

UM0603 User manual

STEVAL-MKI005V1 demonstration kit for the LIS3LV02DL

Introduction

The STEVAL-MKI005V1 is a demonstration kit designed to provide the user with a complete, ready-to-use platform to demonstrate the LIS3LV02DL low power 3-axis linear accelerometer with digital output. The device includes a sensing element and an IC interface capable of translating information from the sensing element into a measured signal that can be used for external applications.

In addition to the MEMS sensor, the demonstration board features an ST7-USB microcontroller that functions as a bridge between the sensor and the PC, on which it is possible to use the graphical user interface (GUI) downloadable from the web site, or dedicated software routines for customized applications.

This user manual describes the hardware included with the demonstration kit and provides the information required to install and run the demonstration kit user interface.

For details regarding the features of the LIS3LV02DL sensor, please refer to the datasheet for this device and application note AN2381.

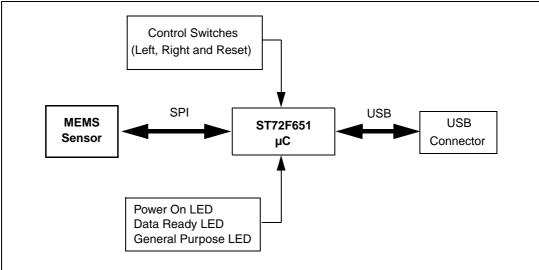
Contents

1	Dem	onstration kit description5
2	STE	/AL-MKI005V1 GUI installation7
	2.1	PC system requirements
	2.2	Software installation
	2.3	Hardware installation
3	Grap	hical user interface 11
	3.1	Connecting to the Virtual COM port 12
	3.2	"Easy Start" button
	3.3	"Options" tab
	3.4	"Register Setup" tab 14
	3.5	"Bars" tab
	3.6	"Plot" tab
	3.7	"Data" tab
	3.8	"Inclinometer" tab
	3.9	"Map Browsing" tab
	3.10	"FFT" tab
	3.11	"Interrupt" tab
	3.12	"Direction detection" tab 24
4	"Data	a acquisition" quick start
5	EK L	ite
6	MEM	S pointer
	6.1	GUI description
		6.1.1 Left side: main controls
		6.1.2 Left side: pointer application controls
7	Supp	oorted commands 30
	7.1	Getting started 30
	7.2	Supported commands 30
2/37		

2/37

10	Revis	sion hist	ory	36
9	Bill o	f materia	als	35
8	Sche	matic di	agram	34
	7.3	Quick st	art	33
		7.2.9	Firmware version	. 32
		7.2.8	Device name	. 32
		7.2.7	Zon and Zoff	. 32
		7.2.6	Single bit write	. 32
		7.2.5	Register write	. 32
		7.2.4	Register read	. 31
		7.2.3	Stop command	. 31
		7.2.2	Debug command	. 31
		7.2.1	Start command	. 31

List of figures


Figure 1.	Demonstration board block diagram	5
Figure 2.	Top silk-screen of the STEVAL-MKI005V1 kit	6
Figure 3.	Board photograph	6
Figure 4.	Software installation	7
Figure 5.	Notify icon	8
Figure 6.	Driver installation using the device manager	8
Figure 7.	USB driver installation using the hardware update wizard	9
Figure 8.	Virtual COM driver port assignment 1	0
Figure 9.	Graphical User Interface: main window 1	1
Figure 10.	Options tab 1	3
Figure 11.	Register setup tab1	4
Figure 12.	Bars tab	5
Figure 13.	Bars tab	6
Figure 14.	Plot tab	7
Figure 15.	Plot tab - Zoom	8
Figure 16.	Data tab	9
Figure 17.	Inclinometer tab	20
Figure 18.	Axis inclination	
Figure 19.	Map Browsing tab	
Figure 20.	FFT tab	
Figure 21.	Interrupt tab	<u>2</u> 4
Figure 22.	Direction detection tab	
Figure 23.	STEVAL-MKI005V1 lite GUI 2	
Figure 24.	MEMS pointer demo	28
Figure 25.	Schematic diagram of the STEVAL-MKI005V1 board	34

1 Demonstration kit description

The STEVAL-MKI005V1 is a complete demonstration kit which allows users to evaluate the performance of the LIS3LV02DL low power 3-axis linear accelerometer with digital output.

The block diagram of the demonstration kit is shown in Figure 1.

The ST7-USB microcontroller included on the board allows communication between the sensor device and the PC. The user can interact with the hardware either through the GUI provided with the kit, or through dedicated software routines to run customized applications.

Switches and LED indicators are used to control and monitor the functionality of the board.

The top silk-screen view and photo of the full board, respectively, are shown in *Figure 2* and *Figure 3*.

57

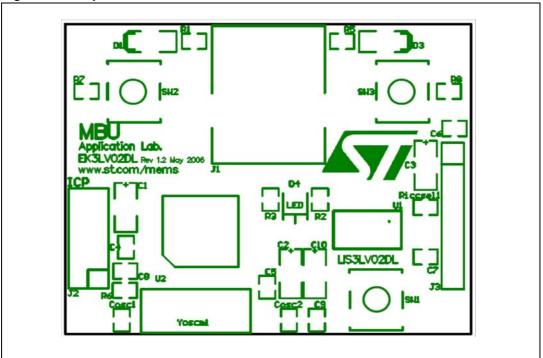
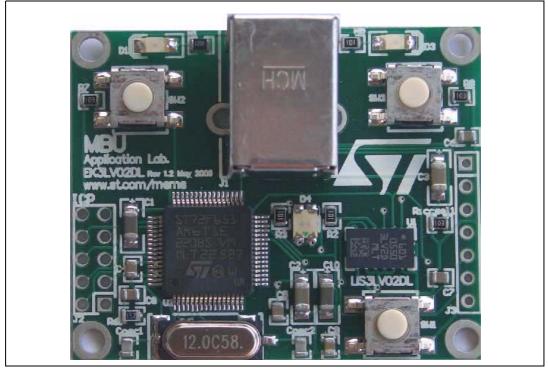



Figure 2. Top silk-screen of the STEVAL-MKI005V1 kit

Figure 3. Board photograph

Operation of the STEVAL-MKI005V1 demonstration kit requires the installation of a dedicated driver which is included on the installation pack, together with a GUI interface which allows simple interaction with the sensor. The steps required for driver and software installation are described in the following section.

57

2 STEVAL-MKI005V1 GUI installation

The installation of the graphical user interface (GUI) for the STEVAL-MKI005V1 requires two steps:

- 1. installation on the PC the software downloaded to EK web page.
- 2. installation of the Virtual COM driver needed to use the demonstration kit board.

2.1 PC system requirements

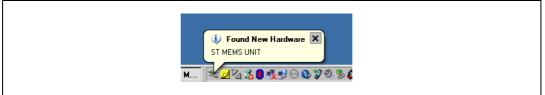
Both the hardware and software that compose the STEVAL-MKI005V1 demonstration kit have been designed to operate with Microsoft[®] Windows XP and Microsoft[®] Windows Vista.

2.2 Software installation

To install the software downloaded to EK web page:

- 1. double-click on "Setup.exe"
- 2. follow the on screen instructions (*Figure 4*)

Figure 4. Software installation


Which components should be installed?	
Select the components you want to install; clear the component install. Click Next when you are ready to continue.	s you do not want to
Full installation	*
STEVAL-MKI005V1 ver. 1.0	15,8 MB 🔺
STEVAL-MKI005V1 Lite	
MEMS Pointer ver.1.0	
STEVAL-MKI005V1 Lite source code	2,9 MB ≡
ST7 Firmware	0,1 MB
✓ Virtual COM Driver ✓ STEVAL-MKI005V1 Evaluation Kit User Guide	0,1 MB 2,6 MB
✓ LIS3LV02DL Datasheet	2,6 MB
STEVAL-MKI005V1 Rev1.0 - Schematics	2.6 MB
Current selection requires at least 21,8 MB of disk space.	

2.3 Hardware installation

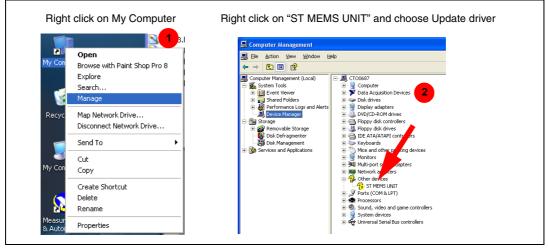

To install the virtual COM driver, insert the demonstration kit board into a free USB port. The "Notify" icon should appear as in *Figure 5*.

Figure 5. Notify icon

If the "Hardware Update Wizard" window appears (*Figure 7*), follow the instructions on the screen. Otherwise, the installation can be performed by following the instructions indicated in *Figure 6* and *Figure 7*.

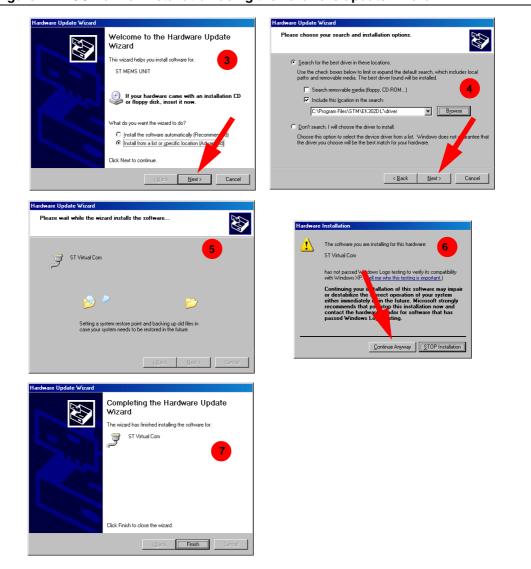


Figure 7. USB driver installation using the hardware update wizard

Once the installation is complete, a COM port number is assigned to the ST Virtual COM driver (*Figure 8*). This number should be retained as it is required to run the STEVAL-MKI005V1 demonstration software GUI. For additional details, see section *3.1*.

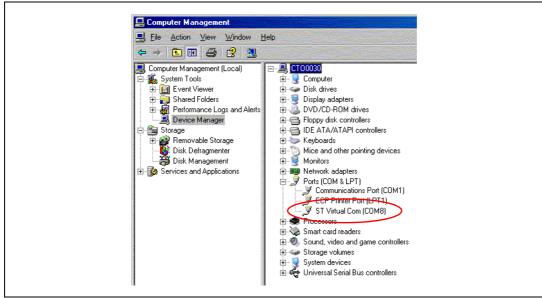


Figure 8. Virtual COM driver port assignment

3 Graphical user interface

To execute the STEVAL-MKI005V1 demonstration software GUI:

- 1. Click on Start > All Programs
- 2. Select ST EVAL > STEVAL-MKI005V1 > Executables
- 3. Launch the program "STEVAL-MKI005V1 Ver. 1.0"

The GUI main window appears as shown in Figure 9.

Figure 9.	Graphical User Interface: main window
-----------	---------------------------------------

ref 3 Home Options I	Registers Bars	Plot Data Inclinome	ter Browsing FFT FreeFall/WakeUp Direction Detection
57 STMicroelectronics - STEVAL-MK1005V1 Main Control		rs Bars Plot Data Inclinometr	er Browsing FFT FreeFat/WakeUg Direction Detection
Not Connected Easy START			
Select Port:		ST	EVAL-MKI005V1
Stop			Demonstration Board for
Disconnect Exit		hha	LIS3LV02DL
Saving Insert File Name : default.dat Browse			
Registers Start saving			
C LSB Stop saving	× ×		
Angle	V	X X X	
Device : Firmwar	e: Softv	vare : Version 1.0.0 Legenda :	🔽 🗸 XAxis 🔽 V Axis 🔽 V Axis MK V Markers
- Main Control			Saving
Not Connected			Insert File Name :
Easy START	1		default.dat Browse
Select Port:		ref 2	Registers Start saving
Find	ref 1		LSB Stop saving
Start			T Angle
Stop			Interrupt
Disconnect			
Exit			ref 5
Dev	ice :	Firmware :	Software : Version 1.0.0
			V
ref 4 Leg	jenda:	🔽 X Axis 💦 🚺	🗸 YAxis 🛛 🔽 ZAxis MK 🔽 Markers

The functions of the four main sections of the window are described below:

- 1. "Main Control" (*Figure 9*, ref 1) Connects/disconnects the board and starts acquisition via the Start/Stop buttons
- 2. "Saving" box (*Figure 9*, ref 2) Allows the user to save the data to a specified text file, choosing the data type to write. Data type available are:
 - a) RAW: for each axes the software writes the data read directly from the sensor output registers (OUTX_H, OUTX_L, OUTY_H, OUTY_L and OUTZ_H, OUTZ_L)
 - b) LSB: the data read directly from the sensor are converted from 2's complement to Sign and Magnitude
 - c) Acceleration: LSB data are multiplied by the sensitivity to obtain the acceleration expressed in mg
 - d) Angle: LSB data converted to tilting angle of the board expressed in degrees
 - e) Interrupt: status of the interrupt
- 3. "Tab Selector" (*Figure 9*, ref 3) Used to toggle between the different functions of the demonstration kit
- 4. "Legenda" (*Figure 9*, ref 4) In this box is possible to Enable/Disable the axes view
- 5. "Details" (*Figure 9*, ref 5) Shows the details of demonstration kit, the name of sensor, the version of firmware loaded on microcontroller and the version of PC software

3.1 Connecting to the Virtual COM port

Before using the functions of the demonstration kit software it is necessary to open the connection with the STEVAL-MKI005V1 board. This is achieved through the following procedure:

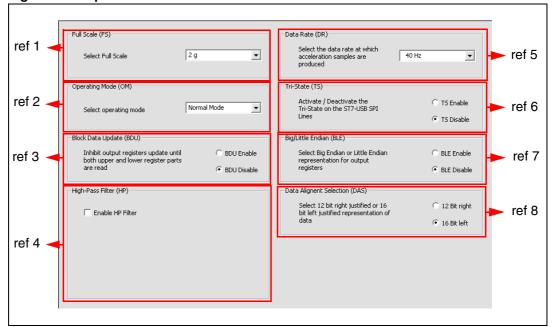
- 1. connect the STEVAL-MKI005V1 to the desired USB port
- 2. in the "Select COM" drop-down menu (*Figure 9* ref 1), choose the Virtual COM number to which the board has been mapped. For additional information on how to obtain this number, see section 2.3
- 3. open the connection by clicking on "Connect" (*Figure 9* ref 1)

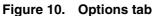
At this point the user can acquire, plot and save the acceleration data measured by the sensor and access the content of the registers embedded in the device.

Clicking the "Find" button (*Figure 9* ref 1), the GUI attempts to automatically find the COM Number assigned to the demonstration kit and shows it in the list box as selected item.

The following sections provide details regarding the functions of the tabs in Figure 9, ref 1.

3.2 "Easy Start" button


When the "Easy Start" button (*Figure 9*, ref 1) is clicked, the GUI attempts to automatically find the COM number assigned to the demonstration kit and starts the acquisition.



3.3 "Options" tab

The options tab allows the user to control the following parameters:

- 1. Full Scale (FS) Sets the maximum acceleration value measurable by the device. It is possible to select either 2g or 6g (*Figure 10*, ref 1)
- 2. Operating Mode (OM) This control allows to customer to select the operating mode: Normal Mode or Power Down Mode (*Figure 10*, ref 2)
- 3. Block Data Update (BDU) this function is used to inhibit output registers update until both upper and lower register parts are read (*Figure 10*, ref 3)
- 4. High-Pass Filter (HP) This control activates the High Pass Filter on the device and selects the cut-off frequency (*Figure 10*, ref 5)
- 5. Data Rate (DR) In this box the rate at which each acceleration sample is produced can be selected. The possible values are 40, 160, 640 or 2560 Hz (*Figure 10*, ref 5)
- 6. Tri-State (TS) Permits switching the SPI lines of the ST7-USB microcontroller mounted on the demonstration kit between 3-state (i.e. high-impedance) and normal mode (*Figure 10*, ref 6). This function makes it possible to isolate the sensor mounted on the board from the microprocessor, in case any external control (from a different microcontroller mounted on a separate user board) is needed. This function is inhibited during the acquisition
- 7. Big/Little Endian (BLE) is used to select Big Endian or Little Endian representation for output registers (*Figure 10*, ref 7)
- 8. Data Alignment Selection (DAS) permits to decide between 12 bit right justified and 16 bit left justified representation of data coming from the device (*Figure 10*, ref 8)

3.4 "Register Setup" tab

The register setup tab shown in *Figure 11* allows read/write access to the content of the registers embedded in the LIS3LV02DL MEMS sensor mounted on the demonstration kit. The tab is divided into five sections:

- "General" (*Figure 11*, ref 1) Provides access to the registers which control the main settings of the device. This section contains the control registers (CTRL_REG1, CTRL_REG2 and CTRL_REG3) and the registers that control the generation of inertial interrupt signals. It is possible to read and write the contents of each register. To restore the default value for a given register, press the "Default" button
- 2. "All Registers" (*Figure 11*, ref 2) Permits the user to read, write and recall the default content for all the registers shown in ref 1 with a single click on the read/write/default button
- 3. "Registers Direct Access" (*Figure 11*, ref 3) Provides access to any register in the device. To read a generic register, insert the address in the "Register Address" text box, then click on the "Read" button. The retrieved content of the register is displayed in the "Register Value" field. As with writing to a register, the user must specify the address and the data to be written inside the fields marked "Register Address" and "Register Value", respectively, and then press the "Write" button
- 4. "Load/Save Configuration" (*Figure 11*, ref 5) Lets the user save/load a specific configuration to/from a file

By pressing the "Default" button, the default values for the registers are recalled in the registers field. To write the values to the registers of the device, the user has to press the

5. "Parameters" (*Figure 11*, ref 4) - Allows the user to save the register configuration to a text file, which includes a detailed description of the resulting configuration for each register

Note:

_				
	General	FreeFall / WakeUp		
	CTRL_REG1 C7 Read Write Default	FF_WU_CFG	00 Read Write Default	
	CTRL_REG2 05 Read Write Default	FF_WU_SRC	2A Read Write Default	
	CTRL_REG3 00 Read Write Default	FF_WU_THS_L	00 Read Write Default	
	HP_FILTER_RESET 00 Read Write Default	FF_WU_THS_H	00 Read Write Default	
	STATUS_REG FF Read Write Default	FF_WU_DURATION	00 Read Write Default	ref 1
	All Registers	1		
ref 2 🔫		Direction Detection		
	Read Write Default	DD_CFG	00 Read Write Default	
	Registers Direct Acces	DD_SRC	2A Read Write Default	
	Register Address (hex)	DD_THSI_L	00 Read Write Default	
ref 3 🔫	Register Value (hex)	DD_THSI_H	00 Read Write Default	
	Read Write	DD_THSE_L	00 Read Write Default	
	- Load/Save Configuration	DD_THSE_H	00 Read Write Default	
ref 4 🔫	default.eks Browse Load Save			
ref 5 🔫	Parameters default.trs Browse Save in File			
	derault.trs Browse Save in File			
	NOTE : Default Buttons don't write default values to the registers of the devi	ce		

Figure 11. Register setup tab

"Write" button after the "Default" one.

3.5 "Bars" tab

The bars tab (*Figure 12*) displays the acceleration data measured by the LIS3LV02DL sensor in bar chart format. The accelerations along the X, Y and Z axes correspond respectively to the RED, GREEN and BLUE bars.

The height of each bar is determined by the amplitude of the acceleration signal measured along the related axis. The full scale of the graph depends on the FS bit in CTRL_REG2 bits of CTRL_REG4, which may be changed through both the Options (*Figure 10*, ref 1) and the Register Setup tabs (*Figure 11*, ref 1).

Click on the desired bar to zoom: the selected bar is shown at the center of the screen together with the acceleration as a numerical value. To return to the default view, click on the center of the bar (*Figure 13*).

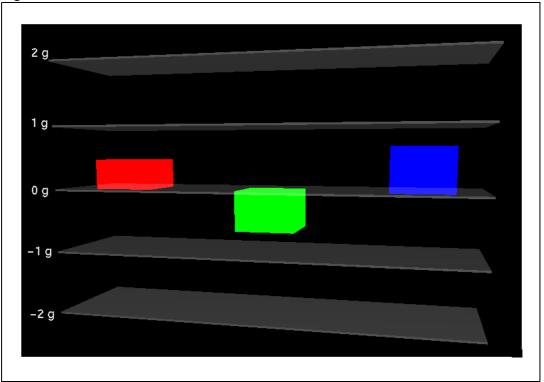
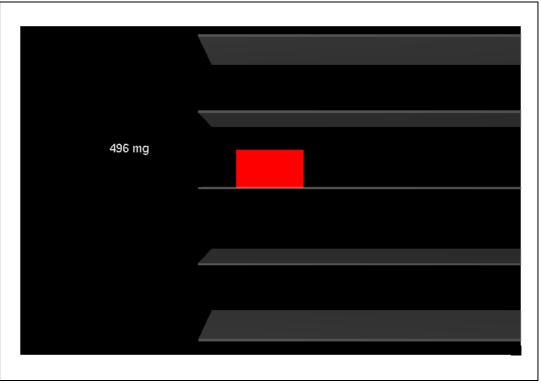
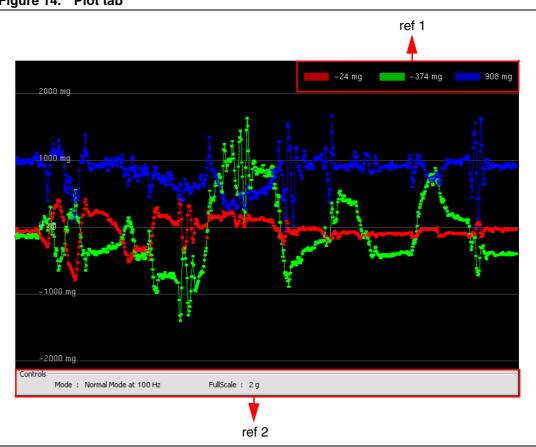



Figure 12. Bars tab

Figure 13. Bars tab


3.6 "Plot" tab

The Plot tab (*Figure 14*) shows the sequence of acceleration samples that have been measured by the LIS3LV02DL MEMS sensor in the demonstration kit. This tab shows:

- 1. "Acceleration Value" (*Figure 14*, ref 1) Shows the numeric values of the acceleration samples measured by the sensor
- 2. "Information" (*Figure 14*, ref 2) Legend of the current status. Reported items are the Operating Mode, Data Rate and Full scale

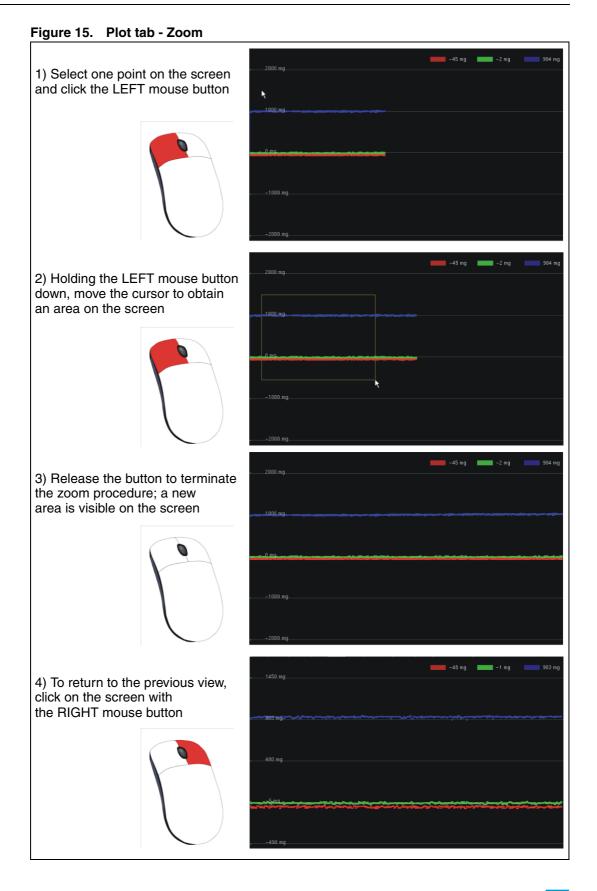
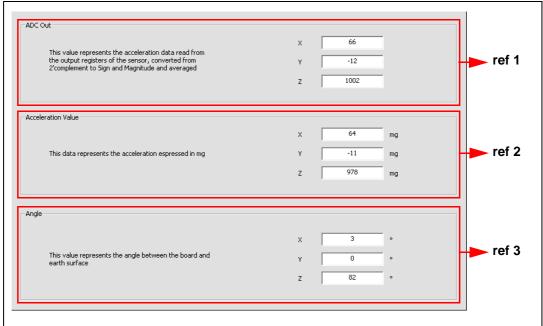

To zoom in on the waveform, select the desired zone with the left button of the mouse (*Figure 15*). Click again with the right button to return to the default view.

Figure 14. Plot tab



3.7 **"Data" tab**

The Data tab (*Figure 16*) shows the acceleration values measured by the LIS3LV02DL sensor. The tab is divided into three boxes:

- 1. "ADC Out" (*Figure 16*, ref 1) Displays the acceleration data provided by the sensor after its conversion from 2's complement to magnitude and sign
- 2. "Acceleration Value" (*Figure 16*, ref 2) Represents the acceleration data measured by the sensor, expressed in mg
- 3. "Angle" (*Figure 16*, ref 3) Returns the tilt angle, expressed in degrees, that is inferred from the "ADC Out" data
- Note: To increase data readability, the values shown in the boxes described above are based on an average of 50 samples.

Figure 16. Data tab

57

3.8 "Inclinometer" tab

The Inclinometer tab (*Figure 17*) represents the acceleration data measured by the sensor in the form of an artificial horizon.

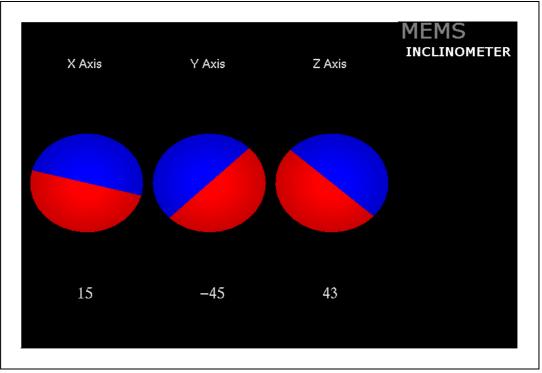
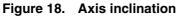
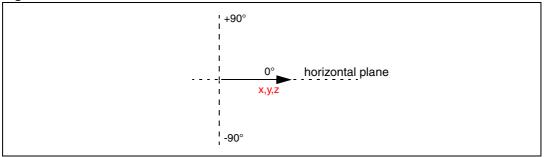
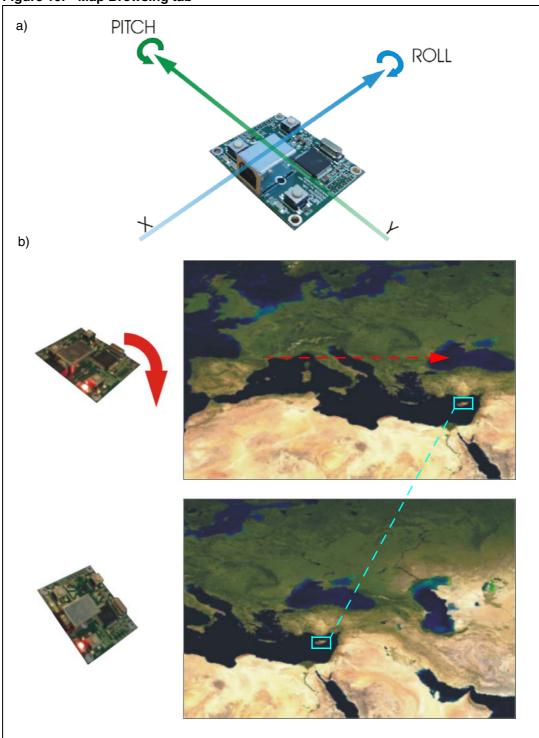




Figure 17. Inclinometer tab



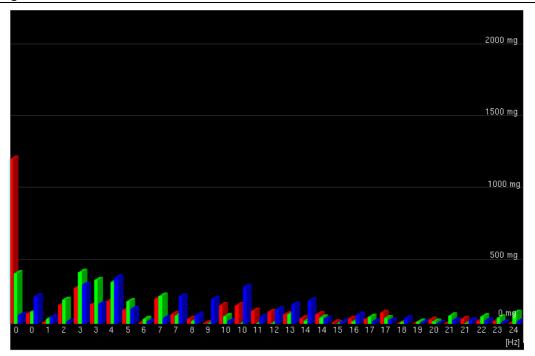
UM0603

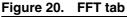
3.9 "Map Browsing" tab

The Map browsing tab demonstrates the capability of using the acceleration data obtained from the sensor to scroll a map (or other type of document) on the screen.

To move the map on the screen, tilt the evaluation kit (*Figure 19*, a):

- 1. along the X axis (PITCH) to move the map in the top/bottom direction on the screen
- 2. along the Y axis (ROLL) to move the map in right/left direction on the screen


As the example in *Figure 19* (b) shows, when the board is tilted along the X axes (positive ROLL), the map on the screen is moved to the right.

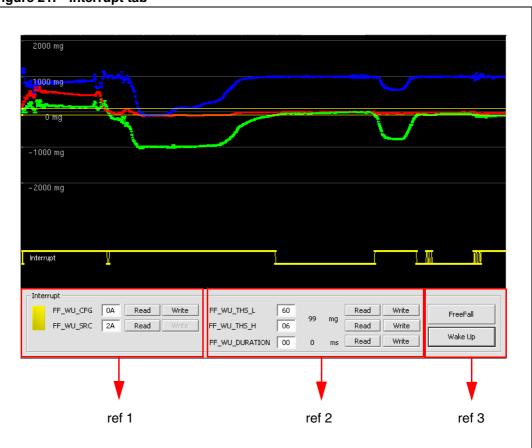


UM0603

3.10 "FFT" tab

The FFT tab (*Figure 20*) shows the FFT of the acceleration signals acquired by the sensor. The spectral data are updated every sample and are calculated on a 64-sample moving window.

3.11 "Interrupt" tab


The Interrupt tab (*Figure 21*) provides a tool for evaluating the interrupt generation features of the LIS3LV02DL MEMS sensor. In this section of the GUI it is possible to configure the characteristics of the inertial events that must be recognized by the device and to visualize, in real-time, the level of the two interrupt lines together with the acceleration signals that are measured by the device.

The GUI provides direct access to the registers (FF_WU_CFG, FF_WU_SRC, FF_WU_THS and FF_WU_DURATION) that allow the configuration (*Figure 21*, ref 1) of the interrupt sources of the device. Conversion boxes are located on the right most side of the FF_WU_THS and FF_WU_DURATION registers (*Figure 21*, ref 2). These boxes are intended to show, respectively, the threshold value expressed in mg and the duration value converted in msec for better readability and understanding.

Finally, two buttons are provided for each interrupt line to set the suggested default values for free-fall and wake-up detection. Those buttons are marked "Free-fall" and "Wake Up", respectively (*Figure 21*, ref 3).

57

Figure 21. Interrupt tab

3.12 "Direction detection" tab

The Direction detection tab (*Figure 22*) allows the implementation of motion-controlled functions such as gaming and terminal control while requiring reduced computational power of the application controller.

The device may be programmed to generate an interrupt signal when a tilt is detected and to return the information regarding the direction in which the sensor has been tilted. With the same feature, the LIS3LV02DL sensor is capable of returning the information about the spatial orientation of the board without requiring the reading and the further post-processing of the acceleration data.

The right side of the tab contains the registers used to configure the direction detection function (*Figure 22*, ref 1), the threshold values expressed in mg (*Figure 22*, ref 2) and the DD_SRC expressed as a bit vectors (*Figure 22*, ref 3).

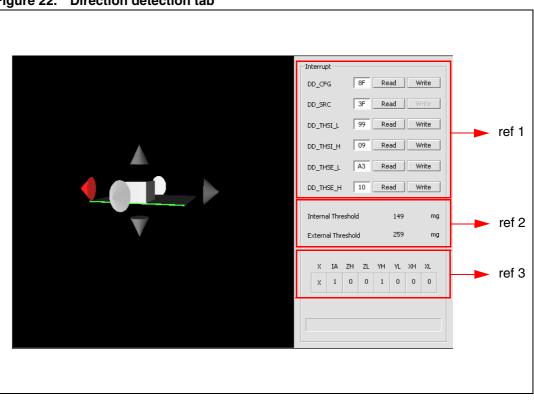


Figure 22. Direction detection tab

4 "Data acquisition" quick start

This section describes the basic steps that must be performed to acquire the acceleration data from the STEVAL-MKI005V1:

- 1. connect the STEVAL-MKI005V1 to the USB port
- 2. start the STEVAL-MKI005V1 GUI
- 3. select the Virtual COM port and click on the "Connect" button (*Figure 9*, ref 1)
- 4. select the destination file to which the acceleration data must be saved by clicking "Save" (*Figure 9*, ref 2) in Main Control section (optional)
- 5. use the Tab Menu to display the desired function
- 6. click on the "START" (or "STOP") button to activate (or stop) the sensor data collection, saving to file, and screen plotting functions
- 7. to close the application, click on "Disconnect" and then click on "Exit"

5 EK Lite

The installation pack also includes a "lite" version of the GUI together with its source code. The source code can be found in the directory: (\$Home)\STM\STEVAL-MKI005V1\STEVAL-MKI005V1_lite, where (\$Home) is the directory in which the software that comes with the demonstration kit is installed (C:\Program Files by default).

The purpose of the lite version is to provide the user a base for the development of a customized application.

The lite version of the demonstration kit is started by launching the STEVAL-MKI005V1 lite executable file located in the STEVAL-MKI005V1 > Executables folder.

An example of the GUI of the EK lite application is shown in Figure 23.

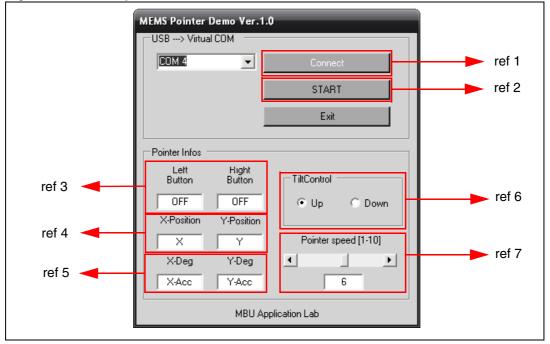
Figure 23. STEVAL-MKI005V1 lite GUI

57 STMicroelectronics - STEVAL-M	1005V1 Lite
Main Control	Home Options Register Setup Data
Select COM: Connect Start:	MEMS Evaluation Kit
Stop	
Disconnect	STEVAL-MKI005V1
Save Insert file name	Lite
default.dat Browse	MPD Application Lab
Start saving Stop saving	www.st.com/mems

To use the software, follow these instructions:

- 1. Connect the STEVAL-MKI005V1 to the USB port
- 2. Launch the GUI for STEVAL-MKI005V1 lite
- 3. Select the Virtual COM port and click on the "Connect" button
- 4. Select the destination file to which the acceleration data must be saved (optional)
- 5. Click on the "START" (or "STOP") button to activate (or stop) the sensor data collection, saving to file, and screen plotting functions
- 6. To close the application, click on "Disconnect" and then click on "Exit"

The GUI also gives read/write access to the registers embedded in the LIS3LV02DL device and allows a single read of the acceleration data measured by sensor.


6 MEMS pointer

This section describes how to use a simple pointer application, which utilizes acceleration data provided by the LIS3LV02DL MEMS 3-axis linear accelerometer to control the position of a pointer on the screen of the PC. The software provided with the kit allows the STEVAL-MKI005V1 demonstration kit board to be used as an inertial mouse, where the tilt of the board is translated into movement of the pointer. The board also emulates the left and right buttons of the mouse.

6.1 GUI description

The GUI window (see *Figure 24*) is divided into two sections. The top section contains the main controls to open the connection to the demonstration kit and to start/stop the data acquisition (ref 1). The bottom section contains the demonstration kit details (device and firmware, ref 2).

The section on the right shows the same data and the mouse speed control.

Figure 24. MEMS pointer demo

6.1.1 Left side: main controls

The buttons on the right side of the GUI and their related functions are described below:

- 1. Connect/Disconnect control selects the COM port on which the EK board is connected
- 2. Acquisition control starts and stops acquisition
- 3. Exit exits the MEMS pointer demo application

6.1.2 Left side: pointer application controls

The controls on the left side of the GUI and their related functions are as follows:

- 1. Left button/right buttons indicates when the left/right button on the demonstration kit is pressed (ref 3)
- X/Y-position shows the current x/y coordinates of the mouse pointer on the PC screen (ref 4)
- 3. X/Y-deg shows the tilt of the demonstration kit along the X and Y axes (ref 5)
- 4. Tilt control (ref 6) Allows the user to select the direction of the vertical displacement on the screen vs. the direction in which the board is tilted. For example, by selecting "Up", the pointer moves upward when the demonstration kit is tilted forward. Conversely, by selecting "Down" the pointer moves downward when the board is tilted backward.
- 5. Pointer speed sets the sensitivity of the pointer to the inclination of the board (ref 7)

7 Supported commands

The microcontroller mounted on the STEVAL-MKI005V1 board is equipped with dedicated firmware which supports a set of commands that allow the control of the 3-axis digital output MEMS sensor and permit the acquisition of the measured acceleration data. The firmware also handles the communication between the EK board and the PC through the USB bus. These features allow users to easily write their own applications to exploit the capabilities of the accelerometer.

This section describes the commands that are supported by the firmware for the microcontroller of the STEVAL-MKI005V1 demonstration kit.

7.1 Getting started

Before using the commands supported by the firmware, the following procedure must be performed:

- 1. Connect the STEVAL-MKI005V1 to the USB port
- Launch an application which allows the sending of commands through the Virtual serial port. The remainder of this document assumes the use of the Microsoft[®] Hyper Terminal program integrated in the Windows[®] XP[®] operating system
- 3. Create a new connection, enter a name (ex. "STEVAL-MKI005V1"), and click "OK"
- 4. In the "Connect Using" field, select the Virtual COM port to which the USB port has been mapped, and click "OK"
- 5. In Port Settings, set Bits per second to 115200, Data bits to 8, Parity to None, Stop bits to 1, and Flow control to None. Click "OK"
- 6. In the Hyper Terminal select Files > Properties > Settings and then click onto the "ASCII Setup" button
- 7. Select "Send line ends with line feeds" and "Echo typed characters locally"
- 8. Click the "OK" button to close the "ASCII Setup" window
- 9. Click the "OK" button to close the "Properties" window

Once this procedure has been completed the user can utilize the commands described in the following sections by typing them into the "Hyper Terminal" window.

7.2 Supported commands

The table below lists the commands supported by the STEVAL-MKI005V1 firmware:

Command	Description	Returned value
*start	Starts continuous data acquisition	s t xh xl yh yl zh zl l1 l2 s
*debug	Returns the acceleration data in readable text format	x=XX y=YY z=ZZ
*stop	Stops data acquisition	
*rAA	Register read	RAAhDDh

www.BDTIC.com/ST

Table 1. Supported commands

Command	Description	Returned value
*wAADD	Register write	
*bwAA<0:7><0 1>	Single bit write	
*Zon	Force 3-state	
*Zoff	Exit from 3-state	
*dev	Device name	LIS3LV02DL
*ver	Firmware version	3LV02DL 1.0

Table 1.Supported commands (continued)

Note: AA: register address

DD: data

S: service field

XX, YY, ZZ: Acceleration data returned for the X, Y and Z axes

I1, I2 : interrupt value on each axes.

7.2.1 Start command

The *start command initiates the continuous data acquisition. When this command is sent to the board, it returns the acceleration data measured by the LIS3LV02DL device. The acceleration data are packed in a string composed of eight bytes: "s t X Y Z I1 I2 s". The first two bytes are always "s" and "t" which correspond to the hexadecimal values {73 74}, while "X" "Y" "Z" represent, respectively, the acceleration data for the X, Y, Z axes.

"I1" and *"I2"* contain the values of FF_WU_SRC and DD_SRC, where each bit is a specific interrupt.

The last byte "s" returns information about the switches mounted on the board. Specifically, bit#1 and bit#0 of the "service data" correspond to the status of SW3 and SW2 on the demonstration kit board, and they are set to 1 when the corresponding switch is pressed.

7.2.2 Debug command

The *debug command starts the continuous data acquisition in debug mode. When this command is sent to the board it returns the acceleration data measured by the LIS3LV02DL device in readable text format. The values shown on the screen correspond to the content of the output data registers and are shown as a hexadecimal number. A TAB is employed as a separator between the different fields.

7.2.3 Stop command

The *stop command interrupts any acquisition session that has been started with either the *start or *debug commands.

7.2.4 Register read

The *rAA command allows the contents of the LIS3LV02DL device registers in the demonstration kit board to be read. AA, expressed as hexadecimal value and written uppercase, represents the address of the register to be read.

Once the read command is issued, the board returns RAAhDDh, where AA is the address sent by the user and DD is the data present in the register.

For example, to read the CTRL_REG1 the user would issue the command *r20, which returns R20hC7h.

7.2.5 Register write

The *wAADD command is used to write to the contents of the LIS3LV02DL device registers. AA and DD, expressed as hexadecimal values and written in upper-case, represent (respectively) the address of the register and the data to be written. To write 0xC7 to the CTRL_REG1, for example, the user issues the command *w20C7.

7.2.6 Single bit write

Using this command it is possible to set/reset a single bit in a given register. The command *bwAA<0:7><0l1> requires the user to specify the address AA of the register in which to change the bit, with AA expressed as a hexadecimal value and written in lower-case, followed by the position of the bit to be changed, an integer between 0 and 7, and the value, either 0 or 1, to be associated to the specified bit.

For example, to set the FS bit to 1 within the CTRL_REG2, the user would issue the command *bw2171.

7.2.7 Zon and Zoff

The *Zon and *Zoff commands are employed respectively to put into 3-state (i.e. highimpedance) and to exit (i.e. normal mode) the SPI lines of the ST7-USB microcontroller mounted on the demonstration kit. These commands allow the isolation of the sensor from the microprocessor in the event that an external control (from a different microcontroller mounted on a separate board) is needed.

By default, when the kit is first turned on, the SPI lines are in 3-state mode and the user is required to send the command *Zoff to allow the communication between the sensor and the microcontroller.

7.2.8 Device name

The *dev command retrieves the name of the device mounted on the demonstration kit connected to the PC. For the STEVAL-MKI005V1, the returned value is *"LIS3LV02DL"*.

7.2.9 Firmware version

The *ver command queries the demonstration kit and returns information on the version of the firmware loaded in the microprocessor.

7.3 Quick start

This section shows the basic sequence of commands to start a data communication session and to retrieve the acceleration data from the demonstration kit:

- 1. Connect the STEVAL-MKI005V1 to the USB port
- 2. Start "Microsoft© Hyper Terminal" and configure it as described in section 7.1
- 3. Inside the "Hyper Terminal" window, enter the command *Zoff to enable the control of the SPI line from the ST7-USB microcontroller
- 4. Send the *debug command to get the acceleration data measured from the sensor
- 5. Send *stop to end the continuous acquisition and visualization

57

8 Schematic diagram

The schematic diagram of the STEVAL-MKI005V1 demonstration kit is shown in Figure 25.

R5 100R D3 U1 LISBLV02DL ₽ġ HII Man Hoosel 1 8 88 R E Pop Add 88 멽 955 UZ SITZ66X_TCH764 88 Same and a second secon 1333 æğ 0A 1A 2A 2A 2A 2A 2A 2A 88 8 uper **+**|(SM2 8₿ ₿ģ ₽ģ Vdd 200 ğ 응 루 -ਹੂਰੋ ខន៍ 40 86 £\$ δ, 3888 B AM00685v1

Figure 25. Schematic diagram of the STEVAL-MKI005V1 board

UM0603

9 Bill of materials

Table 2 lists the bill of materials for the STEVAL-MKI005V1 demonstration kit.

Designator	Description	Comment	Footprint
C1	Capacitor	10 µC	C1206_POL
C2	Capacitor	4 µC	C1206_POL
C3	Capacitor	4 µC	C1206_POL
C4	Capacitor	100 nC	0805
C5	Capacitor	100 nC	0805
C6	Capacitor	100 nC	0805
C7	Capacitor	100 nC	0805
C8	Capacitor	47 nC	0805
C9	Capacitor	220 nC	0805
C10	Capacitor	10 µC	C1206_POL
Cosc1	Capacitor	33 pC	0805
Cosc2	Capacitor	33 pC	0805
D1	Led	SMD_LED green	SMD_LED
D2	Led	SMD_LED 3C	SMD_LED_3C
D3	Led	SMD_LED green	SMD_LED
D4	Led	SMD_LED red	SMD_LED
J1	USB connector	USB_B_mini	USB_B_mini
J2	Header, 5X2	ICP	HEADER_5X2_A
J3	Header, 7-Pin	SPI	HDR1X7
R1	Resistor	180 Ω	0805
R2	Resistor	100 Ω	0805
R3	Resistor	100 Ω	0805
R4	Resistor	100 Ω	0805
R5	Resistor	100 Ω	0805
R6	Resistor	1 kΩ	0805
R7	Resistor	10 kΩ	0805
R8	Resistor	10 kΩ	0805
Riccsel	Resistor	10 kΩ	0805
SW1	Button	NReset	SMT_Button
SW2	Button	SMT_Button	SMT_Button
SW3	Button	SMT_Button	SMT_Button
U1		LIS3LV02DL	TLGA_7x5x1
U2		ST72F651AR6T1E	TQFP64_10x10
Yoscm1	Crystal	12 MHz	OSC_SMD

Table 2. Bill of materials

10 Revision history

Table 3.Document revision history

Date	Revision	Changes
07-Nov-2008	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

37/37