
www.circuitcellar.com Issue 208 November 2007 1CIRCUIT CELLAR®

readers like you and I are looking for, I’m
all over it. For instance, I have found
that Ethernet ICs supported by free
TCP/IP stacks are very popular with
Circuit Cellar readers. I’ve also discov-
ered that many readers who implement
single-IC Ethernet devices don’t even
use a TCP/IP stack. Instead, like me,
they employ simple protocol drivers
specifically written for the single-IC
Ethernet device that they are deploy-
ing in their project. I practice what I
preach, and what I’m about to intro-
duce to you is the best of both the
garage Ethernet driver and TCP/IP
stack worlds. How would you like to
solder down a single-IC Ethernet solu-
tion that provides the power of a full-
blown commercial TCP/IP stack as if
it were a set of simple Ethernet driv-
ers? Read on, my friend.

WIZnet W5100
The WIZnet W5100 is

a single-IC Ethernet solu-
tion with a built-in
TCP/IP stack. The
W5100 folks like to call
their on-chip stack a
“hardwired stack”
because all of the
W5100’s Internet-
enabling goodies are con-
tained within a compact
80-pin LQFP. In addition

I recently received an e-mail from a
reader asking why there were no in-depth
TCP/IP stack “how-to” articles.
Honestly, I had never given that much
thought because I normally forego the
formal TCP/IP stack in favor of small,
easy-to-follow, home-brewed Ethernet
driver packages. As a magazine writer,
my first guess on the lack of TCP/IP
stack magazine literature is the cost
versus interest factor. I have reviewed
many commercial TCP/IP stack prod-
ucts and I can say from experience that
you get what you pay for. My readers
simply can’t afford or financially justify
a full-blown commercial TCP/IP stack
for their applications and projects.
Thus, why should I ask them to read
about a TCP/IP product that they can’t
afford to use? My second stab at why
TCP/IP stacks aren’t in magazine
vogue is complexity. Many of you have
written articles for magazines and you
know that you are limited to so many
words per article. It would take a series
of articles to explain everything you
would need to know about TCP/IP
stacks.

I must admit that in the past I have
offered up some pretty pricey stuff in my
articles. These days, I tend to shy away
from super-expensive and complex sub-
jects for the reasons I just outlined.
However, when I see something that
may be what typical technical magazine

to the W5100’s hardwired TCP/IP
stack, other W5100 Ethernet goodies
include an integrated IEEE 802.3
10Base-T and 802.3u 100Base-TX-com-
pliant MAC and PHY. As you would
expect, the W5100’s TCP/IP stack sup-
ports all of the things you need to put an
embedded Ethernet gadget on a network.
The W5100’s TCP/IP stack supports
TCP, UDP, ICMP, and ARP, which nor-
mally provide enough protocol power for
a major portion of embedded Ethernet
LAN and Internet projects that are
launched by folks like you and me.
PPPoE is also supported by the W5100.
The inclusion of PPPoE enables you to
use the W5100 in ADSL applications.

If you’ve ever toyed with embedded
Ethernet, you know that the lack of a
transmit or receive buffer memory can

iEthernet Bootcamp

FEATURE ARTICLE by Fred Eady

Are you ready to join the Ethernet revolution? If so, it’s time to start working with WIZnet’s
W5100 hardwired TCP/IP embedded Ethernet controller. In this article, Fred helps you get
started on your first W5100-based design.

Get Started with the W5100

Photo 1—My WIZnet W5100 development board is based on the
Microchip Technology PIC18LF8722. The PIC18LF8722 is hefty enough to
enable the selective use of Direct Memory mode, Indirect Memory mode,
and SPI mode access to the W5100’s registers and buffer memory. Using
the Microchip PIC18LF8722 also puts the powerful set of Microchip devel-
opment tools at our disposal.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2006 Circuit
Cellar Inc. All rights reserved.

2 Issue 208 November 2007 CIRCUIT CELLAR® www.circuitcellar.com

be painful and hamper the perform-
ance of your embedded Ethernet device.
The embedded Ethernet IC manufactur-
ers are aware of this. Most of the single-
IC Ethernet solutions offered these days
include a fair amount of dedicated
transmit and receive buffer memory.
The W5100 is no exception, and it is
equipped with 16 KB of internal trans-
mit/receive buffer memory.

To avoid the exclusion of smaller
microcontrollers, the W5100 can com-
municate with a host of microcontrollers
using an SPI, direct memory access, or
indirect memory access. To further
accommodate the majority of today’s
newer microcontrollers, the W5100 is
powered with a 3.3-VDC power source.
This enables the W5100 to be directly
interfaced to low-power microcontrollers
that also run on a 3.3-VDC power rail.
The W5100 can also be integrated into
legacy 5-VDC systems because its I/O
subsystem is 5-V tolerant.

The W5100 supports up to four
simultaneously active sockets. Thus,
all you need to know is basic socket
programming because you will be
shielded from the W5100’s internal
Ethernet engine operations. The W5100
is designed to provide the bulk of every-
thing needed to produce a working

embedded Ethernet device while being
easy to use. The only things the W5100
won’t do for you are write its own
code and handle IP fragmentation.

I just happen to have a couple of
W5100 ICs. Let’s assemble a W5100-
based device from scratch. Once we’ve
got the W5100 hardware realized,
we’ll put together some Microchip
Technology PIC18LF8722 driver code
for our W5100 development board.

BUILD A DEVELOPMENT BOARD
For your convenience, I am supplying

the PCB layout for an EDTP Electronics-
designed W5100 device (see Photo 1).
The PCB layout file on the Circuit Cellar
FTP site is in ExpressPCB format. I chose
ExpressPCB because it is a relatively
inexpensive PCB manufacturing service
that is available to everyone.
ExpressPCB software is free for download,
and the quality of ExpressPCB PCBs is
excellent. Another plus associated with
using ExpressPCB is that you don’t
have to design your W5100 PCB from
scratch. You can use my ExpressPCB PCB
template and modify it to meet your
needs. If you already have a favorite PCB
CAD program, you can easily port my
design to your CAD format using my
original drawing as a guide. As you would

expect, I haven’t done anything to com-
plicate the W5100 project board design.

The EDTP WIZnet W5100 project
board is basically a standard
PIC18LF8722 configuration that is
wired into a basic W5100 configura-
tion. As you can see in Figure 1, the
PIC18LF8722 has enough I/O to wire-in
the 15-bit W5100 address bus, the 8-bit
W5100 data bus, and all of the W5100
control signals (*RD, *WR, *CS, and
*INT) with I/O to spare. In addition to
wiring in the W5100 in Direct Bus
Interface mode (A0:A14 with D0:D7
and control signals), I attached the
W5100’s SPI portal and an SPI select
pin to the PIC18LF8722’s SPI I/O inter-
face, which enables you to access the
W5100’s internals in W5100 SPI
mode. Because the W5100’s address lines
are all pulled down internally, the
Indirect Bus Interface mode of opera-
tion, which uses only two of the 15
address lines, all of the eight data lines,
and all of the control signals can also be
easily implemented with the EDTP
WIZnet W5100 design.

All of the PIC18LF8722’s 80 I/O and
power lines are pinned out in blocks
of 20 pins to standard 0.1″ header
pads. The PIC18LF8722 is supported
by a 20-MHz clock, a Microchip-certi-

Figure 1—Nothing much I need to say about what you see here. However, the PIC18LF8722 does remind me of my favorite Military Channel quote: “It’s just a good, solid tank.”

www.circuitcellar.com CIRCUIT CELLAR® Issue 208 November 2007 3

fied ICSP programming/debugging por-
tal, and a regulation RS-232 port. I did
not include any power supply circuitry
because a Digi-Key-supplied 3.3-VDC
wall wart does a great job powering the
W5100 project board and the external
programming/debugging hardware.

On the W5100 side of the EDTP
W5100 development board, the W5100
is supported by the required 25-MHz
crystal and an all-in-one can of magnet-
ics (see Figure 2). I chose to incorporate
the U.D. Electronic RDI-125BAG1A
pulse transformer for a couple of rea-
sons. First, the RDI-125BAG1A footprint
fits exactly into the old packet whacker
pulse transformer footprint, for which I
already have a time-proven ExpressPCB
pad layout. Second, like the old packet
whacker mag jack package, the RDI-
125BAG1A has a pair of built-in indica-
tor LEDs in addition to a pair of trans-
mit and receive pulse transformers and
the required internal terminating resis-
tors. If you’ve ever worked with the
EDTP ASIX-based and Microchip-based
Ethernet development boards, you’ll
notice that the W5100 PHY connections

are very similar to the EDTP Electronics
ASIX and Microchip ENC29J60 designs.

You may wonder why there are no
bypass components on the W5100’s
internally generated 1.8-VDC supply.
That question was posted on the

W5100 online technical support ques-
tion-and-answer board. The W5100
engineering answer was to follow the
path that was set forth by the W5100
reference schematic, which is void of
1.8-VDC supply bypass components.

Because the EDTP WIZnet W5100
project board is designed to help you get
your W5100 design up and running
quickly, I attached all of the W5100 LED
indicator lines to LEDs. The pair of RDI-
125BAG1A LEDs is connected to the
W5100’s LINKLED and RXLED status
indicator I/O pins. I pulled the TXLED,
COLLED, FDXLED, and SPDLED indi-
cators out to discrete LEDs, which you
can see in Photo 1 hanging above the
city of WIZnet W5100 0805 supporting
SMT components. I have also provided a
jumper to select W5100 SPI mode if you
choose to run your W5100 in that
manner. The only oddity I need to
point out is the 12.3-kΩ reset resistor
pair you see in Figure 2, which is
attached to the W5100’s RSET_BG
pin. A bird’s-eye view of the W5100
portion of the EDTP WIZnet W5100
development board is in Photo 2.

Photo 2—There’s nothing here you can’t handle. With the
exception of the 12.3-kΩ resistor pair, the line of compo-
nents closest to the W5100 is all filter and bypass compo-
nents. The PHY components are in the line closest to the
pulse transformer. Note the status LEDs and the SPI select
jumper at the port and starboard extremes of this photo.

Figure 2—You can get your hands on most everything here from Digi-Key or Mouser Electronics. My friends at Saelig supply the W5100 IC. Saelig doesn’t stock the RD1-
125BAG1A on its site, but you can probably get the pulse transformer from many of the vendors listed on WIZnet’s web site.

4 Issue 208 November 2007 www.circuitcellar.com

the definition code that lays out all of
the W5100’s internal register addresses.
The W5100 factory include file also con-
tains definitions of all of the W5100
register contents, which I’m sure will
come in handy later. I lost a bunch of
time chasing my soldering snafu, but I
gained some of that time back by
Microchip-izing the original AVR
include file.

My first official W5100 firmware act
was to punch the W5100 into a hardware
reset (see Listing 1). Since I went to all of
the trouble to fix those W5100 address
and data solder joints, I’m going to run
in W5100 Direct Bus Interface mode.
Running in Direct Bus Interface mode
means that I don’t have to touch the

W5100 Mode register, which happens to
be the very first W5100 Common regis-
ter. So, we can run our initial
W5100/PIC18LF8722 I/O test on the set
of Gateway Address registers at address
range 0x0001:0x0004. The Gateway
Address register addresses GAR0:GAR3
are defined in the include file I convert-
ed, which I renamed w5100_pic.h. As
you can see in Listing 1, I put together
some basic PIC18LF8722 I/O routines
to read and write the W5100 registers.
Then, I wrote the contents of the
gwayipaddrc array to the W5100’s
Gateway Address Common register set.
To make sure I performed the Common
register write, I turned around and read
the contents of GAR0:GAR3 into an array

CIRCUIT CELLAR®

As you can see, the W5100 hard-
ware is a no-brainer. Before we move
on to do some W5100 coding, what
you don’t see in Photo 1 is the heart-
beat LED I attached to RG4 on the
PIC18LF8722. It’s just there as a warm
fuzzy to let me know that things are
moving on the firmware side. I flash
the RG4 LED at a rate of 1 Hz via the
PIC18LF8722’s Timer3 interrupt-driv-
en real-time clock code.

WIZNET W5100 GARAGE CODE
From a WIZnet W5100 programmer’s

point of view, the W5100 consists of
Common registers, Socket registers, TX
memory, and RX memory. The W5100’s
Common registers consist mostly of
W5100 local IP and MAC addressing
fields. Also included within the confines
of the Common registers are RX and TX
memory sizes and PPP/PPPoE parame-
ters. It looks like we will be populat-
ing most of the Common registers. So,
let’s kill two birds with one stone and
use the Common registers to test the
PIC18LF8722 driver hardware by writ-
ing some basic PIC18LF8722 routines to
read and write the W5100’s registers. I’ll
use the HI-TECH PICC-18 C compiler
in conjunction with MPLAB and a
Microchip Technology REAL ICE as
my W5100 firmware brewing tools.

About 18 hours later, I returned to
write this sentence. I could not get
my W5100 to communicate correctly
with the PIC18LF8722 to save my life.
A cursory look at the W5100 project
board didn’t indicate any problems. So, I
turned to my C code to see if I could find
the bug. As it turns out, my C was fine,
but my eyes deceived me. A great num-
ber of the PIC18LF8722 W5100 address
and data I/O pins simply did not get sol-
dered to the W5100 PCB. I use an indus-
trial hot air reflow machine to mount
fine-pitched ICs like the W5100 on a reg-
ular basis. I’ve done so many of them
that I take the process for granted. Well,
this time the reflow machine bit me.

In the meantime, I managed to put
some W5100 I/O code together. The
official factory W5100 driver code I have
is written for AVR devices. So, rather
than build my own PIC W5100 include
file, I de-Atmeled the factory-supplied
W5100 include file. Right now, all I real-
ly want from the W5100 include file is

Listing 1—You won’t find this level of coding in the W5100 datasheet examples. Nothing will whizz about with-
out these base register I/O routines.

char gwayipaddrc[4] = {192,168,0,1};
char svrmacaddrc[6];

#define make8(var,offset) ((unsigned int)var >> (offset * 8)) & 0x00FF
#define TO_WIZ TRISF = 0x00
#define FROM_WIZ TRISF = 0xFF

void wr_wiz_addr(unsigned int addr)
{

addr_hi = (make8(addr,1));
addr_lo = addr & 0x00FF;

}
void wr_wiz_reg(char reg_data,unsigned int reg_addr)
{

TO_WIZ;
wr_wiz_addr(reg_addr);
data_out = reg_data;
clr_WR;
NOP();
set_WR;
FROM_WIZ;

}
char rd_wiz_reg(unsigned int reg_addr)
{

char data;
wr_wiz_addr(reg_addr);
clr_RD;
NOP();
data = data_in;
set_RD;
return(data);

}

clr_RSET;
msecs_timer2 = 0;
while(msecs_timer2 < 2);
set_RSET;
addri = GAR0;
for(i8=0;i8<4;++i8)

wr_wz_reg(gwayipaddrc[i8],addri++);
addri = GAR0;
for(i8=0;i8<4;++i8)

svrmacaddrc[i8] = rd_wz_reg(addri++);

www.circuitcellar.com CIRCUIT CELLAR® Issue 208 November 2007 5

called svrmacaddrc. You can imagine
how pleased I was to see the gateway IP
address represented in hexadecimal
format in the MPLAB WATCH win-
dow shot you see in Photo 3. I tested a
bit further by using my W5100 register
read routines to read the RTR0 Common
register pair, which defaults to 0x07D0
and the RCR Common register that fol-
lows and defaults to 0x08. All went well.
So, I initialized the W5100’s gateway,
MAC address, subnet mask, and IP
address Common registers.

The next step on our way to putting
the W5100 project board online involves
setting up and defining the socket mem-
ory information. We’ll use the default of
2-KB-per-socket sizing, which means we
don’t touch the RMSR (RX memory
size) and TMSR (TX memory size)
default register values (0x55). As you
can see in Listing 2, all we are really
doing is establishing the receive and
transmit memory boundaries for each of
the four sockets that the W5100 sup-
ports. With the socket memory alloca-
tion task behind us, we can concen-
trate on what it takes to manipulate a
W5100 socket.

The topmost portion of Listing 3 is
the code we will execute to open a
W5100 UDP socket. The first order of
business is to tell the W5100 what type
of socket we want to work with. We are
working with UDP at the moment. So, I
loaded the socket 0 Mode register with a
UDP socket value. I already have an
application (EDTP Internet test panel)

that will send ASCII characters to
well-known port 7 and, as you can see
in Listing 3, I’ve loaded the socket 0
Source Port register with 0x0007. We’ve
already loaded our IP and MAC infor-
mation. Thus, the addition of the UDP
source port value enables us to open a
UDP socket. From the proliferation of
zeros in the Listing 3 socket initializa-
tion code, it should be obvious that we
will open the W5100’s socket 0 in

UDP mode.
Once the socket comes online, we

have the power to send and receive UDP
datagrams. There are a couple of ways to
sense an incoming UDP datagram. We
can poll the socket’s Received Size regis-
ter or look for the RECV bit in the sock-
et’s Interrupt register. As you can see
in the UDP datagram receive code that
occupies the center section of Listing 3, I
have chosen to use the latter.

An incoming UDP datagram sets the
RECV bit of the socket’s Interrupt regis-
ter. Our first reaction to this is to clear
the RECV bit by writing a “1” to corre-
spond to the RECV bit’s position within
the Interrupt register. The W5100 takes
care of checksums internally and we, as
programmers, never see them in our
UDP datagram information. The size of
the incoming UDP datagram is automat-
ically posted in the socket’s Receive Size
register. Here, we retrieve the contents
of the Receive Size register and place the
value into the get_size variable. I used
the W5100’s datasheet variable names
where possible to make it a bit easier for
you to compare my W5100 driver code
with the UDP pseudocode flow example
in the W5100 datasheet. The receive
buffer’s read pointer value is kept in the

Photo 3—With the success of reading back what I stored in the WIZnet gateway IP address register, we’ve estab-
lished a base of operations for reading and writing the W5100’s internal registers.

Listing 2—The W5100 datasheet talks about this with pseudocode. Here’s my translation.

#define chip_base_address 0x0000
#define RX_memory_base_address 0x6000
#define gS0_RX_BASE chip_base_address + RX_memory_base_address
#define gS0_RX_MASK 0x0800 - 1
#define gS1_RX_BASE gS0_RX_BASE + (gS0_RX_MASK + 1)
#define gS1_RX_MASK 0x0800 - 1
#define gS2_RX_BASE gS1_RX_BASE + (gS1_RX_MASK + 1)
#define gS2_RX_MASK 0x0800 - 1
#define gS3_RX_BASE gS2_RX_BASE + (gS2_RX_MASK + 1)
#define gS3_RX_MASK 0x0800 - 1
#define TX_memory_base_address 0x4000
#define gS0_TX_BASE chip_base_address + RX_memory_base_address
#define gS0_TX_MASK 0x0800 - 1
#define gS1_TX_BASE gS0_TX_BASE + (gS0_TX_MASK + 1)
#define gS1_TX_MASK 0x0800 - 1
#define gS2_TX_BASE gS1_TX_BASE + (gS1_TX_MASK + 1)
#define gS2_TX_MASK 0x0800 - 1
#define gS3_TX_BASE gS2_TX_BASE + (gS2_TX_MASK + 1)
#define gS3_TX_MASK 0x0800 - 1

6 Issue 208 November 2007 CIRCUIT CELLAR® www.circuitcellar.com

socket’s Read Pointer register. We will
use the read pointer value to form the
basis for the variable get_offset,
whose value we will combine with the
socket’s receive buffer base address to
calculate the beginning address of the
UDP datagram’s header. The UDP
datagram header offered by the W5100
is made up of 4 bytes of destination IP
address, 2 bytes of destination port
address, and 2 bytes of data size informa-
tion. Thus, the header_size variable
value is eight. Once all of the addressing
calculations have been made, we can use
our W5100 read register routine to
store the data away in the
PIC18LF8722’s SRAM for later.

Logically, what is not header infor-
mation must be data information
because we are protected from check-
sums by the W5100 architecture.
With that, we can deduce that the
udp_data_size variable will contain
the number of data bytes we need to
retrieve and store. Again, using our
home-brewed W5100 I/O code, we read
the data from the W5100 receive buffer
memory and store it in the appropriate
PIC18LF8722 SRAM locations. Our
absorption of the UDP datagram and
its header is complete. We end our
receive session by issuing the RECV
command in the socket’s Command reg-
ister, which updates the receive buffer
pointers. For those of you who are fol-
lowing along with the pseudocode flow
in the W5100 datasheet, note that the
udp_data_size variable is not a
W5100 datasheet variable. It’s a Fred
variable.

Sending a UDP datagram is very simi-
lar to receiving one. We’ll reuse the
information we received earlier and
bounce a UDP message back at the
sender. Recall that our received UDP
datagram header contained a destination
IP address and a destination UDP port
value. We thought ahead and stored
both of the header values. Now all we
have to do is retrieve them from the
PIC18LF8722’s SRAM and load them
into the proper W5100 Socket registers.
I begin my UDP datagram transmission
in that manner within the bottom por-
tion of the code in Listing 3. Using the
socket’s transmit buffer write pointer, I
calculate where in the W5100 transmit
buffer to begin stuffing the data I wish

Listing 3—Think about it. All you ever do with any communications device is receive and transmit. I pulled the
logic behind this code from the pseudocode flow in the W5100’s datasheet.

//SOCKET INTI**
do{
wr_wiz_reg(Sn_MR_UDP,Sn_MR(0)); //protocol = UDP
wr_wiz_reg(0x00,Sn_PORT0(0)); //well-known ECHO port
wr_wiz_reg(0x07,Sn_PORT1(0));
wr_wiz_reg(Sn_CR_OPEN,Sn_CR(0)); //give the open command
if(rd_wiz_reg(Sn_SR(0)) != SOCK_UDP) //wait for the socket to come online

wr_wiz_reg(Sn_CR_CLOSE,Sn_CR(0));
}while(rd_wiz_reg(Sn_SR(0)) != SOCK_UDP);

//RECEIVE**
do{
//look for incoming UDP datagrams
i16 = rd_wiz_reg(Sn_IR(0));
}while(i16 == 0);
wr_wiz_reg(0x04,Sn_IR(0));
//get the datagram size
hi_byte = rd_wiz_reg(Sn_RX_RSR0(0));
lo_byte = rd_wiz_reg(Sn_RX_RSR1(0));
get_size = make16(hi_byte,lo_byte);
//get the datagram's buffer offset
hi_byte = rd_wiz_reg(Sn_RX_RD0(0));
lo_byte = rd_wiz_reg(Sn_RX_RD1(0));
get_offset = make16(hi_byte,lo_byte) & gS0_RX_MASK;
//calculate the datagram's starting buffer address
get_start_address = gS0_RX_BASE + get_offset;
//UDP header size
header_size = 8;
//store the UDP header information
addri = get_start_address;
for(i8=0;i8<header_size;++i8)
{

packet[ip_destaddr+i8] = rd_wiz_reg(addri++);
++get_offset;

}
//store the UDP data
get_start_address = gS0_RX_BASE + get_offset;
udp_data_size = get_size - header_size;
addri = get_start_address;
for(i8=0;i8<udp_data_size;++i8)
{

packet[UDP_data+i8] = rd_wiz_reg(addri++);
++get_offset;

}
//update the receive buffer pointers
wr_wiz_reg(Sn_CR_RECV,Sn_CR(0));

//TRANSMIT***
//load destination IP address
addri = Sn_DIPR0(0);
for(i8=0;i8<4;++i8)

wr_wiz_reg(packet[ip_destaddr+i8],addri++);
//load destination port address
addri = Sn_DPORT0(0);
for(i8=0;i8<2;++i8)

wr_wiz_reg(packet[UDP_srcport+i8],addri++);
//get transmit buffer offset
hi_byte = rd_wiz_reg(Sn_TX_WR0(0));
lo_byte = rd_wiz_reg(Sn_TX_WR1(0));
get_offset = make16(hi_byte,lo_byte) & gS0_TX_MASK;
//calculate transmit data buffer start address
get_start_address = gS0_TX_BASE + get_offset;
//load data into transmit buffer
addri = get_start_address;
for(i8=0;i8<udp_data_size;++i8)
{

wr_wiz_reg(packet[UDP_data+i8],addri++);
++get_offset;

}
//update transmit buffer pointer
wr_wiz_reg((make8(get_offset,1)),Sn_TX_WR0(0));
wr_wiz_reg((make8(get_offset,0)),Sn_TX_WR1(0));
//send data
wr_wiz_reg(Sn_CR_SEND,Sn_CR(0));
while(rd_wiz_reg(Sn_CR(0)));

to transmit. I then transfer the previous-
ly stored UDP datagram data from the
PIC18LF8722’s SRAM into the W5100’s
transmit buffer. The W5100 will trans-
mit the data located between the sock-
et’s transmit read pointer and transmit
write pointer. So, I must update the
transmit write pointer by increasing it
by the number of bytes I need to trans-
mit. Once that’s done, I issue the SEND
command and wait for the send success
signal, which is a cleared socket
Command register. I can now issue a
CLOSE command in the socket’s
Command register to close the socket or
send or receive another UDP datagram.

CONGRATULATIONS!
You have completed W5100 bootcamp.

In addition to the W5100 register I/O
code, UDP transmit code, and UDP
receive code, you have a basic and
flexible W5100 hardware design to
work with.

Here’s a hint that will help you
determine very early on where your
W5100 design stands: Execute only the
code through loading the IP address.
Load the gateway address, the MAC
address, the subnet mask, and the IP
address. Don’t open any sockets. At
this point, you can PING your W5100
design. If you get good PING returns,
your PHY hardware and your W5100
register I/O code are good to go.
You’ve also tested and confirmed the
operation of your W5100 address, data,
and control signals. Bringing up UDP
is a fun and easy way to get to know
the W5100. The EDTP Internet test
panel is a UDP application that runs
on your PC. The EDTP Internet test
panel is available for download from
www.edtp.com. I

www.circuitcellar.com CIRCUIT CELLAR® Issue 208 November 2007 7

SOURCES
EDTP Internet test panel
EDTP Electronics, Inc.
www.edtp.com

HI-TECH PICC-18 C Compiler
HI-TECH Software
www.htsoft.com

PIC18LF8722 Microcontroller, REAL
ICE, and MPLAB
Microchip Technology, Inc.
www.microchip.com

RDI-125BAG1A Pulse transformer
U.D. Electronic Corp.
www.ude-corp.com

W5100 TCP/IP Ethernet controller
WIZnet, Inc.
www.ewiznet.com

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/208.

Fred Eady (fred@edtp.com) has more
than 20 years of experience as a sys-
tems engineer. He has worked with
computers and communication sys-
tems large and small, simple and
complex. His forte is embedded-sys-
tems design and communications.

