Rev 1

7 Conclusion

This application note describes the STM32F107 SW project implementing the PTPd
(precision time protocol) stack in connection with the lwIP TCP/IP stack implementation as
described in AN3102. The application note describes the capability of the STM32F107
microcontroller to generate the time stamps of the incoming and outgoing packets and the
capability to generate the precise trigger events. Step by step procedure is described
making it easier to understand the necessary HW configuration set-up, changes which had
to be applied to the original lwIP stack and to the original PTPd stack. The synchronization
result is highly dependent on the application hardware. Selection of a deterministic Ethernet
PHY device, the crystal or oscillator unit, are the key factors for the final synchronization
accuracy of the slave device to the precise master. STM32 F-2 PTPd implementation is
planned as a separate application note.

www.BDTIC.com/ST

AN3411 References

Doc ID 018905 Rev 1 35/37

8 References

1. “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems,” IEEE Std 1588-2008 (Revision of IEEE Std 1588-
2002), vol., no., pp.c1-269, July 24 2008.

2. AN3102 - lwIP TCP/IP stack demonstration for STM32F107xx connectivity line
microcontrollers, www.st.com.

3. RM0008 - Reference manual, STM32F101xx, STM32F102xx, STM32F103xx,
STM32F105xx and STM32F107xx advanced ARM-based 32-bit MCUs, www.st.com.

4. K. Correll and N. Barendt, “Design Considerations for Software Only Implementations
of the IEEE 1588 Precision Time Protocol“, in Conference on IEEE 1588 Standard for
a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems, 2006.

5. J. Breuer, “Hardware-Assisted IEEE 1588 Implementation Using the STM32
Connectivity Line Processor,” In POSTER 2010 - Proceedings of the 14th International
Conference on Electrical Engineering [CD-ROM]. Prague: CTU, Faculty of Electrical
Engineering, 2010, ISBN 978-80-01-04544-2.

6. www.sics.se/~adam/lwip - lwIP is a light-weight implementation of the TCP/IP protocol
suite, http://savannah.nongnu.org/projects/lwip/- lwIP project download side

7. http://ptpd.sourceforge.net - The PTP daemon (PTPd) website.

8. www.slax.org - portable Linux operating system, www.pendrivelinux.com - run Linux
from a flash memory drive.

9. www.meinberg.de/english - Innovative Solutions for Time and Frequency
Synchronization.

10. www.livecdlist.com – Linux LiveCD/LiveUSB overview.

11. www.wireshark.com – Ethernet packet analyzer

Special thanks to Czech Technical University in Prague, Czech Republic, Faculty of
Electrical Engineering, Department of Measurement, namely to the project co-authors
Ing. Jan Breuer and doc. Ing. Jaroslav Roztocil, CSc.

www.BDTIC.com/ST

Revision history AN3411

36/37 Doc ID 018905 Rev 1

9 Revision history

Table 4. Document revision history

Date Revision Changes

11-Jul-2011 1 Initial release.

www.BDTIC.com/ST

AN3411

Doc ID 018905 Rev 1 37/37

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

www.BDTIC.com/ST

	1 Introduction
	Figure 1. STM32F107 PTP HW unit and its interaction with the application software

	2 Description
	Figure 2. Supported evaluation boards (STM3210C-EVAL and STEVAL-PCC010V1)

	3 STM32F107 PTP stack implementation software resources
	3.1 Precision time protocol (PTP)
	Figure 3. Simple master - slave clock hierarchy (M - master clock, S - slave clock)
	3.1.1 lwIP stack overview
	3.1.2 PTPd stack overview

	4 STM32F107 PTP hardware unit set-up
	4.1 Initialization of the STM32F107 hardware time stamping unit
	4.2 Correction methods for the local clock
	4.3 Data format of the time stamp
	Figure 4. PTP time stamp data format

	4.4 Computing the default values of the time stamp unit registers
	Table 1. Examples of different default addend register values vs. increment register value for SysClk = 72 MHz
	Figure 5. Fine correction method

	4.5 Generating trigger events

	5 Software porting of the PTPd stack for STM32F107
	5.1 Modifications of the STM32F107 Ethernet MAC low level driver
	5.2 Modifications of the lwIP stack
	5.3 Modifications of the PTPd stack
	5.4 Periodic PTPd tasks
	5.5 lwIP configuration
	5.6 PTPd configuration

	6 Getting started with the demonstration software
	6.1 Package directories
	Figure 6. PTPd software package directory structure

	6.2 Configuration of the demonstration boards
	6.2.1 STEVAL-PCC010V1 hardware configuration
	Figure 7. STEVAL-PCC010V1 - ST802RT1 board configuration
	Figure 8. STEVAL-PCC010V1 - STM32F107 demonstration board set-up
	Table 2. STEVAL-PCC010V1 MII/RMII interface STM32F107 add-on board selection by solder bridges SB1, SB2 and SB3

	6.2.2 STM3210C-EVAL hardware configuration
	Figure 9. STM3210C-EVAL configuration for MII functionality in PTPd application example

	6.3 Configuration of the PTPd SW project
	6.3.1 HW platform selection
	Figure 10. Change the project compilation defines according to the board used (RIDE7)

	6.3.2 MAC and IP address settings
	Figure 11. Both addresses, MAC and IP, are derived from constant CLIENT_ADDR (/src/netconf.c)

	6.3.3 PTPd settings
	Figure 12. PTPd settings

	6.3.4 Compiling the project and flashing the HW platform

	6.4 Application boards connections
	6.4.1 Back-to-back connection of two boards
	Figure 13. Back-to-back connection of the two boards

	6.4.2 Boundary clock switch option
	Figure 14. Two boards connection through boundary clock switch, packet sniffing in PC

	6.4.3 Linux LiveUSB
	Figure 15. STM3210C-EVAL connected to a PC running Linux LiveUSB distribution with software PTPd daemon
	Figure 16. PTPd running in the Linux console window
	Figure 17. Wireshark - PTP packet analysis

	6.5 How to use the precise time information in the customer application
	6.5.1 PTPd operation overview
	Figure 18. PTPd operation overview

	6.5.2 Target time as external trigger example

	6.6 PTPd project example structure
	Figure 19. PTPd project example structure

	6.7 Precision of the PTPd system
	Table 3. PTPd STM32F107 test set-up
	Figure 20. PTPd STM32F107 test set-up
	Figure 21. Precision reached using the default crystal and built in oscillator, the synchronization interval has been set to 1 second
	Figure 22. Precision reached using the external oscillator on the STM3210C-EVAL, the synchronization interval has been set to 1 second
	Figure 23. Precision reached using the default crystal and built in oscillator, the synchronization interval has been set to 0.125 second
	Figure 24. Precision reached using the external oscillator on the STM3210C-EVAL, the synchronization interval has been set to 0.125 second

	7 Conclusion
	8 References
	9 Revision history
	Table 4. Document revision history

