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AN3411
Application note

IEEE 1588 precision time protocol demonstration
for STM32F107 connectivity line microcontroller

1 Introduction

To synchronize Ethernet network devices, an option to use the IEEE1588 (“Precision Time 
Protocol” - PTP) synchronization protocol is available. Many embedded MCUs and Ethernet 
PHYs available today in the market are equipped with the PTP HW time stamping unit. The 
PTP hardware time stamping unit allows very precise time synchronization compared to the 
SW solution. The hardware solution allows typically sub-microseconds time synchronization 
precision, the SW solution typically “only” sub-milliseconds range precision. IEEE1588 
hardware unit itself is a must for precise synchronization results. In order to meet the 
IEEE1588 standard requirements, there must be a SW protocol stack running in the 
microcontroller on top of the HW.

One of the advanced features of the STM32F107's Ethernet MAC controller is the time 
stamping of the incoming and the outgoing packets by hardware. In this application note, 
you can find a real application that uses this feature: IEEE1588 PTP HW unit, Figure 1. The 
objective of this application note is to present a demonstration package built on top of the 
free lwIP TCP/IP stack and the free PTP stack - PTPd. Support for two hardware platforms 
is presented, Figure 2.

This software package content is:

● An implementation of IEEE 1588-2002 commonly named PTP v1 over IPv4/UDP using 
end-to-end delay mechanism.

● An implementation of IEEE 1588-2008 commonly named PTP v2 over IPv4/UDP using 
both end-to-end and Peer-to-Peer delay mechanisms.

● A target time example, which generates external trigger events at precise time.

Figure 1. STM32F107 PTP HW unit and its interaction with the application software
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2 Description

This application note presents implementation of the IEEE1588-2008 PTP protocol for 
STM32F107 microcontroller. IEEE1588 – 2008 is not backward compatible to the older 
IEEE1588 - 2002 version of this specification. IEEE1588-2002 implementation example is 
also available in source codes for STM32F107, but it is not described in this application 
note. Industrializations focus of the customers today is IEEE1588-2008.

The PTP daemon (PTPd) implements the precision time protocol (PTP) as defined in the 
IEEE1588 specification. The PTPd Version 1 implements IEEE 1588-2002 compliant 
functionality, and the PTPd Version 2 implements newer IEEE 1588-2008 specification. 
PTPd was developed to provide a precise time coordination of LAN connected computers. 
PTPd can run on most 32-bit and 64-bit processors. It does not require any FPU, therefore it 
is by definition easy to be used in small embedded processors. The PTPd originally runs on 
Linux, μClinux™, FreeBSD®, and NetBSD operating systems. It is also easy to port it to 
other platforms. The PTPd time stamping unit is originally software based and therefore for 
the STM32 use it has been adapted in order to benefit from the STM32 PTP hardware unit.

Figure 2. Supported evaluation boards (STM3210C-EVAL and STEVAL-PCC010V1)

The SW implementation of PTPd is based on STMicroelectronics™ application note 
AN3102 (lwIP TCP/IP stack demonstration for STM32F107xx connectivity line 
microcontrollers) as available from ST website www.st.com/stm32. The AN3102 source 
codes of the project have been modified for operation with the PTPd protocol stack.

www.BDTIC.com/ST
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3 STM32F107 PTP stack implementation software 
resources

3.1 Precision time protocol (PTP)
The IEEE 1588 standard defines a protocol that allows precise clock synchronization in 
measurement and control systems implemented with technologies such as network 
communication, local computing and distributed objects. The protocol applies to systems 
that communicate by local area networks supporting multicast messaging, including 
Ethernet. This protocol is used to synchronize systems that include clocks of different 
precision, resolution and stability. The protocol supports system-wide synchronization 
accuracy in the sub-microsecond range with a minimum network and local clock computing 
resources. The message-based protocol, known as the precision time protocol (PTP), is 
transported over UDP/IP. The system or network (example in Figure 3) is classified into 
master and slave nodes for distributing the timing/clock information.

Figure 3. Simple master - slave clock hierarchy (M - master clock, S - slave clock)

The precision time protocol uses multicast messaging over UDP/IP. The underlying TCP/IP 
stack should have multicast support functionality or at least has to pass multicast messages. 
There are at least two free implementations of the TCP/IP stacks - lwIP (Light weight IP) and 
μIP. The lwIP TCP/IP stack has been chosen for the PTPd demonstration because of its 
support for multicast and IGMP messages. The μIP TCP/IP stack can also work, but it does 
not have support for IGMP protocol so it is not suitable for networks where switches with 
IGMP snooping are used. The IEEE1588 protocol itself has at least one free implementation 
with many derivates. Its name is PTPd and it is designed for Linux and FreeBSD systems. 

3.1.1 lwIP stack overview

The lwIP TCP/IP stack is a free TCP/IP stack developed by Adam Dunkels at the Swedish 
Institute of Computer Science (SICS) and is licensed under the BSD license. The source 
code can be downloaded from http://savannah.nongnu.org/projects/lwip/. The lwIP TCP/IP 
stack supports the following protocols: IPv4, IPv6, UDP, TCP, ICMP, IGMP, SNMP, ARP and 
PPP.

www.BDTIC.com/ST
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The lwIP offers three types of API (“Application Programming Interface”):

● A raw API: it is the native API used by the lwIP stack itself to interface with the different 
protocols.

● A NETCONN API: it is a sequential API with a higher level of abstraction than the raw 
API.

● A socket API: it is a Berkeley-like API

The API used to build the PTPd demonstration with STM32F107 is the raw API. The raw 
API selection has been made because of the standalone implementation of the lwIP TCP/IP 
stack example. Nevertheless the achievable time synchronization precision should be the 
same for all three APIs, but neither Netconn nor socket API has been used and changed to 
reflect the needs of timestamps in this PTPd implementation example. Only the raw API has 
been modified to work with the PTPd software stack. Both, the Netconn and the Socket APIs 
need an operating system. More information about the lwIP protocol version for the 
STM32F107 microcontroller can be found in the application note AN3102 available from the 
STMicroelectronics website http://www.st.com/stm32.

3.1.2 PTPd stack overview

The PTP daemon (PTPd) is a free implementation of the precision time protocol (PTP) as 
defined by the IEEE 1588 (2002/2008) standards. PTPd is complete implementation of the 
IEEE 1588 specification for standard (non-boundary) clock. The source code for PTPd is 
freely available under a BSD-style license. The source code can be downloaded from 
www.ptpd.sourceforge.net. The PTPd has two versions. PTP Version 1 implements IEEE 
1588-2002 specification, and PTP Version 2 implements IEEE 1588-2008 specification. As 
mentioned, the PTPd protocol has to be adapted to work with the PTP HW time stamping 
unit of the STM32F107 microcontroller.

www.BDTIC.com/ST
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4 STM32F107 PTP hardware unit set-up

This chapter describes in details the STM32F107 PTP hardware unit initial set-up, 
programming steps for the fine correction method and resources for the PTP information 
triggering in the customer application.

4.1 Initialization of the STM32F107 hardware time stamping unit
The first step is the initialization of the time stamping unit of the embedded Ethernet MAC 
interface of STM32F107. The startup sequence is prepared in ETH_PTPStart function. This 
enables the time stamping ability of MAC controller, then it set ups default values of the time 
stamping registers, namely the addend and the increment registers. Finally it sets the 
current time to 0 s.

1. Mask the time stamp trigger interrupt by setting bit 9 in the MACIMR register.

2. Program time stamp register bit 0 to enable time stamping.

3. Program the sub-second increment register based on the PTP clock frequency.

4. Program the time stamp addend register and set time stamp control register bit 5 
(addend register update).

5. Poll the time stamp control register until bit 5 is cleared.

6. To select the fine correction method program time stamp control register bit 1.

7. Program the time stamp high update and time stamp low update registers with the 
appropriate time value. (can be zero)

8. Set time stamp control register bit 2 (time stamp init).

9. The time stamp counter starts operation as soon as it is initialized with the value written 
in the time stamp update register.

10. Enable the MAC receiver and transmitter for proper time stamping.

4.2 Correction methods for the local clock
There are two possible methods of the clock correction supported in the STM32F107 
IEEE1588 time stamping unit: fine and coarse correction methods. In the here described 
implementation example the fine correction method is used because it allows more precise 
synchronization results in comparison with the coarse correction method. The correction 
method should be selected in the initialization step of the hardware time stamping in 
function ETH_PTPStart. After that only the appropriate functions should be used for the 
clock correction.

If coarse method is used, only the ETH_PTPTime_UpdateOffset function can be used to 
perform local time corrections. In contrast if the fine correction method is used, only the 
ETH_PTPTime_SetTime and ETH_PTPTime_AdjFreq can be used.

ETH_PTPTime_UpdateOffset updates the current clock by the relative difference. The 
function call argument is added to or subtracted from the current time.

ETH_PTPTime_SetTime sets the absolute time. The function call argument is set as the 
current time.

ETH_PTPTime_AdjFreq adjusts the addend register value. The argument is the relative 
change of the default clock frequency in ppb (parts per 109 - billion). If the crystal used in 

www.BDTIC.com/ST
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final application is for example 5 ppm off, then setting this value to the 5000 will compensate 
the error.

Following steps are used to perform the update of the addend register in function AdjFreq:

1. Calculate addend register value.

2. Update the time stamp addend register “ETH_PTPTSAR” with calculated value.

3. Enable the time stamp addend register by setting bit TSARU in ETH_PTPTSCR.

4.3 Data format of the time stamp
The registers holding the time stamps are using specific 64-bit format. The highest 32-bit 
register is unsigned integer holding number of seconds. Lowest 31 bits in the second 32-bit 
register are used for the fractional part of second and the 32nd bit is a negative sign.

Figure 4. PTP time stamp data format

In order to use the registers value in PTP stack it is necessary to convert these values to 
another format. Structure with signed, both seconds and nanoseconds, is used. So it is also 
necessary to convert the subseconds to nanoseconds and vice versa. For this purpose 
functions ETH_PTPSubSecond2NanoSecond and ETH_PTPNanoSecond2SubSecond are 
implemented.

This 64-bit data format is used in all time stamp related registers (ETH_PTPTSHR, 
ETH_PTPTSLR), time stamp update registers (ETH_PTPTSHUR, ETH_PTPTSLUR), 
Target time registers (ETH_PTPTTHR, ETH_PTPTTLR) and also in the DMA descriptors.

4.4 Computing the default values of the time stamp unit 
registers
If using the Fine correction method, the default values of the addend and the increment 
registers can be computed as follow.

Equation 1

         

For example, if SysClk is 72 MHz, we can chose tick approximately 20 ns.

tick Increment 10
9⋅

2
31

----------------------------------------------=

Adden d Increment⋅( ) 263

SysClk
--------------------=

www.BDTIC.com/ST
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Equation 2

         

We can see that tick is not precisely 20 ns as we choose because of rounding increment 
value. Using the next equation, we can compute default value of the addend register.

Equation 3

         

         

Value of the tick can be selected differently but it is necessary to validate the range of the 
increment and addend registers. The increment register is of data type unsigned char (8-bit) 
and the addend register is of data type unsigned long (32-bit). It is also necessary to 
validate the regulation range of the addend register.

         

Table 1. Examples of different default addend register values vs. increment 
register value for SysClk = 72 MHz

Tick Increment Addend

119 ns 255 0x1DF170C7

100 ns 215 0x238391AA

50 ns 107 0x475C1B20

20 ns 43 0xB191D856

14 ns 30 0xFE843E9E

Increment 20 2
31⋅

10
9

---------------------- 42.94 43 0x2B( )≅= =

tick 43
109

2
31

---------⋅ 20.023ns= =

Addend 263

SysClk Increment⋅
---------------------------------------------------------=

Addend 263

72M 43⋅
-------------------------- 2979125334.90= =

Addenddefault 2979125335 0xb191d857( )=
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Figure 5. Fine correction method

4.5 Generating trigger events
In the example delivered with this application note we have used an easy way to generate 
external trigger events. To enable this feature timer TIM2 should be properly configured 
following these steps.

1. Remap ITR1 input of TIM2 to the output of target time event by resetting bit 
TIM2ITR1_IREMAP of register AFIO_MAPR.

2. Set the prescaler, period and counter mode of TIM2.

3. Configure appropriate timer output to PWM1 mode.

4. Enable fast output compare state.

5. Select one pulse mode of TIM2.

6. Select ITR1 as input trigger for TIM2.

7. Select slave mode for TIM2.

If the timer TIM2 is configured to generate the target time events, interrupts can be enabled 
by unmasking interrupt bit TSTIM in register ETH_MACIMR.

www.BDTIC.com/ST
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Scheduling of the trigger event can be done by the following steps.

1. Set the target time registers ETH_PTPTTLR and ETH_PTPTTHR (the time which will 
occur later from the current - it is the time when you want to perform the scheduled 
event).

2. Enable bit TSITE in register ETH_PTPTSCR. 

When the time is greater than the target time, event will be generated and the appropriate 
output pin will generate pulse. Every time the next trigger event would be scheduled these 
two steps should be repeated.

www.BDTIC.com/ST
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5 Software porting of the PTPd stack for STM32F107

The application note AN3102 describes management of all basic needs for the PTP protocol 
- the lwIP TCP/IP stack implementation for STM32F107, but it has not been originally 
considered that it will be ever extended with the PTP functionality. Some minor changes to 
the original lwIP code has been done. The same is valid for the original Ethernet MAC low 
level driver. Changes which have been done to the original code as presented in AN3102 
are briefly described in the following sections.

5.1 Modifications of the STM32F107 Ethernet MAC low level 
driver
Low level function for transmission of the packets is slower than the original one (without 
time stamping) because it must wait until the timestamp is known. The time stamp is 
measured at the beginning of the packet transmission (when the physical raw frame 
preamble is present at the MII, RMII interface).

A set of functions to convert hardware internal subsecond value to PTP nanosecond value 
were added (ETH_PTPSubSecond2NanoSecond, ETH_PTPNanoSecond2SubSecond). 
Functions to get and to set the precise time were added (ETH_PTPTimeStampGetTime, 
ETH_PTPTimeStampSetTime). Functions to adjust time base in fine correction method 
mode (ETH_PTPTimeStampAdjFreq) and in the Coarse correction method mode 
(ETH_PTPTimeStampUpdateOffset) were also added. 

Function ETH_PTPTimeStampAdjFreq is the equivalent of adjtimex, ntp_adjtime or 
SetSystemTimeAdjustment known from operating systems. Its argument is the time 
correction in units of ppb (parts per 109).

It is also essential to enable multicast frames on the interface. To do that the Ethernet 
controller has to be initialized with ETH_MulticastFramesFilter = 
ETH_MulticastFramesFilter_None; This disables the multicast filter completely. All multicast 
packets are passed through.

5.2 Modifications of the lwIP stack
The official release of lwIP does not allow passing time stamps from the Ethernet interface 
to the user application. Additional fields to the packet structure (pbuf) have been added 
(seconds and nanoseconds fields). It was also necessary to modify the source of UDP 
packet handling (Utilities\lwip-1.3.1\src\core\udp.c) to ensure relaying of timestamps of the 
transmitted packets.

The other modification is related to the handling of the packet timestamps (interaction of the 
low level MAC driver with the lwIP stack). All functions in the ethernetif.c file (under 
Utilities\lwip-1.3.1\src\netif) have now their equivalents with PTP prefix, namely 
ETH_PTPTxPkt_ChainMode and ETH_PTPRxPkt_ChainMode which are the core functions 
for handling of the packet timestamps.
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5.3 Modifications of the PTPd stack
The official release of the PTPd does not provide any porting to any microcontroller. The 
PTPd however comes with two parts. The PTP stack itself and OS (“Operation System”) 
dependent functions. These functions could be rewritten to support a specified architecture. 
These OS dependent functions have been rewritten to work without the OS using only 
interrupts and the lwIP stack. Two separate packet queues have been created for event and 
general messages. This is done because executing whole PTP stack takes long time and it 
is not efficient to execute it at interrupt level.

PTPd expects time stamping of packets only for incoming messages. Outgoing messages 
are transferred through the internal loopback of the Ethernet interface. This method is used 
in the original PTPd stack code because time stamping is not considered to be precise (SW 
time stamping). The modified stack for STM32F107 uses both time stamps for incoming and 
outgoing frames captured by the HW because they are both very precise. Additional 
changes have been done in protocol.c.

5.4 Periodic PTPd tasks
Only minimal part of handling incoming messages is done at interrupt level. Packet is added 
to the corresponding queue and the program control is returned back to the lwIP stack. 
Whole PTP stack is executed periodically in ptp_Periodic_Handle function. This function 
polls both packet queues and also checks all running internal timers. 

If there is some packet in the queue it is handled. If some timer has expired, an appropriate 
event is executed. If the queue is full, the next packets are discarded until the PTP stack 
processes the packet in the queue and frees its space.

5.5 lwIP configuration
The lwIP can be tuned to suit the application's requirements. The default parameters of the 
stack can be found in the opt.h file, located under the lwIP directory at src\include\lwIP\. 

To modify these settings a new file is defined, lwipopts.h, based on the opt.h file, and located 
under the lwIP directory at port\. It contains the lwIP configuration for the STM32F107 
project. A new configuration constant “LWIP_PTP” is introduced. Enabling this directive will 
cause the lwIP stack to handle timestamps. This directive is enabled in our example by 
default. SYS_LIGHTWEIGHT_PROT has been enabled and new functions 
sys_arch_protect and sys_arch_unprotect have been implemented.

5.6 PTPd configuration
Parameters of the PTPd stack can be changed at compile time by setting default values in 
file constants.h, located under the PTPd directory at src\.

These settings can be overridden in file ptpd.c, located under the PTPd directory at src\.

Some of these parameters can be change at runtime by PTP management messages. This 
is implemented only in v1 implementation of the PTPd.
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Important parameters, that can be modified are

● Sync interval (v1, v2)

● Announce interval (v2)

● Delay mechanism (v2)

● Clock priority

– ClockPreferred (v1)

– ClockStratum (v1)

– SlaveOnly (v1, v2)

– Priority1, priority2 (v2)

– ClockQuality (v2)

● Display stats (v1, v2)

● Domain name (v1), number (v2)
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6 Getting started with the demonstration software

This section describes the necessary steps which have to be followed in order to run 
successfully the PTPd demonstration software on the STM32F107 platforms. Description of 
the package directories, STM32F107 boards configuration, software project configurations / 
compilation and application HW set-up is described in details.

6.1 Package directories
The software implementation of the PTPd is based on STMicroelectronics application note 
AN3102 (lwIP TCP/IP stack demonstration for STM32F107xx connectivity line 
microcontrollers) as available from ST website www.st.com/stm32. The AN3102 source 
codes of the project have been modified for operation with the PTPd protocol stack. The 
software package has the same structure as the AN3102 project structure, shown in 
Figure 6, with support files and directories added for the PTPd stack operation.

Figure 6. PTPd software package directory structure

6.2 Configuration of the demonstration boards
In this chapter, the hardware configuration of the demonstration boards is presented. The 
PTPd STM32f107 project has been tested on STM3210C-EVAL and STEVAL-PCC010V1 
demonstration boards. Nevertheless support for Keil™ MCBSTM32C evaluation board is 
also available, hardware set-up description is not described in this chapter, please refer to 
the appropriate documentation.
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6.2.1 STEVAL-PCC010V1 hardware configuration

Figure 7. STEVAL-PCC010V1 - ST802RT1 board configuration

MII configuration settings:

JP11 - High

JP12, JP13, JP14, JP15, JP10, JP9, JP8, JP16, JP17, JP18 - Low

Validate the soldering position of solder bridges SB1,SB2 and SB3 on the STM32F107 
controller board as described in Table 2. MII configuration has to be selected.

For more information regarding the possible HW set-up scenario (e.g. RMII mode use), 
please refer to UM0819 - Getting started with STEVAL-PCC010V1, ST802RT1 TX mode 
Ethernet PHY demonstration kit.
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Figure 8. STEVAL-PCC010V1 - STM32F107 demonstration board set-up

         

Table 2. STEVAL-PCC010V1 MII/RMII interface STM32F107 add-on board selection 
by solder bridges SB1, SB2 and SB3

SB1 SB2 SB3

MII Remove Remove Fit

RMII Fit Fit Remove
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6.2.2 STM3210C-EVAL hardware configuration

Figure 9. STM3210C-EVAL configuration for MII functionality in PTPd application 
example

STM3210C-EVAL board HW set-up:

● JP3, JP10, JP11, JP12, JP13 are in 2<->3 position.

● JP4, JP14 are in 1<->2 position.

● JP2 is open. (NC) 

For more information regarding the possible HW set-up scenario, please refer to UM0600 - 
STM3210C-EVAL evaluation board.

6.3 Configuration of the PTPd SW project
There are two options prepared in terms of software development tools support. Everybody 
can decide to use either the RIDE7 or Keil μVision environment. In this chapter, 
a description of how to configure the project properly is described for RIDE7. In order to run 
the PTPd demonstration software, you need to customize several constants in the project 
file structure. All necessary and few optional steps are described in the following chapters.
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6.3.1 HW platform selection

This example is designed to work with two STM32F107 target platforms. In the project you 
will find support for three Ethernet PHY chips, which can be selected using 
USE_ST802RT1_PHY, USE_LAN8700_PHY or USE_DP83848_PHY directive.

Depending on the hardware configuration, RMII or MII mode should be selected by 
directives RMII_MODE and MII_MODE in stm32f107.c file, located under the project 
directory in src\. It is strongly recommended to use MII interface in order to limit additional 
latency and non-determinism in the system.

In the project file there are also prepared configurations for two development boards, 
namely USE_STM3210C_EVAL and USE_PCC010V1_EVAL.

Figure 10. Change the project compilation defines according to the board used 
(RIDE7)

With respect to the hardware platform selected, the project must be modified to follow the 
HW features. Use the project properties (Ctrl+Alt+Enter) to change the compilation options 
(Figure 10) for the demo board used (GCC compiler / defines):

USE_PCC010V1_EVAL (MII/RMII)

USE_STM3210C_EVAL (MII/RMII)

USE_MCBSTM32C_EVAL (only RMII supported) - configuration and implementation details 
are not described in this application note

Ethernet PHY selection:
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USE_ST802RT1_PHY (STEVAL-PCC010V1)

USE_DP83848_PHY (STM3210C-EVAL)

USE_ DP83848_PHY (MCBSTM32C)

6.3.2 MAC and IP address settings

Both addresses, the MAC and IP are derived from CLIENT_ADDR constant. Every device in 
the network must have an unique MAC address. If it is not true, this implementation of PTP 
will not work. The IP address is static 192.168.0.xx where the last number is the 
CLIENT_ADDR. The CLIENT_ADDR is also the last number of MAC address, Figure 10.

The UUID parameter is evaluated by the best master clock (BMC). UUID is derived from the 
MAC address so it is also modified by the CLIENT_ADDR constant. In other words the 
higher number of CLIENT_ADDR will cause lower priority of the device in BMC algorithm. 
For example using two evaluation kits with default parameters: one board with 
CLIENT_ADDR=1 will be the master clock if the other board has CLIENT_ADDR>1. If the 
other board has also CLIENT_ADDR=1 synchronization will not work. It is necessary to 
compile the PTPd project specifically for each board in the system.

Figure 11. Both addresses, MAC and IP, are derived from constant CLIENT_ADDR 
(/src/netconf.c)

6.3.3 PTPd settings

In order to achieve the correct functionality of the software example; PTP version, sync 
interval, announce interval, domain and delay mechanism should be equal for all nodes that 
are designed to communicate together.

Using another synchronization interval is possible in order to achieve a better 
synchronization result. The default synchronization interval (DEFAULT_SYNC_INTERVAL, 
Figure 12) in the project is 1 s (one second), file ptpd.c. The sync interval can be any value 
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of power of 2. For example the sync interval 0.125 s is 2-3, the correct setting would be 
rtOpts.syncInterval = -3 in the ptpd.c file, Figure 12.

Figure 12. PTPd settings

For the STM3210C-EVAL board it is also possible to switch on/off the on board LCD that 
displays the PTPd information. In ptpd-2.0.0/src/ptpd.c there is an option for it:

rtOpts.stats = PTP_TEXT_STATS;

or 

rtOpts.stats = PTP_NO_STATS;

6.3.4 Compiling the project and flashing the HW platform

There two IDE project options prepared in the PTPd project hierarchy located in directory 
/Project/STM32F107_LwIP_PTPv2; here you can find RIDE7 and RVMDK (Keil μVision) 
project files at your convenience. Open the appropriate project file, configure the project as 
described in the previous chapters, compile it for each board and flash it.

6.4 Application boards connections
This section shows several different application scenarios, connection of the hardware 
platforms, with short description of the application hints. In order to use the demonstration 
firmware, at least two hardware platforms are required. The first device is a board with the 
PTPd firmware (STM3210C-EVAL, STEVAL-PCC010V1) and the second platform can be 
another board or other PTP capable device, e.g. Linux PC with PTPd daemon. In case of 
using two boards with the PTPd firmware, each board should have its own unique MAC 
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address and all other PTP parameters should be kept the same, see Section 6.2 and 
Section 6.3.

6.4.1 Back-to-back connection of two boards

When connecting the boards directly, back-to-back, one of them will become a master and 
the other one a slave (if all parameters but the MAC address are the same, the master will 
be device with lower MAC address). After few PTP synchronization cycles the boards are 
synchronized. Both boards (in case of using STM3210C-EVAL platforms) should show its 
state (one should show master and the other should show slave). Slave board should also 
show measured transfer time of message from master to slave (mean path delay), current 
expected offset from master and measured crystal oscillator frequency relative difference 
from the master in ppm (pulse per million).

For each of the two boards you have to configure the SW project as described in chapters 
7.2 and 7.3. The RS232 cable connection is optional and available only for STM3210C-
EVAL board, Figure 13. In order to use it with a PC COM terminal, it is required to configure 
the ptpd-2.0.0/src/dep/constants_dep.h file, to uncomment PTPD_DBGV directive before 
the compilation. It is also possible to combine different HW platforms i.e. one STM3210C-
EVAL and one STEVAL-PCC010V1 board.

Figure 13. Back-to-back connection of the two boards

6.4.2 Boundary clock switch option

In comparison with the back-to-back connection option, this configuration allows to connect 
two boards and more. You can also involve e.g. a packet analysis tool running in your PC for 
packet sniffing (e.g. Wireshark). This configuration requires an Ethernet switch with 
boundary clock functionality. Using standard Ethernet switch brings uncertainty (jitter) in the 
system and causes degradation of the best achievable synchronization results.
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Figure 14. Two boards connection through boundary clock switch, packet sniffing in 
PC

6.4.3 Linux LiveUSB

Many embedded microcontrollers (MCUs) and Ethernet physical layer chips (PHYs) 
available today in the market are equipped with a PTP HW time stamping unit allowing 
achieve time synchronization in sub-microsecond range. Pure SW solutions (with no 
dedicated PTP HW) allow achieve synchronization “only” typically in microseconds. An 
alternative to the previous two hardware options is therefore to use the Linux LiveUSB when 
not having at least two boards for demonstration. The PTPd software, according to the 
IEEE1588-2008 standard, can be include as object code in the scope of supply and thus 
enables a quick and easy introduction to the IEEE 1588 technology. The Linux LiveUSB 
distributions are widely used. An extensive list of the live distributions is presented at 
www.livecdlist.com website. The PTPd source codes can be compiled for use with the 
desired Linux LiveUSB distribution.
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Figure 15. STM3210C-EVAL connected to a PC running Linux LiveUSB distribution with 
software PTPd daemon

The PTPd use in the Linux LiveUSB distribution is very easy. You can run the PTPd daemon 
from the console window, Figure 16.

Figure 16. PTPd running in the Linux console window
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You can kill the ptpd process if needed by using system/performance monitor. You can see 
the PTP message traffic in the Wireshark (www.wireshark.com) packet analyzer if you add it 
in your LiveUSB customization, Figure 17.

Figure 17. Wireshark - PTP packet analysis

PTPd daemon in Linux LiveUSB

This chapter gives a short overview and tips about how to use and configure the PTPd 
application in the Linux LiveUSB environment. It is considered that you run PTPd from 
a Linux console. PTPv2d runs on UDP/IP and by default in P2P (Peer-to-Peer) mode. PTPd 
is using communication ports 319, 320 therefore it is required to run in it in super user mode.

Customization of the ptpd application run:

-b eth2 bind PTP to network interface name (e.g. eth2) 

-c runs ptpd in command line (non-daemon) mode

-f FILE sends its output to the desired file

-h runs ptpd in E2E delay mechanism

-g runs the ptpd in slave mode only (PC can never become a master)

-t do not adjust the system clock (valuable when you want to observe the slave to 
master time drift)

-l specify inbound and outbound latency startup value in nanoseconds
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-n PTP specify announce interval

-y specify sync interval as power of 2 (-1 is equal to 0.5 seconds, etc.)

-d displays statistics in the console

-D statistics in .csv data format

Timestamp (year and time), state (master/slave), clock ID, one way delay, offset from 
master, slave to master delay, master to slave delay, drift

PTP clock settings (clock description according to IEEE1588 spec.)

-v specify system clock variance

-r specify system clock accuracy

-s specify system clock class

-p specify priority 1 attribute

-q specify priority 2 attribute

Servo settings:

-a specify clock servo P and I attenuations

-w specify one way delay filter stiffness

The basic implementations of PTP operate only as ordinary clock application running on top 
of the network protocol stack. Timestamps are generated at the Kernel level and transferred 
to SW. Protocol stack and HW reaction delays variations bring precision (jitter) errors in 
these timestamps. These errors can be in the microseconds to hundred microseconds 
range depending on the hardware and the operating system architecture. The negative 
effect of this delay fluctuation can be eliminated by suitable design of the clock servo 
mechanism.

Examples:

ptpd2 -c -g -D -b eth2

-g run as a slave only (not master capable)

-D display statistic in .csv format

ptpd2 -c -d -t -b eth2 -p 100 

-p 100 increases priority of the PC to become master

More information can be found at http://ptpd.sourceforge.net/ project website.

6.5 How to use the precise time information in the customer 
application

6.5.1 PTPd operation overview

When a frame is received, the Ethernet interface layer extracts the data and the timestamps 
and sends them to the PTP stack. This is ensured by the ethernetif.c file. The lwIP stack 
handles the packets at the interrupt level. If the packet is targeted to the PTP protocol stack, 
it is added to the appropriate (event or general) packet queue. If the packet is for another 
application, it is handled by that application and not processed by the PTP stack. Outside of 
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the interrupt, the PTP packet queues are polled for new packets. If there are new packets in 
the queue, they are processed by the PTP stack and deleted from the queue. The PTP stack 
is executed also if some of its timers have expired.

Figure 18. PTPd operation overview

The whole PTP stack is executed in function ptpd_Periodic_Handle. If this function is not 
executed as often as needed, some incoming packets could be lost because of the full 
queue. If only few packets are lost, the protocol stack simply doesn't use them. The 
synchronization will be degraded but not lost.

6.5.2 Target time as external trigger example

The timer TIM2 can be configured to be triggered by the target time event. Demonstration 
firmware is set-up to generate such event every second. This functionality is started by 
“TargetTime_Init function”. The functional behavior can be changed in function 
“ETH_IRQHandler” where the new trigger event is calculated and prepared. The output 
event is propagated to output of TIM2 depending on selected board. Using STM3210C-
EVAL the output pin is “TIM2_CH1” (PA15).

The precision of the generated output signal depends only on the granularity of timestamps. 
All signals are routed in hardware with no intervention of the CPU therefore deterministic. To 
validate the synchronization accuracy there is an option to measure the “Pulse Per Second” 
(PPS) output (PB5) of each board. This signal is generated directly from the PPT hardware. 
The difference of the rising edges of these pulses should be near the value of measured 
offset from the master.

Target time can be configured to generate event at any time in the future. If the time is set to 
the past event is generated immediately after setting bit TSITE of register ETH_PTPTSCR.
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6.6 PTPd project example structure

Figure 19. PTPd project example structure

6.7 Precision of the PTPd system
Demonstration firmware has been tested using the version 2 of the IEEE1588 PTP protocol 
with the “Point-to-Point” delay mechanism (P2P). The synchronization interval has been set 
to 1 second and in the other case to 0.125 ms. Non-equal send and receive path delays 
have been observed so configuration parameter of the PTP stack “OutboundLatency” has 
been set to 160 ns, because the mean offset has been 80 ns.

The first test has been done with the STM3210C-EVAL board connected with precise 
PTPv2 master clock device, Figure 20. The synchronization interval has been set to 
1 second. In Figure 21, there is a histogram showing the measured offset from the master. 
The offset measured for this hardware set-up shows minimum and maximum offset from -
600 ns to 200 ns. These variations depend on the default crystal quality used on the 
STM3210C-EVAL board. The second part of this test has been done with modified 
STM3210C-EVAL board using external low cost crystal oscillator (built from the original 
on-board crystal and 74HC04 inverters) connected to the X1 pin of the MCU. The on-board 
crystal has been removed. In Figure 22 there is a histogram of the measured offset from the 
master. The offset measured for this hardware set-up shows the minimum and maximum 
offset from -70 ns to 70 ns. Because the oscillator drifts only by the temperature changes 
and the frequency does not change rapidly, the synchronization with master is better 
compared to the use of the default crystal and the built in oscillator.
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Table 3. PTPd STM32F107 test set-up

Figure 20. PTPd STM32F107 test set-up

Parameter Value

Protocol version IEEE 1588-2008

Sync interval 1 s, 0.125 s

Connection Direct (back-to-back) connection without switch

Master clock Meinberg LANTIME M600

Delay mechanism P2P (Point-to-Point)

OutboundLatency correction 160 ns
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Figure 21. Precision reached using the default crystal and built in oscillator, the 
synchronization interval has been set to 1 second

Figure 22. Precision reached using the external oscillator on the STM3210C-EVAL, 
the synchronization interval has been set to 1 second

The second test has been done again with the STM3210C-EVAL board connected with the 
precise PTPv2 master clock device, Figure 20. The synchronization interval has been set to 
0.125 second. In Figure 23, there is a histogram showing the measured offset from the 
master. The offset measured for this hardware set-up shows minimum and maximum offset 
from -130 ns to 10 ns, average -17 ns. These variations depend again on the default crystal 
quality used on the STM3210C-EVAL board. The second part of this test has been done 
with modified STM3210C-EVAL board using external crystal oscillator connected to the X1 
pin of the MCU. The on-board crystal has been removed. In Figure 24 there is a histogram 
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of the measured offset from the master. The offset measured for this hardware set-up shows 
the minimum and maximum offset from -40 ns to 20 ns, average -8 ns. Because the 
oscillator drifts only by the temperature changes and the frequency does not change rapidly, 
the synchronization with master is better compared to the use of the default crystal and the 
built in oscillator.

Figure 23. Precision reached using the default crystal and built in oscillator, the 
synchronization interval has been set to 0.125 second

Figure 24. Precision reached using the external oscillator on the STM3210C-EVAL, 
the synchronization interval has been set to 0.125 second
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7 Conclusion

This application note describes the STM32F107 SW project implementing the PTPd 
(precision time protocol) stack in connection with the lwIP TCP/IP stack implementation as 
described in AN3102. The application note describes the capability of the STM32F107 
microcontroller to generate the time stamps of the incoming and outgoing packets and the 
capability to generate the precise trigger events. Step by step procedure is described 
making it easier to understand the necessary HW configuration set-up, changes which had 
to be applied to the original lwIP stack and to the original PTPd stack. The synchronization 
result is highly dependent on the application hardware. Selection of a deterministic Ethernet 
PHY device, the crystal or oscillator unit, are the key factors for the final synchronization 
accuracy of the slave device to the precise master. STM32 F-2 PTPd implementation is 
planned as a separate application note.
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