r UM1584
YI User manual
Standard software driver for C90LC Flash

in SPC560xx, SPC56APxx and SPC563M64xx

Introduction

This document is the user manual for the Standard Software Driver (SSD) for C90LC Flash
in SPC560Bxx, SPC560Cxx, SPC560Dxx, SPC560Pxx, SPC56APxx. SPC563M64xx.

November 2012 Doc ID 023871 Rev 1 1/34

www.st.com

www.BDTIC.com/ST

http://www.st.com

Contents UM1584
Contents

1 INtrodUCtioN e 4

1.1 Document overview 4

1.2 Systemoverview 4

1.3 Features 5

1.4 Systemrequirements 5

1.5 A ONY IS . e 5

2 APl specification e 6

2.1 General OVEIVIEWo 6

2.2 Generaltypedefinitions 6

2.3 Configuration parametersand macros 6

2.4 Callback notification 7

25 Returncodes 7

2.6 Normal mode functions 9

2.6.1 Flashlnit()o e 9

2.6.2 FlashErase() e 10

2.6.3 BlankChecK() e 12

2.6.4 FlashProgram() 14

2.6.5 ProgramVerify() e 16

2.6.6 CheckSUM() . .ot e 17

2.6.7 FlashSuspend()t e 18

2.6.8 FlashResume() e 21

2.6.9 GetLoCK() .o ot e e 22

2.6.10 SetLock() .. .o 24

2.7 User Test Mode Functions i 25

2.7.1 FlashArrayIntegrityCheck() 25

2.7.2 FlashECCLogicCheck() e 28

2.7.3 FactoryMarginReadCheck() 29

Appendix A Documentation references, 32

ReVISION NIStOrY ... 33

2/34 Doc ID 023871 Rev 1 E

www.BDTIC.com/ST

UM1584

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.

(574

System reqUIrEMENTS e e 5
A ONY IS . . oo e e 5
Type definitions. e 6
SSD configuration structure field definition. 7
Return Codes e 8
Arguments for Flashlnit() e e 9
Return values for Flashinit() e 9
Troubleshooting for Flashinit() o e 9
Arguments for FIashErase()ot e 10
Return Values for FlashErase()o e e e 11

Troubleshooting for FlashErase() o 11
Arguments for BlankCheck(). oot e 12
Return values for BlankCheck() e 13
Troubleshooting for BlankCheck() e 13
Arguments for FlashProgram() i e 14
Return values for FlashProgram() e 14
Troubleshooting for FlashProgram(). i e e 15
Arguments for ProgramVerify().o e 16
Return values for ProgramVerify() e 16
Troubleshooting for ProgramVerify()c. e 17
Arguments for CheckSum()ot e 17
Return Values for CheckSum().ttt e e e e 18
Troubleshooting for CheckSum() e e 18
Arguments for FlashSuspend().o i e 18
Return values for FlashSuspend()t e e 19
SuspendState definitions 19
Suspending state and flagvs. COOLC status i 20
Arguments for FlashResume()ot e e 21
Return values for FlashResume(). i e 21
ResumeState Definitions e 21
Arguments for GetLOCK()ot e e 22
Return Values for GetLoCK() . . . v v oo e 22
Troubleshooting for GetLock()o oot e 22
blkLockIndicator definitions. 23
Arguments for SetLOCK(). oo e 24
Return Values for SetLOoCK() oot 24
Troubleshooting for SetLock()ot 25
Arguments for FlashArrayintegrityCheck()o 25
Return values for FlashArrayIntegrityCheck().o e 26
Troubleshooting for FlashArrayintegrityCheck(). oo 27
Arguments for FlashECCLOGICCheck().« oo i e 28
Return Values for FlashECCLOGICChecK() . . .« v v oo v i e e e e 28
Troubleshooting for FlashECCLogicCheck() 28
Arguments for FactoryMarginReadCheck(), 29
Return Values for FactoryMarginReadCheck(). o 30
Troubleshooting for FactoryMarginReadCheck()c. i, 30
Document revision history e 33
Doc ID 023871 Rev 1 3/34

www.BDTIC.com/ST

Introduction uM1584

1

1.1

1.2

4/34

Introduction

Document overview

This document is the user manual for the Standard Software Driver (SSD) for C90LC Flash
in SPC560xx, SPC56APxx and SPC563M64xx. The roadmap for the document is as
follows.

Section 1.2 provides a brief overview of the system for general background knowledge of
the project. Section 1.3 shows the features of the driver. Section 1.4 details the system
requirement for the driver development. Appendix A: Documentation references lists the
documents referred and terms used in making of this document. Section 1.5 lists the
acronyms used.

Chapter 2 describes the API specifications. In this section there are many sub sections,
which describe the different aspects of the driver. Section 2.1 provides a general overview of
the driver. Section 2.2 mentions about the type definitions used for the driver. Section 2.3
mentions the driver configuration parameters. Section 2.4 and Section 2.5 describe the
CallBack notifications and return codes for the driver respectively. Section 2.6 and

Section 2.7 provides the detailed description of normal mode and special mode standard
software Flash Driver APIs’ respectively.

System overview

The SSD is a set of API’s that enables user application to operate on the Flash module
embedded on a microcontroller. The C90LC SSD contains a set of functions to
program/erase C90LC Flash modules on STMicroelectronics SPC560xx, SPC56APxx and
SPC563M64xx microcontrollers.

The C90LC Standard Software Driver (SSD) will provide the following API’s:

Flashinit

FlashErase

BlankCheck

FlashProgram

ProgramVerify

CheckSum

FlashSuspend

FlashResume

GetlLock

SetlLock

FlashArrayIntegrityCheck

FlashECCLogicCheck

FactoryMarginReadCheck

4

Doc ID 023871 Rev 1

www.BDTIC.com/ST

UM1584

Introduction

1.3

1.4

1.5

Features

The C90LC SSD provides the following features:

Two sets of driver binaries built with Standard PowerPC Book E instruction set and
Variable-Length-Encoding (VLE) instruction set.

Three sets of driver binaries built with three different toolchains.

Drivers released in binary c-array format to provide compiler-independent support for
non-debug-mode embedded applications.

Drivers released in s-record format to provide compiler-independent support for debug-
mode/JTAG programming tools.

Each driver function is independent of each other so the end user can choose the
function subset to meet their particular needs.

Support page-wise programming for fast programming.
Position-independent and ROM-able

Ready-to-use demos illustrating the usage of the driver
Concurrency support via callback

System requirements

The C90LC SSD is designed to support C90LC Flash module embedded on different
microcontrollers. Before using this SSD on a different derivative microcontroller, user has to
provide the information specific to the derivative through a configuration structure.

Table 1. System requirements

Tool name Description Version number
CodeWarrior IDE Development tool 25
Diab PowerPC compiler Compiler 5.7.0.0
Green Hills PowerPC compiler Compiler 517
Lauterbach ICD tool Jtag Debugger n.a

Acron yms

Table 2. Acronyms

Abbreviation Complete name

API Application Programming Interface

BIU Bus Interface Unit

ECC Error Correction Code

EVB Evaluation Board

RWW Read While Write

SSD Standard Software Driver

Doc ID 023871 Rev 1

5/34

www.BDTIC.com/ST

API specification UmM1584

2

2.1

2.2

2.3

6/34

API specification

General overview

The C90LC SSD has APIs to handle the erase, program, erase verify and program verify
operations on the Flash. Apart from these, it also provides the feature for locking specific
blocks and calculating Check sum. This SSD also provides 3 User Test APIs for checking
the Array Integrity and the ECC Logic.

General type definitions

Table 3. Type definitions

Derived type Size C language type description
BOOL 8-bits unsigned char
INT8 8-bits signed char
VINT8 8-bits volatile signed char
UINT8 8-bits unsigned char
VUINT8 8-bits volatile unsigned char
INT16 16-bits signed short
VINT16 16-bits volatile signed short
UINT16 16-bits unsigned short
VUINT16 16-bits volatile unsigned short
INT32 32-bits signed long
VINT32 32-bits volatile signed long
UINT32 32-bits unsigned long
VUINT32 32-bits volatile unsigned long
INT64 64-bits signed long long
VINT64 64-bits volatile signed long long
UINT64 64-bits unsigned long long
VUINT64 64-bits volatile unsigned long long

Configuration parameters and macros

The configuration parameter which is used for SSD operations is explained in this section.
The configuration parameters are handled as structure. The user should correctly initialize
the fields including c90fIRegBase, mainArrayBase, shadowRowBase, shadowRowSize,
pageSize and BDMEnable before passing the structure to SSD functions. The pointer to
CallBack has to be initialized either to a null pointer or a valid CallBack function pointer.

4

Doc ID 023871 Rev 1

www.BDTIC.com/ST

UmM1584 API specification
Table 4. SSD configuration structure field definition
Parameter name Type Parameter description
c90fIRegBase UINT32 The base address of C90LC and BIU control registers
mainArrayBase UINT32 The base address of Flash main array
mainArraySize UINT32 The size of Flash main array
shadowRowBase UINT32 The base address of shadow row
shadowRowSize UINT32 The size of shadow row in byte
lowBlockNum UINT32 Block number of the low address space
midBlockNum UINT32 Block number of the mid address space
highBlockNum UINT32 Block number of the high address space
pageSize UINT32 The page size of the C90LC Flash
BDMEnable UINT32 Dgflnes the state of background debug mode (enable
/disable)
The type definition for the structure is given below.
typedef struct _ssd_config
{
UINT32 c90flRegBase;
UINT32 mainArrayBase;
UINT32 mainArraySize;
UINT32 shadowRowBase;
UINT32 shadowRowSize;
UINT32 lowBlockNum;
UINT32 midBlockNum;
UINT32 highBlockNum;
UINT32 pageSize;
UINT32 BDMEnable;
} SSD_CONFIG, *PSSD_CONFIG;
2.4 Callback notification
The Standard Software Driver facilitates the user to supply a pointer to ‘CallBack()’ function
so that time-critical events can be serviced during C90LC Standard Software driver
operations. Servicing watchdog timers is one such time critical event. If it is not necessary to
provide the CallBack service, the user will be able to disable it by a NULL function macro.
#define NULL_CALLBACK ((void *) OxFFFFFFFF)
The job processing callback notifications shall have no parameters and no return value.
2.5 Return codes

The return code will be returned to the caller function to notify the success or errors of the
API execution. These are the possible values of return code:

Doc ID 023871 Rev 1 7/34

www.BDTIC.com/ST

API specification

UM1584

Table 5. Return codes
Name Value Description

C90FL_OK 0x00000000 | The requested operation is successful.

CO0FL_INFO_RWE 0x00000001 | RWE bit is set before Flash operations.

CO0FL_INFO_EER 0x00000002 | EER bit is set before Flash operations.

C90FL_ERROR_ALIGNMENT 0x00000100 | Alignment error.

C90FL_ERROR_RANGE 0x00000200 | Address range error.

C90FL_ERROR_BUSY 0X00000300 New program/grage cannot t_)e preformed while a high
voltage operation is already in progress.

C90FL_ERROR_PGOOD 0x00000400 | The program operation is unsuccessful.

C90FL_ERROR_EGOOD 0x00000500 | The erase operation is unsuccessful.

C90FL_ERROR_NOT BLANK 0x00000600 There is a non-blank Flash memory location within the
checked Flash memory region.

C90FL_ERROR_VERIEY 0x00000700 There is a mismatch between the source data and the
content in the checked Flash memory.

C90FL_ERROR_LOCK_INDICATOR | 0x00000800 | Invalid block lock indicator.

C90FL_ERROR_RWE 0x00000900 | Read-while-write error occurred in previous reads.

C90FL_ERROR_PASSWORD OX00000A00 The pgssword_ provided cannot unlock the block lock register
for register writes

C90FL_ERROR_AIC. MISMATCH 0X00000B00 In ‘FlashArrayintegrityCheck() the MISR values generated by
the hardware do not match the values passed by the user.

C90FL_ERROR_AIC_NO_BLOCK | 0x00000C00 In FlashArraylptegr/tyCheck() no blocks have been enabled
for Array Integrity check

C90FL_ERROR._FMR_MISMATCH | 0x00000D00 In ‘FactoryMarginReadCheck() the MISR values generated
by the hardware do not match the values passed by the user.

C90FL_ERROR_FMR_NO_BLOCK | 0x00000E00 In FactoryMarngeadCheok() no blocks have been enabled
for Array Integrity check

C90FL_ERROR_ECC_LOGIC OX00000F00 In ‘FlashECCLogicCheck() the simulated ECC error has not
occurred.

C90FL_ERROR_SUSP 0x00001000 | On going high voltage operation cannot be suspended.

8/34

Doc ID 023871 Rev 1

4

www.BDTIC.com/ST

UmM1584 API specification

2.6 Normal mode functions

2.6.1 Flashinit()

Description: This function will read the Flash configuration information from the Flash control
registers and initialize parameters in SSD configuration structure. ‘Flashini() must be
called prior to any other Flash operations.

Definition: UINT32 FlashInit (PSSD_CONFIG pSSDConfig) ;

Arguments:

Table 6. Arguments for Flashinit()

Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Returns:
Table 7. Return values for Flashlnit()
Type Description Possible values

Indicates either success or failure type. Itis a
bit mapped return code so that more than C90FL OK

one condition can be returned with a single -

return code. Each bit in the returned value, CS0FL_INFO_EER
except for C90FL_OK, indicates a kind of C90FL_INFO_RWE
current status of C90LC module.

UINT32

Troubleshooting:

Table 8. Troubleshooting for Flashinit()

Error Codes Possible Causes Solution

An ECC Error occurred during
a previous read.

A Read While Write Error

C90FL_INFO_EER Clear FLASH_MCR-EER bit.

C90FL_INFO_RWE occurred during a previous Clear the FLASH_MCR-RWE bit.
read
Comments: ‘Flashini() will check the CO0FL_MCR_RWE and C90FL_MCR_EER bit, but does not

clear them when any of them is set. If RWE bit is set, Flash program/erase operations
can still be performed.

Assumptions: None.

KYI Doc ID 023871 Rev 1 9/34

www.BDTIC.com/ST

API specification

UM1584

2.6.2 FlashErase()

Description: This function will erase the enabled blocks in the main array or the shadow row. Input
arguments together with relevant Flash module status will be checked, and relevant
error code will be returned if there is any error.

Definition: UINT32 FlashErase (PSSD_CONFIG pSSDConfig,

BOOL shadowFlag,
UINT32 lowEnabledBlocks,
UINT32 midEnabledBlocks,
UINT32 highEnabledBlocks,
void (*CallBack) (void));
Arguments:
Table 9. Arguments for FlashErase()
Argument Description Range
. Pomt.er to t.he SSb The values in this structure are chip-dependent.
pSSDConfig Configuration . ;
Please refer to Section 2.3 for more details.
Structure.
TRUE: the shadow row will be erased. The
lowEnabledBlocks, midEnabledBlocks and
Indicate either the highEnabledBlocks will be ignored;
shadowFlag main array or the FALSE: The main array will be erased. Which blocks
shadow row to be will be erased in low, mid and high address spaces
erased. are specified by lowEnabledBlocks,
midEnabledBlocks and highEnabledBlocks
respectively.
Bit-mapped value. Select the block in the low address
To select the array space to be erased by setting 1 to the appropriate bit
lowEnabledBlocks blocks in low address | of lowEnabledBlocks. If there is not any block to be
space for erasing. erased in the low address space, lowEnabledBlocks
must be set to 0.
Bit-mapped value. Select the block in the middle
To select the array address space to be erased by setting 1 to the
midEnabledBlocks blocks in mid address | appropriate bit of midEnabledBlocks. If there is not
space for erasing. any block to be erased in the middle address space,
midEnabledBlocks must be set to 0.
Bit-mapped value. Select the block in the high
To select the array address space to be erased by setting 1 to the
highEnabledBlocks | blocks in high address | appropriate bit of highEnabledBlocks. If there is not
space for erasing. any block to be erased in the high address space,
highEnabledBlocks must be set to 0.
CallBack Address of void call Any addressable void function address. To disable it
back function pointer. |use NULL_CALLBACK macro.
10/34 Doc ID 023871 Rev 1 1S7]

www.BDTIC.com/ST

UM1584

API specification

Returns:
Table 10. Return Values for FlashErase()
Type Description Possible values
C90FL_OK
UINT32 Successful completion or error value. C90FL_ERROR_BUSY
C90FL_ERROR_EGOOD

Troubleshooting:

Table 11.

Troubleshooting for FlashErase()

Error codes

Possible causes

Solution

C90FL_ERROR_BUSY

performed because there is
program/erase sequence in
progress on the Flash module.

New erase operation cannot be

Wait until all previous
program/erase operations on the
Flash module finish.

Possible cases that erase cannot
start are:

erase in progress (FLASH_MCR-
ERS is high);

program in progress
(FLASH_MCR-PGM is high);

C90FL_ERROR_ EGOOD

Erase operation failed.

Check if the C90LC is available
and high voltage is applied to
C90LC. Then try to do the erase
operation again.

Comments:

When shadowFlag is set to FALSE, the ‘FlashErase()’ function will erase the blocks in
the main array. It is capable of erasing any combination of blocks in the low, mid and
high address spaces in one operation. If shadowFlagis TRUE, this function will erase
the shadow row.

The inputs lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks are bit-
mapped arguments that are used to select the blocks to be erased in the
Low/Mid/High address spaces of main array. The selection of the blocks of the main
array is determined by setting/clearing the corresponding bit in lowEnabledBlocks,
midEnabledBlocks or highEnabledBlocks.

The bit allocations for blocks in one address space are: bit 0 is assigned to block 0, bit
1 to block 1, etc. The following diagrams give an example of the formats of
lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks for the C90LC module.
Refer to Appendix A: Documentation references for the valid bits configuration
depending from the specific microcontroller Flash module sectors.

Bit Allocation for Blocks in Low Address Space:

MSB
31

10 9 8

LSB
1 0

reserved

reserved block 9 block 8

block 1 block 0

Doc ID 023871 Rev 1

11/34

www.BDTIC.com/ST

API specification UmM1584
Bit Allocation for Blocks in Middle Address Space:
MSB LSB
31 4 3 2 1 0
| reserved | | reserved | reserved reserved block 1 block 0
Bit Allocation for Blocks in High Address Space:
MSB LSB
31 6 5 4 3 2 1
| reserved | | reserved | block 5 | block 4 | | Block 1 | Block 0 |

Assumptions:

If the selected main array blocks or the shadow row is locked for erasing, those blocks
or the shadow row will not be erased, but ‘FlashErase()’ will still return C90FL_OK.
User needs to check the erasing result with the ‘BlankCheck() function.

It is impossible to erase any Flash block or shadow row when a program or erase
operation is already in progress on C90LC module. ‘FlashErase()’ will return
C90FL_ERROR_BUSY when trying to do so. Similarly, once an erasing operation has
started on C90LC module, it is impossible to run another program or erase operation.

In addition, when ‘FlashErase()’is running, it is unsafe to read the data from the Flash
module having one or more blocks being erased. Otherwise, it will cause a Read-
While-Write error.

It assumes that the Flash block is initialized using a ‘Flashinit() API.

2.6.3 BlankCheck()

Description:

Description:

Arguments:

This function will check on the specified Flash range in the main array or shadow row
for blank state. If the blank checking fails, the first failing address and the failing data
in Flash block will be saved.

UINT32 BlankCheck (PSSD_CONFIG pSSDConfig,
UINT32 dest,

UINT32 size,

UINT32 * pFailAddress,

UINT64 *pFailData,

void (*CallBack) (void));

Table 12. Arguments for BlankCheck()

Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination address to be | Any accessible address aligned on double word
dest . .
checked. boundary in main array or shadow row
If size = 0, the return value is C90FL_OK.
. Size, in bytes, of the Flash ’ i . o .
Size y It should be multiple of 8 and its combination with dest

region to check.
g should fall in either main array or shadow row.

12/34

4

Doc ID 023871 Rev 1

www.BDTIC.com/ST

UmM1584 API specification

Table 12. Arguments for BlankCheck() (continued)

Argument Description Range
Return the address of the
FailAddress first non-blank Flash Only valid when this function returns
P location in the checking C90FL_ERROR_NOT_BLANK.
region
Return the content of the
FailData first non-blank Flash Only valid when this function returns
P location in the checking C90FL_ERROR_NOT_BLANK.
region.
Address of void callback Any addressable void function address. To disable it
CallBack

function use NULL_CALLBACK macro.

Returns:

Table 13. Return values for BlankCheck()

Type Description Possible values

C90FL_OK
C90FL_ERROR_ALIGNMENT
C90FL_ERROR_RANGE
C90FL_ERROR_NOT_BLANK

UINT32 Successful completion or error value.

Troubleshooting:

Table 14. Troubleshooting for BlankCheck()

Returned error bits Description Solution
The dest/size are not Check if dest and size are aligned on
CO0FL_ERROR_ALIGNMENT properly aligned. double word (64-bit) boundary.
The area specified by dest | Check dest and dest+size. The area
C90FL_ERROR_RANGE and size is out of the valid |to be checked must be within main
C90LC array ranges. array space or shadow space.

There is a non-blank
C90FL_ERROR_NOT_BLANK | double word within the
area to be checked.

Erase the relevant blocks and check
again.

Comments: If the blank checking fails, the first failing address will be saved to *pFailAddress, and
the failing data in Flash will be saved to *pFailData. The contents pointed by
pFailAddress and pFailData are updated only when there is a non-blank location in
the checked Flash range.

Assumptions: It assumes that the Flash block is initialized using a ‘Flashinit() API.
'S Doc ID 023871 Rev 1 13/34

www.BDTIC.com/ST

API specification UmM1584

26.4 FlashProgram()

Description: This function will program the specified Flash areas with the provided source data.
Input arguments together with relevant Flash module status will be checked, and
relevant error code will be returned if there is any error.

Description: UINT32 FlashProgram (PSSD_CONFIG pSSDConfig,

UINT32 dest,
UINT32 size,
UINT32 source,
void (*CallBack) (void));
Arguments:
Table 15. Arguments for FlashProgram()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination a(_jdress to be Any accessible address aligned on double word
Dest programmed in Flash . .
boundary in main array or shadow row.
memory.
If size = 0, C90FL_OK will be ret d.
. Size, in bytes, of the Flash S1z€ - W gre urne_ . .
Size ; It should be multiple of 8 and its combination with dest
region to be programmed. S .
should fall in either main array or shadow row.
source Source program buffer This address must reside on word boundary.
address.
CallBack Address of void call back Any addressable void function address. To disable it
function pointer. use NULL_CALLBACK macro.

Returns:

Table 16. Return values for FlashProgram()

Type Description Possible values

C90FL_OK
C90FL_ERROR_BUSY

UINT32 Successful completion or error value. C90FL_ERROR_ALIGNMENT
C90FL_ERROR_RANGE
C90FL_ERROR_PGOOD

14/34 Doc ID 023871 Rev 1 1S7]

www.BDTIC.com/ST

UM1584

API specification

Troubleshooting:

Table 17. Troubleshooting for FlashProgram()

Returned error bits Description Solution

C90FL_ERROR_BUSY

Wait until the current operations finish.
New program operation | Conditions that program cannot start are:
cannot be performed | 1 program in progress (MCR-PGM high);
because_ the Flas_h 2. program not in progress (MCR-PGM
module is busy with low), but:

some operation and . but not ded:
cannot meet the a). erase in progress but not suspended;

condition for starting a | P)- erase on main array is suspended but
program operation. program is targeted to shadow row;

c). erase on shadow row is suspended.

C90FL_ERROR_ALIGNMENT | dest/size/source isn’t | double word (64-bit) boundary. Check if

This error indicates that | Check if dest and size are aligned on

properly aligned source is aligned on word boundary.

C90FL_ERROR_RANGE

The area specified by
dest and size is out of
the valid C90LC
address range.

Check destand dest+size. Both should fall
in the same C90LC address ranges, i.e.
both in main array or both in shadow row

C90FL_ERROR_PGOOD

Program operation
failed because this
operation cannot pass
PEG check.

Repeat the program operation. Check if
the C9OLC is invalid or high voltage
applied to C90LC is unsuitable.

Comments:

Assumptions:

If the selected main array blocks or the shadow row is locked for programming, those
blocks or the shadow row will not be programmed, and ‘FlashProgram() will still
return COOFL_OK. User needs to verify the programmed data with ‘ProgramVerify()
function.

It is impossible to program any Flash block or shadow row when a program or erase
operation is already in progress on C90LC module. ‘FlashProgram() will return
C90FL_ERROR_BUSY when doing so. However, user can use the ‘FlashSuspend()
function to suspend an on-going erase operation on one block to perform a program
operation on another block. An exception is that once the user has begun an erase
operation on the shadow row, it may not be suspended to program the main array and
vice-versa.

It is unsafe to read the data from the Flash partitions having one or more blocks being
programmed when ‘FlashProgram() is running. Otherwise, it will cause a Read-
While-Write error.

It assumes that the Flash block is initialized using a ‘Flashinit() API.

Doc ID 023871 Rev 1 15/34

www.BDTIC.com/ST

API specification

UM1584

2.6.5 ProgramVerify()

Description: This function will check if a programmed Flash range matches the corresponding
source data buffer. In case of mismatch, the failed address, destination value and
source value will be saved and relevant error code will be returned.

Definition: UINT32 ProgramVerify (PSSD_CONFIG pSSDConfig,

UINT32 dest,
UINT32 size,
UINT32 source,
UINT32 *pFailAddress,
UINT64 *pFailData,
UINT64 *pFailSource,
void (*CallBack) (void));
Arguments:
Table 18. Arguments for ProgramVerify()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination address to be | Any accessible address aligned on double word
Dest e : .
verified in Flash memory. boundary in main array or shadow row.
L If size = 0, C90FL_OK will be returned. Its
Size SIZ?’ n byte,_ of the Flash combination with dest should fall within either main
region to verify.
array or shadow row.
Source Verify source buffer This address must reside on word boundary.
address.
FailAddress Return first failing address | Only valid when the function returns
P in Flash. C90FL_ERROR_VERIFY.
FailData Returns first mismatch data | Only valid when this function returns
P in Flash. C90FL_ERROR_VERIFY.
FailSource Returns first mismatch data | Only valid when this function returns
P in buffer. C90FL_ERROR_VERIFY.
CallBack Address of void call back Any addressable void function address. To disable it
function pointer. use NULL_CALLBACK macro.
Returns:
Table 19. Return values for ProgramVerify()
Type Description Possible Values
C90FL_OK
. C90FL_ERROR_ALIGNMENT
UINT32 Successful completion or error value. C90FL_ERROR_RANGE
C90FL_ERROR_VERIFY
16/34 Doc ID 023871 Rev 1 1S7]

www.BDTIC.com/ST

UM1584

API specification

Troubleshooting:

Table 20.

Troubleshooting for ProgramVerify()

Returned error bits

Description

Solution

C90FL_ERROR_ALIGNMENT

This error indicates that
dest/size/source isn’t
properly aligned

Check if dest and size are aligned on
double word (64-bit) boundary. Check if
source is aligned on word boundary

C90FL_ERROR_RANGE

The area specified by
dest and size is out of
the valid C90LC
address range.

Check dest and dest+size, both should
fall in the same C90LC address ranges,
i.e. both in main array or both in shadow
row

C90FL_ERROR_VERIFY

The content in C90LC
and source data
mismatch.

Check the correct source and destination
addresses, erase the block and
reprogram data into Flash.

Comments:

The contents pointed by pFailLoc, pFailData and pFailSource are updated only when

there is a mismatch between the source and destination regions.

Assumptions:

It assumes that the Flash block is initialized using a ‘Flashinit() API.

2.6.6 CheckSum()
Description: This function will perform a 32-bit sum over the specified Flash memory range without
carry, which provides a rapid method for checking data integrity.
Definition: UINT32 CheckSum (PSSD_CONFIG pSSDConfig,
UINT32 dest,
UINT32 size,
UINT32 *pSum,
void (*CallBack) (void));
Arguments:
Table 21. Arguments for CheckSum()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination address to be | Any accessible address aligned on double word
Dest . . .
summed in Flash memory. |boundary in either main array or shadow row.
. . If size is 0 and the other parameters are all valid,
Size Size, in bytes, of the Flash | 50 "o wil be returned. Its combination with dest
region to check sum. e .
should fall within either main array or shadow row.
Sum Returns the sum value 0x00000000 - OxFFFFFFFF. Note that this value is
P ’ only valid when the function returns C90FL_OK.
CallBack Address of void call back Any addressable void function address. To disable it
function pointer. use NULL_CALLBACK macro.

Doc ID 023871 Rev 1

17/34

www.BDTIC.com/ST

API specification

UM1584

Returns:

Table 22.

Return Values for CheckSum()

Type

Description

Possible values

UINT32

Successful completion or error value.

C90FL_OK
C90FL_ERROR_ALIGNMENT
C90FL_ERROR_RANGE

Troubleshooting:

Table 23.

Troubleshooting for CheckSum()

Returned error bits

Description

Solution

C90FL_ERROR_ALIGNMENT

This error indicates that
dest/size isn’t properly
aligned

Check if dest and size are aligned on
double word (64-bit) boundary. Check if
source is aligned on word boundary

C90FL_ERROR_RANGE

The area specified by
dest and size is out of
the valid C90LC
address range.

Check dest and dest+size, both should fall
in the same C90LC address ranges, i.e.
both in main array or both in shadow row

Comments:

Assumptions:

None.

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

2.6.7 FlashSuspend()

Description: This function will check if there is any high voltage operation, erase or program, in
progress on the C90LC module and if the operation can be suspended. This function
will suspend the ongoing operation if it can be suspended (for C90LC modules it
applies only to erase operation).

Definition: UINT32 FlashSuspend (PSSD_CONFIG pSSDConfig,

UINT8 *suspendState,
BOOL *suspendFlag) ;
Arguments:
Table 24. Arguments for FlashSuspend()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Indicate the suspend state
suspendState of C90LC module after the | All return values are enumerated in Section 2.3.
function being called.
Return whether th_e . TRUE: the operation is suspended by this call;
suspendFla suspended operation, if FALSE: sith i b ded or th
p g there is any, is suspended t'. either no op;er:tlonttt;) tr?_susrﬁen ed or the
by this call. operation is suspended not by this call.
18/34 Doc ID 023871 Rev 1 1S7]

www.BDTIC.com/ST

UM1584

API specification

Returns:
Table 25. Return values for FlashSuspend()
Type Description Possible Values
UINT32 Successful completion. C90FL_OK
UINT32 Ongoing operation cannot be C90FL_ERROR_SUSP
suspended.

Troubleshooting: None.

Comments: After calling ‘FlashSuspend(), if no error is returned, read is allowed on both main
array space and shadow row without any Read-While-Write error. But data read from
the blocks targeted for programming or erasing will be indeterminate even if the
operation is suspended.

This function should be used together with ‘FlashResume(). The suspendFlag
returned by ‘FlashSuspend() determine whether ‘FlashResume() needs to be called
or not. If suspendFlag is TRUE, ‘FlashResume() must be called symmetrically to
resume the suspended operation.
Following table defines and describes various suspend states and associated
suspend codes.
Table 26. SuspendState definitions
Argument Code Description Valid operation after suspend
Erasing operation,
NO_OPERTION 0 There is no program/erase programming operation ar_1d
operation. read are valid on both main
array space and shadow row.
PGM_WRITE 1 _Th_ere isa program sequence |Only read is valid on both main
in interlock write stage. array space and shadow row.
ERS_ WRITE 5 There is an erase sequence in Only read is valid on both main
interlock write stage. array space and shadow row.
There is an erase-suspend . . .
ERS_SUS_PGM_WRITE 3 |program sequence in interlock Only read is valid on both main
. array space and shadow row.
write stage.
PGM_SUS 4 The program operation is in Only read is valid on both main
suspended state. array space and shadow row.
Programming operation is valid
The erase operation on main only on main array space. Read
ERS_SUS 5 g) . ;
array is in suspended state. is valid on both main array
space and shadow row.
The erase operation on . . .
SHADOW_ERS_SUS 6 |shadow row is in suspended | 1ead is valid on both main

state.

array space and shadow space.

Doc ID 023871 Rev 1

19/34

www.BDTIC.com/ST

API specification

UM1584

Assumptions:

Table 26.

SuspendState definitions (continued)

Argument

Code

Description

Valid operation after suspend

The erase-suspended program

Only read is valid on both main

ERS_SUS_PGM_SUS 7 | operation is in suspended
array space and shadow row.
state.
The ongoing high voltage No operation is valid on both
NO_SUS 8 | operation has not been main array space and shadow

suspended.

row.

The table below lists the Suspend Flag values returned against the Suspend State
and the Flash block status.

Table 27. Suspending state and flag vs. C90LC status
suspendState EHV | ERS | ESUS | PGM | PSUS | PEAS suspendFlag
NO_OPERATION X 0 X 0 X FALSE
PGM_WRITE 0 0 X 1 0 FALSE
ERS_WRITE 0 1 0 0 X X FALSE
ESUS_PGM_WRITE 0 1 1 1 0 X FALSE
1 0 X 1 0 X TRUE
PGM_SUS
X 0 X 1 1 X FALSE
1 1 0 0 X 0 TRUE
ERS_SUS
X 1 1 0 X 0 FALSE
1 1 0 0 X 1 TRUE
SHADOW_ERS_SUS
X 1 1 0 X 1 FALSE
1 1 1 1 0 X TRUE
ERS_SUS_PGM_SUS
X 1 1 1 1 X FALSE
ERS_SUS 1 0 0 1 X X FALSE

The values of EHV, ERS, ESUS, PGM, PSUS and PEAS represent the C90LC status
at the entry of FlashSuspend;

0: Logic zero; 1: Logic one; X: Do-not-care.

Doc ID 023871 Rev 1

It assumes that the Flash block is initialized using a ‘Flashinit() API.

4

www.BDTIC.com/ST

UM1584

API specification

2.6.8 FlashResume()

Description: This function will check if there is any suspended erase or program operation on the
C90LC module, and will resume the suspended operation if there is any.

Definition: UINT32 FlashResume (PSSD_CONFIG pSSDConfig,
UINT8 *resumeState) ;

Arguments:

Table 28. Arguments for FlashResume()

Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Indicate the resume state of
resumeState C90LC module after the All return values are listed in Table 30.
function being called.

Returns:

Table 29. Return values for FlashResume()

Type Description Possible values
UINT32 Successful completion. C90FL_OK
Troubleshooting: None.
Comments: This function will resume one operation if there is any operation is suspended. For

instance, if a program operation is in suspended state, it will be resumed. If an erase
operation is in suspended state, it will be resumed too. If an erase-suspended
program operation is in suspended state, the program operation will be resumed prior
to resuming the erase operation. It is better to call this function based on suspendFlag
returned from ‘FlashSupend()..

Following table defines and describes various resume states and associated resume

codes.

Table 30. ResumeState Definitions

Code Name Value Description
RES_NOTHING 0 No program/erase operation to be resumed
RES_PGM 1 A program operation is resumed
RES_ERS 2 A erase operation is resumed
RES_ERS_PGM 3 A suspended erase-suspended program operation is resumed
Assumptions: It assumes that the Flash block is initialized using a ‘Flashinit() API.

Doc ID 023871 Rev 1

21/34

www.BDTIC.com/ST

API specification

UM1584

2.6.9 GetLock()
Description: This function will check the block locking status of Shadow/Low/Middle/High address
spaces in the C90LC module.
Definition: UINT32 GetLock (PSSD_CONFIG pSSDConfig,
UINT8 blkLockIndicator,
BOOL *blkLockEnabled,
UINT32 *blkLockState) ;
Arguments:
Table 31. Arguments for GetLock()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Indicating the address
space and the block locking
blkLockIndicator |level, which determines the | Refer to Table 34 for valid values for this parameter.
address space block locking
register to be checked.
Indicate whether the TRUE — The address space block locking register
address space block locking | is enabled for register writes.
blkLockEnabled . :
ocxEnavle register is enabled for FALSE - The address space block locking register
register writes is disabled for register writes.
Returns the blocks’ locking | Bit mapped value indicating the locking status of
status of indicated locking | the specified locking level and address space.
blkLockState
level in the given address 1: The block is locked from program/erase.
space 0: The block is ready for program/erase
Returns:
Table 32. Return Values for GetLock()
Type Description Possible values
C90FL_OK
UINT32 Successful completion or error value. -
vccessiul compiet vau C90FL_ERROR_LOCK_INDICATOR

Troubleshooting:

Table 33.

Troubleshooting for GetLock()

Returned error bits

Possible causes

Solution

INDICATOR

C90FL_ERROR_LOCK_

invalid.

The input blkLockIndicator is

Set this argument to correct value
listed in Table 34

Comments:

22/34

Doc ID 023871 Rev 1

Following table defines and describes various bikLocklIndicator values.

4

www.BDTIC.com/ST

UmM1584 API specification

Table 34. blkLockIndicator definitions

Code Name Value Description

LOCK_SHADOW_PRIMARY 0 Primary block lock protection of shadow address space

Secondary block lock protection of shadow address

LOCK_SHADOW_SECONDARY 1
space

LOCK_LOW_PRIMARY
LOCK_LOW_SECONDARY
LOCK_MID_PRIMARY
LOCK_MID_SECONDARY
LOCK_HIGH

Primary block lock protection of low address space

Secondary block lock protection of low address space

Primary block lock protection of mid address space

Secondary block lock protection of mid address space

[o2 TN & T IS N @V I I S

Block lock protection of high address space

For Shadow/Low/Mid address spaces, there are two block lock levels. The secondary
level of block locking provides an alternative means to protect blocks from being
modified. A logical “OR” of the corresponding bits in the primary and secondary lock
registers for a block determines the final lock status for that block. For high address
space there is only one block lock level.

The output parameter blkLockState will return a bit-mapped value indicating the block
lock status of the specified locking level and address space. A main array block or
shadow row is locked from program/erase if its corresponding bit is set.

The indicated address space determines the valid bits of blkLockState. For either
Low/Mid/High address spaces, if blocks corresponding to valid block lock state bits
are not present (due to configuration or total memory size), values for these block lock
state bits will be always 1 because such blocks are locked by hardware on reset.
These blocks cannot be unlocked by software with ‘SetLock() function.

The following diagrams give an example of the block bitmap definitions of
blkLockState for shadow/Low/Mid/High address spaces. Refer to Appendix A:
Documentation references for the valid bits configuration depending from the specific
microcontroller Flash module sectors.

bikLockState Bit Allocation for Shadow Address Space:

MSB LSB
31 1 0
| reserved | reserved shadow row

bilkLockState Bit Allocation for Low Address Space:

MSB LSB
31 10 9 8 1 0
| reserved | | reserved | block 9 | block 8 | block 1 block 0

bikLockState Bit Allocation for Mid Address Space:

MSB LSB
31 4 3 2 1 0
| reserved reserved reserved reserved block 1 block 0
177 Doc ID 023871 Rev 1 23/34

www.BDTIC.com/ST

API specification

UM1584

bikLockState Bit Allocation for High Address Space:

MSB LSB
31 6 5 4 1 0
| reserved | | reserved | block 5 | block 4 | | block 1 | block 0

Assumptions: It assumes that the Flash block is initialized using a ‘Flashinit() API.

2.6.10 SetLock()

Description: This function will set the block lock state for Shadow/Low/Middle/High address space
on the C90LC module to protect them from program/erase. The API will provide
password to enable block lock register writes when needed and write the block lock
value to block lock register for the requested address space.

Definition: UINT32 SetLock (PSSD_CONFIG pSSDConfig,

UINT8 blkLockIndicator,
UINT32 blkLockState,
UINT32 password) ;
Arguments:
Table 35. Arguments for SetLock()
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Indicating the address
blkLockIndicator space and the protection Refer to Table 34 for valid codes for this parameter.
level of the block lock
register to be read.
Bit mapped value indicating the lock status of the
The block locks to be set to | gpecified protection level and address space.
blkLockState the specified address . .
) 1: The block is locked from program/erase.
space and protection level.)
0: The block is ready for program/erase
Correct passwords for block lock registers are
. . 0xA1A1_1111 for Low/Mid Address Space Block
A password is required to -
password eanI evtvh e b: ock (I]gclzk Locking Register, 0xC3C3_3333 for Secondary
register for register write Low/Mid Address Space Block Locking Register,
" |and 0xB2B2_2222 for High Address Space Block
Select Register.
Returns:
Table 36. Return Values for SetLock()
Type Description Possible Values
C90FL_OK
UINT32 Successful completion or error value. C90FL_ERROR_LOCK_INDICATOR
C90FL_ERROR_PASSWORD
24/34 Doc ID 023871 Rev 1 1S7]

www.BDTIC.com/ST

UM1584

API specification

Troubleshooting: The troubleshooting mentioned below comprises of hardware errors due to both P
Flash block erase verify and P Flash section erase verify command. Apart from these
the input based error handling is also mentioned.

Table 37. Troubleshooting for SetLock()

Returned error bits

Possible causes

Solution

C90FL_ERROR_LOCK_INDICATOR

The input blkLocklIndicator
is invalid.

Set this argument to correct
value listed in Table 34.

C90FL_ERROR_PASSWORD

The given password cannot
enable the block lock
register for register writes.

Pass in a correct password.

Comments: The bit field allocation for blkLockState is same as that in ‘GetLock() function.
Assumptions: It assumes that the Flash block is initialized using a ‘Flashinit() API.
2.7 User Test Mode Functions

2.7.1 FlashArraylntegrityCheck()

Description: This function will check the array integrity of the Flash. The user specified address
sequence is used for array integrity reads and the operation is done on the specified
blocks. The MISR values calculated by the hardware is compared to the values
passed by the user, if they are not the same, then an error code is returned.

Definition: UINT32 FlashArrayIntegrityCheck (PSSD_CONFIG pSSDConfig,
UINT32 lowEnabledBlocks,
UINT32 midEnabledBlocks,
UINT32 highEnabledBlocks,

UINT8 addrSeq,
MISR misrValue,

void (*CallBack) (void)) ;

Arguments:

Table 38. Arguments for FlashArrayIntegrityCheck()

Argument Description

Range

pSSDConfig

Pointer to the SSD
Configuration Structure.

The values in this structure are chip-dependent.
Please refer to Section 2.3 for more details.

To select the array blocks
lowEnabledBlocks |in low address space for

Bit-mapped value. Select the block in the low
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
lowEnabledBlocks. If there is not any block to be

erasing. evaluated in the low address space,
lowEnabledBlocks must be set to 0.
KYI Doc ID 023871 Rev 1 25/34

www.BDTIC.com/ST

API specification

UM1584

Table 38. Arguments for FlashArrayIntegrityCheck() (continued)
Argument Description Range
Bit-mapped value. Select the block in the middle
To select the array blocks address space whose array integrity is to be
midEnabledBlocks |in mid address space for evaluated by setting 1 to the appropriate bit of
erasin midEnabledBlocks. If there is not any block to be
9 evaluated in the middle address space,
midEnabledBlocks must be set to 0.
Bit-mapped value. Select the block in the high
To select the array blocks address space whose array integrity is to be
highEnabledBlocks | in high address space for evaluated by setting 1 to the appropriate bit of
erasin highEnabledBlocks. If there is not any block to be
9 evaluated in the high address space,
highEnabledBlocks must be set to 0.
The default sequence (addrSeq = 0) is meant to
replicate sequences normal “user” code follows,
and thoroughly check the read propagation paths.
To determine the address | This sequence is proprietary.
addrSe sequence to be used The alternative sequence (addrSeq = 1) is just
q during array integrity logically sequential.
checks. It should be noted that the time to run a sequential
sequence is significantly shorter than the time to
run the
proprietary sequence.
A structure variable
misrValue \(jglnut :;ng:a?cﬁllztgstﬁ the The individual MISR words can range from
user using the offlinye 0x00000000 - OXFFFFFFFF
MISR generation tool.
CallBack Address of void call back | Any addressable void function address. To disable
function pointer. it use NULL_CALLBACK macro.
Returns:
Table 39. Return values for FlashArraylntegrityCheck()
Type Description Possible vliues
C90FL_OK
UINT32 Successful completion or error value. C90FL_ERROR_AIC_MISMATCH
C90FL_ERROR_AIC_NO_BLOCK

Troubleshooting: The trouble shooting given here comprises of hardware errors and input parameter

error.

26/34

Doc ID 023871 Rev 1

4

www.BDTIC.com/ST

UmM1584 API specification
Table 40. Troubleshooting for FlashArrayIntegrityCheck()
Returned error bits Possible causes Solution
The MISR value calculated Re-calculate the MISR values
by the user is incorrect using the correct Data and
C90FL_ERROR_AIC_MISMATCH ' addrSeq.
The MISR.ca.IcuIated by the Hardware Error.
Hardware is incorrect.
Enable any of the blocks using
None of the Blocks are . variables lowEnabledBlocks,
C90FL_ERROR_AIC_NO_BLOCK | enabled for Array Integrity ;
Check midEnabledBlocks and
highEnabledBlock.
Comments: The inputs lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks are bit-

Assumptions:

(574

mapped arguments that are used to select the blocks to be evaluated in the
Low/Mid/High address spaces of main array. The selection of the blocks of the main
array is determined by setting/clearing the corresponding bit in lowEnabledBlocks,
midEnabledBlocks or highEnabledBlocks.

The bit allocations for blocks in one address space are: bit 0 is assigned to block 0, bit
1 to block 1, etc. The following diagrams give an example of the formats of
lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks for the C90LC module.

Refer to Appendix A: Documentation references for the valid bits configuration
depending from the specific microcontroller Flash module sectors.

Bit Allocation for Blocks in Low Address Space:

MSB LSB
31 10 9 8 1 0
| reserved | | reserved | block 9 | block 8 | block 1 block 0
Bit Allocation for Blocks in Middle Address Space:
MSB LSB
31 4 3 2 1 0
| reserved | | reserved | reserved reserved block 1 block 0
Bit Allocation for Blocks in High Address Space:
MSB LSB
31 6 5 4 1 0
| reserved | | reserved | block 5 | block 4 | | Block 1 | Block 0

If no blocks are enabled the CO90FL_ERROR_AIC_NO_BLOCK error code is

returned.

Depending on the address sequence specified the MISR values are calculated for the
enabled blocks using the corresponding sequence. If the MISR values calculated by
the hardware is not the same as the values passed to this API by the user then the
API returns the error code COOFL_ERROR_AIC_MISMATCH.

It assumes that the Flash block is initialized using a ‘Flashinit() API.

Doc ID 023871 Rev 1 27/34

www.BDTIC.com/ST

API specification

UM1584

2.7.2 FlashECCLogicCheck()

Description: This function will check the ECC logic of the Flash. The API will simulate a single or
double bit fault depending on the user input. If the simulated ECC error is not
detected, then the error code C90FL_ERROR_ECC_LOGIC is returned.

Definition: UINT32 FlashECCCLogicCheck (PSSD_CONFIG pSSDConfig,

UINT64 dataval,
UINT64 errBits,
UINT32 eccValue)
Arguments:
Table 41. Arguments for FlashECCLogicCheck()
Argument Description Range
. : . The values in this structure are chip-
pSSDConfig gomter to the SSD Configuration dependent. Please refer to Section 2.3 for
tructure. .
more details.
The 64 bits of data for which the ECC
dataValue is calpulated. The bits of.data Value Any 64-bit value.
are flipped to generate single or
double bit faults.
errBits Is a 64'b!t mask of t.h.e bits at which Any 64-bit value, except zero.
the user intends to inject error.
This is a corresponding ECC value for the
It's a 32 bit value which has to be data value passed by the user.
eccValue passed by user. This is calculated ny | Note: Same data words should be used in
using an offline ECC Calculator. offline ECC calculator and Flash ECC
logic check API.
Returns:
Table 42. Return Values for FlashECCLogicCheck()
Type Description Possible Values
C90FL_OK
INT32 ful leti lue. -
UINT3 Successful completion or error value CO0FL_ERROR_ECC._LOGIC

Troubleshooting: The trouble shooting given here comprises of hardware errors and input parameter

error.

Table 43.

Troubleshooting for FlashECCLogicCheck()

Returned error bits

Possible causes

Solution

C90FL_ERROR_ECC_LOGIC

Hardware Failure.

Hardware error.

Comments:

Depending on the errBits value, a single or double bit faults are simulated. When a

Flash read is done, if the simulated error has not occurred, then the API returns the
error code C90FL_ERROR_ECC_LOGIC.

28/34

Doc ID 023871 Rev 1

574

www.BDTIC.com/ST

UM1584

API specification

Assumptions: It assumes that the Flash block is initialized using a ‘Flashinit() API.

2.7.3 FactoryMarginReadCheck()

Description: This function will check the Factory Margin reads of the Flash. The user specified
margin level is used for reads and the operation is done on the specified blocks. The
MISR values calculated by the hardware is compared to the values passed by the
user, if they are not the same, then an error code is returned.

Definition: UINT32
UINT32
UINT32
UINT32

FactoryMarginReadCheck (PSSD_CONFIG pSSDConfig,
lowEnabledBlocks,
midEnabledBlocks,
highEnabledBlocks,

UINT8 marginLevel,
MISR misrValue,
void (*CallBack) (void));

Arguments:

Table 44. Arguments for FactoryMarginReadCheck()

Argument

Description Range

pSSDConfig

Pointer to the SSD The values in this structure are chip-dependent.
Configuration Structure. | Please refer to Section 2.3 for more details.

lowEnabledBlocks |in low address space for

Bit-mapped value. Select the block in the low
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
lowEnabledBlocks. If there is not any block to be
evaluated in the low address space,
lowEnabledBlocks must be set to 0.

To select the array blocks

erasing.

midEnabledBlocks |in mid address space for

Bit-mapped value. Select the block in the middle
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
midEnabledBlocks. If there is not any block to be
evaluated in the middle address space,
midEnabledBlocks must be set to 0.

To select the array blocks

erasing.

highEnabledBlocks |in high address space for

Bit-mapped value. Select the block in the high
address space whose array integrity is to be
evaluated by setting 1 to the appropriate bit of
highEnabledBlocks. If there is not any block to be
evaluated in the high address space,
highEnabledBlocks must be set to 0.

To select the array blocks

erasing.

To determine the margin | Selects the margin level that is being checked.

. level to be used during Margin can be checked to an erased level

marginLevel . .
factory margin read (marginLevel = 1) or to a programmed level
checks. (marginLevel = 0).
A structure variable

misrValue SZInJ len::r;?ctuhlitgﬂc:SbR the The individual MISR words can range from

; oy 0x00000000 - OxFFFFFFFF

user using the offline
MISR generation tool.

CallBack Address of void call back | Any addressable void function address. To disable
function pointer. it use NULL_CALLBACK macro.

'S7] Doc ID 023871 Rev 1 29/34

www.BDTIC.com/ST

API specification UmM1584

Returns:

Table 45. Return Values for FactoryMarginReadCheck()

Type Description Possible values
C90FL_OK
UINT32 Successful completion or error value. C90FL_ERROR_FMR_MISMATCH
C90FL_ERROR_FMR_NO_BLOCK

Troubleshooting: The trouble shooting given here comprises of hardware errors and input parameter
error.

Table 46. Troubleshooting for FactoryMarginReadCheck()

Returned error bits Possible causes Solution

The MISR value calculated | F&-calculate the MISR values
o using the correct Data and
by the user is incorrect.

C90FL_ERROR_FMR_MISMATCH address.

The MISR calculated by the
Hardware is incorrect.

Hardware Error.

Enable any of the blocks using

None of the Blocks are variables lowEnabledBlocks,

C90FL_ERROR_FMR_NO_BLOCK | enabled for Factory Margin

midEnabledBlocks and
Read Check highEnabledBlock.
Comments: The inputs lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks are bit-

mapped arguments that are used to select the blocks to be evaluated in the
Low/Mid/High address spaces of main array. The selection of the blocks of the main
array is determined by setting/clearing the corresponding bit in lowEnabledBlocks,
midEnabledBlocks or highEnabledBlocks.

The bit allocations for blocks in one address space are: bit 0 is assigned to block 0, bit
1 to block 1, etc. The following diagrams give an example of the formats of
lowEnabledBlocks, midEnabledBlocks and highEnabledBlocks for the C90LC module.

Refer to Appendix A: Documentation references for the valid bits configuration
depending from the specific microcontroller Flash module sectors.

Bit Allocation for Blocks in Low Address Space:

MSB LSB
31 10 90 8 1 0
| reserved | | reserved | block 9 | block 8 | block 1 block 0

Bit Allocation for Blocks in Middle Address Space:

MSB LSB
31 4 3 2 1 0
| reserved | | reserved | reserved reserved block 1 block 0

Bit Allocation for Blocks in High Address Space:

30/34 Doc ID 023871 Rev 1 KYI

www.BDTIC.com/ST

UmM1584 API specification

MSB LSB
31 6 5 4 1 0
| reserved | | reserved | block 5 | block 4 | | Block 1 | Block 0
If no blocks are enabled the C90FL_ERROR_FMR_NO_BLOCK error code is
returned.

The MISR values are calculated for the enabled blocks using the logical sequence. If
the MISR values calculated by the hardware is not the same as the values passed to
this API by the user then the API returns the error code
C90FL_ERROR_FMR_MISMATCH.

Assumptions: It assumes that the Flash block is initialized using a ‘Flashinit()’ API.
IS73 Doc ID 023871 Rev 1 31/34

www.BDTIC.com/ST

Documentation references uM1584

Appendix A Documentation references

32/34

SPC560D30L1, SPC560D30L3, SPC560D40L1, SPC560D40L3 32-bit MCU family
built on the embedded Power Architecture® (RMO0045, DoclD 16886)

SPC560B4x, SPC560B50, SPC560C4x, SPC560C50 32-bit MCU family built on the
embedded Power Architecture® (RM0017, DoclID 14629)

Support microcontrollers SPC560B54x, SPC560B60x and SPC560B64x (RM0037,
DoclID 15700)

SPC560P34/SPC560P40 32-bit MCU family built on the embedded Power
Architecture® (RM0046, Doc ID 16912)

32-bit MCU family built on the Power Architecture® embedded category for automotive
chassis and safety electronics applications (RM0022, DocID 14891)

32-bit MCU family built on the Power Architecture® embedded category for automotive
chassis and safety electronics applications (RM0083, DocID 018714)

SPC563M64xx - 32-bit Power Architecture® based MCU with up to 1.5 Mbyte Flash
and 111 Kbyte RAM memories (RM0015, DocID 14499)

4

Doc ID 023871 Rev 1

www.BDTIC.com/ST

UM1584

Revision history

Revision history

Table 47. Document revision history

Date

Revision

Changes

12-Nov-2012

1

Initial release.

Doc ID 023871 Rev 1

33/34

www.BDTIC.com/ST

UM1584

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - ltaly - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

34/34 Doc ID 023871 Rev 1 KYI

www.BDTIC.com/ST

	1 Introduction
	1.1 Document overview
	1.2 System overview
	1.3 Features
	1.4 System requirements
	Table 1. System requirements

	1.5 Acronyms
	Table 2. Acronyms

	2 API specification
	2.1 General overview
	2.2 General type definitions
	Table 3. Type definitions

	2.3 Configuration parameters and macros
	Table 4. SSD configuration structure field definition

	2.4 Callback notification
	2.5 Return codes
	Table 5. Return codes

	2.6 Normal mode functions
	2.6.1 FlashInit()
	Table 6. Arguments for FlashInit()
	Table 7. Return values for FlashInit()
	Table 8. Troubleshooting for FlashInit()

	2.6.2 FlashErase()
	Table 9. Arguments for FlashErase()
	Table 10. Return Values for FlashErase()
	Table 11. Troubleshooting for FlashErase()

	2.6.3 BlankCheck()
	Table 12. Arguments for BlankCheck()
	Table 13. Return values for BlankCheck()
	Table 14. Troubleshooting for BlankCheck()

	2.6.4 FlashProgram()
	Table 15. Arguments for FlashProgram()
	Table 16. Return values for FlashProgram()
	Table 17. Troubleshooting for FlashProgram()

	2.6.5 ProgramVerify()
	Table 18. Arguments for ProgramVerify()
	Table 19. Return values for ProgramVerify()
	Table 20. Troubleshooting for ProgramVerify()

	2.6.6 CheckSum()
	Table 21. Arguments for CheckSum()
	Table 22. Return Values for CheckSum()
	Table 23. Troubleshooting for CheckSum()

	2.6.7 FlashSuspend()
	Table 24. Arguments for FlashSuspend()
	Table 25. Return values for FlashSuspend()
	Table 26. SuspendState definitions
	Table 27. Suspending state and flag vs. C90LC status

	2.6.8 FlashResume()
	Table 28. Arguments for FlashResume()
	Table 29. Return values for FlashResume()
	Table 30. ResumeState Definitions

	2.6.9 GetLock()
	Table 31. Arguments for GetLock()
	Table 32. Return Values for GetLock()
	Table 33. Troubleshooting for GetLock()
	Table 34. blkLockIndicator definitions

	2.6.10 SetLock()
	Table 35. Arguments for SetLock()
	Table 36. Return Values for SetLock()
	Table 37. Troubleshooting for SetLock()

	2.7 User Test Mode Functions
	2.7.1 FlashArrayIntegrityCheck()
	Table 38. Arguments for FlashArrayIntegrityCheck()
	Table 39. Return values for FlashArrayIntegrityCheck()
	Table 40. Troubleshooting for FlashArrayIntegrityCheck()

	2.7.2 FlashECCLogicCheck()
	Table 41. Arguments for FlashECCLogicCheck()
	Table 42. Return Values for FlashECCLogicCheck()
	Table 43. Troubleshooting for FlashECCLogicCheck()

	2.7.3 FactoryMarginReadCheck()
	Table 44. Arguments for FactoryMarginReadCheck()
	Table 45. Return Values for FactoryMarginReadCheck()
	Table 46. Troubleshooting for FactoryMarginReadCheck()

	Appendix A Documentation references
	Revision history
	Table 47. Document revision history

