Virtex-6 FPGA GTX Transceiver Signal Integrity Simulation Kit User Guide

For Mentor Graphics HyperLynx

UG376 (v1.1) July 20, 2010

EXILINX.

www.BDTIC.com/XILINX

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
03/02/10	1.0	Initial Xilinx release.
07/20/10	1.1	Updated SIS Kit version from 1.0 to 1.1 in Table 1-1 and Installation and Requirements, page 7.

Revision History 2
Preface: About This Guide
Guide Contents
Additional Support Resources
Typographical Conventions
Online Document
Chapter 1: Virtex-6 FPGA GTX Transceiver
Signal Integrity Simulation Kit
Introduction
Release Notes for the GTX Transceiver SIS Kit
Installation and Requirements 7 SIS Kit Versions 1.1 and 1.0 7
File Hierarchy
Getting Started
To Open an Example
To Modify the Driver Settings
Customizing the Channel Representation
Modifying the Receiver Settings
Running the Simulation 14
Appendix A: Frequently Asked Questions

quentiy Askea Qi PP

All Versions			17
--------------	--	--	----

Appendix B: HSPICE and HyperLynx/Eldo Correlation Results

Introduction	21
GTX REFCLK Model Correlation	23
GTX Transceiver Model Correlation	26

UG376 (v1.1) July 20, 2010 WWW.BDTK Milling Market Market SIS Kit

Preface

About This Guide

This guide describes the Virtex®-6 FPGA GTX Transceiver Signal Integrity Simulation (SIS) Kit for Mentor Graphics HyperLynx.

Guide Contents

This user guide contains the following sections:

- Chapter 1, Virtex-6 FPGA GTX Transceiver Signal Integrity Simulation Kit, explains installation, configuration, and use of the HyperLynx software to simulate Virtex-6 FPGA GTX transceivers.
- Appendix A, Frequently Asked Questions, explains HyperLynx error messages.
- Appendix B, HSPICE and HyperLynx/Eldo Correlation Results, contains the correlation results and explains how they were derived.

Additional Support Resources

To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

Typographical Conventions

This document uses the following typographical conventions. An example illustrates each convention.

Convention	Meaning or Use	Example	
Courier font	Messages, prompts, and program files that the system displays	speed grade: - 100	
Courier bold	Literal commands that you enter in a syntactical statement	ngdbuild design_name	
Helvetica bold	Commands that you select from a menu	$File\toOpen$	
	Keyboard shortcuts	Ctrl+C	

Convention	Meaning or Use	Example	
Italic font	References to other documents	See the Virtex-6 FPGA Configuration Guide for more information.	
	Emphasis in text	The address (F) is asserted <i>after</i> clock event 2.	
Square brackets []	An optional entry or parameter. However, in bus specifications, such as bus[7:0] , they are required.	ngdbuild [option_name] design_name	
Braces { }	A list of items from which you must choose one or more	lowpwr ={on off}	
Vertical bar	Separates items in a list of choices	lowpwr ={on off}	
Vertical ellipsis • • •	Repetitive material that has been omitted	IOB #1: Name = QOUT' IOB #2: Name = CLKIN'	
Horizontal ellipsis	Repetitive material that has been omitted	allow block block_name loc1 loc2 locn;	

Online Document

The following conventions are used in this document:

Convention	Meaning or Use	Example	
Blue text	Cross-reference link to a location in the current document	See the section Additional Support Resources for details. Refer to Overview, page 7 for details.	
Blue, underlined text	Hyperlink to a website (URL)	Go to <u>http://www.xilinx.com</u> for the latest documentation.	

Chapter 1

Virtex-6 FPGA GTX Transceiver Signal Integrity Simulation Kit

Introduction

The Virtex®-6 FPGA GTX Transceiver Signal Integrity Simulation (SIS) Kit for Mentor Graphics HyperLynx provides a simulation environment for evaluating channel designs for Virtex®-6 FPGA GTX transceivers. This document explains how to install the SIS Kit and associated files, gives an overview of the SIS Kit-file hierarchy, and describes the steps for getting started with simulations. The appendices describe how the HyperLynx and Eldo simulation results are correlated with the HSPICE simulations. Results are documented with waveform plots.

Additional information on the models, ports, and options is available in UG375, Virtex-6 FPGA GTX Transceiver Signal Integrity Simulation Kit User Guide for Synopsys HSPICE, and UG366, Virtex-6 FPGA GTX Transceivers User Guide.

Release Notes for the GTX Transceiver SIS Kit

Table 1-1 shows the UG376 document version and the associated Virtex-6 FPGA GTX Transceiver SIS Kit version.

Table 1-1: Document and SIS Kit Version Correlation

UG376 Version	SIS Kit Version
1.1	1.1

Installation and Requirements

The software requirements and the installation instructions for the GTX Transceiver SIS Kit are provided in this section.

SIS Kit Versions 1.1 and 1.0

The requirements for the GTX Transceiver SIS Kit are:

- HyperLynx 8.0, build number 433 or later
- Microsoft Windows XP Professional, version 2002, Service Pack 3

To install the GTX Transceiver SIS Kit, follow these steps:

1. Unzip the .zip file into any directory, provided that the path name does not contain any spaces.

2. To prevent errors or warnings when the project files are moved to a different directory (or computer), replace the path listed on the last line in the .pjh files (located in the HL_projects subdirectory) with a relative path as follows: INIFILE=.\V6_kit.ini.

Note: HyperLynx automatically replaces this relative path with a full path when opening the project. Therefore, this change should be made every time the project is moved or copied to a different location.

3. For better convergence, set ForceFixedStep = 0 under the [SPICE] keyword in the bsw.ini file, in the HyperLynx Installation directory.

File Hierarchy

The top-level directory into which the ZIP file is unzipped contains several subdirectories. The HyperLynx project files are all located in the hl_projects subdirectory. Any example project can be opened by double-clicking on the respective .ffs file in Windows Explorer or by starting HyperLynx, going to **File/Open Schematic...**, and then clicking on **Open Linesim File**.

Model files are located in the subcircuits under the top-level project directory.

Subcircuits are referenced by the HyperLynx schematic symbols. The .inc files containing the simulation parameters are located under the testbenches directory along with the configurator executable programs. There should be no reason to manually modify these files. All modifications are made via the HyperLynx Graphical User Interface.

Getting Started

The following steps must be observed to run simulations:

To Open an Example

The user can double-click on any .ffs file in Windows Explorer to start a project in HyperLynx. This user guide uses GTX_Tx_channel_GTX_Rx as an example, but this discussion applies to the other testbenches as well. The user can double-click on the GTX_RefClk.ffs or the GTX_Tx_channel_GTX_Rx.ffs file in the hl_projects directory in Windows Explorer to start HyperLynx. Because the latter file is the more complicated testbench, the remaining part of this document discusses that testbench only.

HyperLynx should start without any error or warning messages and look as shown in Figure 1-1.

Note: The J0 symbol must appear unconnected on the schematics screen. This symbol should not be removed from the schematics because it is used to insert global simulation parameters, such as **.TEMP** and **.option** compat (the HSPICE compatibility switch for Eldo), into the project. These parameters are managed automatically by the configurator programs. Removing J0 results in incorrect simulations.

To Modify the Driver Settings

1. Double-click on U1 to open the **Assign Models** dialog box and single-click on the **Configure Model** button, as shown in Figure 1-2.

ssign Models				1.4
Pins:	Buffer is an	nput Dutput		
U1.1 U1.2 ← U2.1 ← U2.2	Part name: File: V6GTX_Tx.cir Model: V6GTX_Tx			Select Remove Help
	Port	C	ircuit Connectio	on 🕴
	IP_V6_GTX_external	Stimulus	3	
	MGTTXP_V6_GTX	U1.1		
	MGTTXN_V6_GTX	U1.2		
	CLKP_V6_GTX	NC		
	CLKN_V6_GTX	NC		
	Approx. Output Switching Tim	e = 0.3	3 ns 🔻 0.3	r
8	Configure Model	Edit Model	File Edit	Parameters
Reference U1 designator: Pin name: 1				Copy Paste Paste All
		ок	Cancel	Apply

Figure 1-2: Assign Models

For more information on the driver settings, refer to <u>UG366</u>, *Virtex-6 FPGA GTX Transceivers User Guide*.

Important. The global simulation temperature setting can be changed in either driver or receiver configurators. However, being a global setting in Eldo, the last change made is applied to the entire circuit, regardless of whether the TX or RX configurator was used to make that change.

Note: Be sure to click only once, because each click starts a new instance of the configurator. If multiple instances of the configurators are open, close all but one of them by clicking on their **Cancel** button.

2. Make the desired changes to any of the parameters, and press the **OK** button to exit. This writes the necessary configuration files for the simulation.

Note: The frequency of the pulse train or the time of the bit interval specified in the oscilloscope *must* match the Data rate setting in the TX configurator (see Figure 1-3). Each setting must be done explicitly.

		Applicatio	m: HyperLynx 💌
Temperature corner:	Typical	•	Global simulation temperature: 25 C
Settings			
Data rate:	6.5	Gbit/s	0.15 Gb/s 6.5 Gb/s
Silicon process corner:	Typical	•	TX termination control (TERMINATION_CTRL_[4:0]_TX): 10101
Voltage corner:	Typical	•	TX supply (MGTAVCCTX): 1.0 V TX termination supply (MGTAVTTTX): 1.2 V
utput swing (Main Cursor):	15	0=min 15=max	TXDIFFCTRL[3:0]: 1111
Post Cursor Pre-Emphasis:	0	0=min 31=max	TXPOSTEMPHASIS[4:0]: 00000
Pre Cursor Pre-Emphasis:	0	0=min 15=max	TXPREEMPHASIS[3:0]: 0000
Integer to binary convers	ion table		
0=00000 1=00001 4=00100 5=00101 8=01000 9=01001 12=01100 13=01101	2=00010 6=00110 10=01010 14=01110	3=00011 7=00111 11=01011 15=01111	15=10000 17=10001 18=10010 19=10011 20=10100 21=10101 22=10110 23=10111 24=11000 25=11001 25=11010 27=11011 28=11100 29=11101 30=11110 31=11111

Figure 1-3: Configure GTX Transmitter

The setting for the **Approx. Output Switching Time = 0.3 ns** drop-down box shown in Figure 1-4 is meant to be the SPICE driver output (not stimulus) rise or fall time and is used to set the step size and estimate crosstalk effects in the simulation. The value of this parameter can be changed if desired. Relaxing this parameter allows the user to select larger simulation time steps in the **Run Eldo/ADMS Simulation** dialog box, which might result in non-converging simulations.

Pins: U1.1 Select ● U1.2 • Part name: Remove • U2.1 • File: V6GTX_Tx. Remove • U2.2 Port Circuit Connection P_V6_GTX_Tx Help • U2.2 Port Circuit Connection P_V6_GTX_Circuit Connection P_V6_GTX_Circuit Connection P_V6_GTX_external Stimulus MGTTXP_V6_GTX U1.1 MGTTXP_V6_GTX U1.2 CLKN_V6_GTX NC CLKN_V6_GTX NC Stimulus Vicing Time = 0.3 ns 0.3 ns Reference U1 Stimulus Vicin = 1 V Stimulus Vicin = 0 V Copy Paste Paste All Stimulus Vicin = 0 V Copy Paste	- 1	Buffer is an	Input Output		-C
Port Circuit Connection IP_V6_GTX_external Stimulus MGTXP_V6_GTX U1.1 MGTXP_V6_GTX U1.2 CLKP_V6_GTX NC CLKN_V6_GTX NC Approx. Output Switching Time = 0.3 ns Simulus V ligh = 1 Simulus V low = 0 V	Pins: U1.1 U1.2 ← U2.1 ← U2.2	Part name: File: V6GTX_Tx.cir Model: V6GTX_Tx		Se Re	lect move Help
PP_V6_GTX_external Stimulus MGTTXP_V6_GTX U1.1 MGTTXN_V6_GTX U1.2 CLKP_V6_GTX NC CLKV_V6_GTX NC Approx. Output Switching Time = 0.3 ns Stimulus Vich = 1 V Stimulus Vich = 1 V Stimulus Vich = 0 V Paste All		Port	Circuit	Connection	_
MGTTXP_V6_GTX U1.1 MGTTXP_V6_GTX U1.2 CLKP_V6_GTX U1.2 CLKP_V6_GTX NC Approx. Output Switching Time = 0.3 ns Stimulus Vicinity Time = 0.3 ns Stimulus Vicinity Time = 0.3 ns Stimulus Vicinity Time = 0.3 ns Pin name: 1		IP_V6_GTX_external	Stimulus		
MGTXNL_V6_GTX U1.2 CLKP_V6_GTX NC CLKN_V6_GTX NC Approx. Output Switching Time = 0.3 ns Approx. Output Switching Time = 0.3 ns Stimulus V high = 1 V Stimulus V low = 0 V Paste Paste		MGTTXP_V6_GTX	U1.1		
CLKP_V6_GTX NC CLKV_V6_GTX NC Approx. Output Switching Time = 0.3 ns Approx. Output Switching Time = 0.3 ns Stimulus V lob = 1 V Stimulus V low = 0 V Pin name: 1		MGTTXN_V6_GTX	U1.2		
CLKN_V6_GTX NC Approx. Output Switching Time = 0.3 ns 0.3 ns Approx. Output Switching Time = 0.3 ns Edit Parameters Stimulus Viola = 1 V Stimulus Viola = 0 V Pin name: 1		CLKP_V6_GTX	NC		
Approx. Output Switching Time = 0.3 ns 0.3 ns Approx. Output Switching Time = 0.3 ns Edit Parameters Stimulus V high = 1 V Stimulus V low = 0 V Pin name: 1		CLKN_V6_GTX	NC		~
Approx. Output Switching Time = 0.3 ns Simulus V high = 1 V Stimulus V low = 0 V Pin name: 1 Copy Paste Paste All		Approx. Output Switching Tir	me = 0.3 ns	• 0.3	n
Reference designator: U1 Pin name: 1 Copy Paste All		Approx. Output Switching Tir Stimulus V high = 1 V	ne = 0.3 ns	Edit Param	eters
	Reference designator: U1 Pin name: 1	Stimulus V low = 0 V		Past	py ste e All

Figure 1-4: Output Switching Time

The drop-down box shown in Figure 1-4 also has two additional entries for the High and Low voltage levels of the stimulus generated by HyperLynx. Do not modify these numbers because they are closely related to the content of the netlist. The voltage levels in the GTX_RefClk.ffs testbench must be set to -1V for Stimulus V low

and +1V for Stimulus V high. In the rest of the testbenches, they should be set to 0V for Stimulus V low and +1V for Stimulus V high.

- 3. When the desired changes are made, click on the **OK** button to close the **Assign Models** dialog.
- 4. When finished making changes to the parameters, click on the **OK** button to close the **Assign Models** dialog box.

Customizing the Channel Representation

Use the available HyperLynx toolbox to add S-parameter models, transmission lines, vias, and so forth.

The provided example contains an S-parameter model representing a 20-inch microstrip trace with SMA connectors on each side. The board material is FR-4. A custom channel representation can be created using the HyperLynx toolbox to add S-parameter models, transmission lines, vias, and so forth.

Modifying the Receiver Settings

Repeat To Modify the Driver Settings. Adjust the receiver (U2) simulation parameters.

For more information on the driver settings, refer to <u>UG366</u>, *Virtex-6 FPGA GTX Transceivers User Guide*.

Important. The global simulation temperature setting can be changed in either driver or receiver configurators (see Figure 1-5). However, because it is a global setting in Eldo, the last change made is applied to the entire circuit, regardless of whether the TX or RX configurator was used to make that change.

General Settings	Applica	tion: HyperLynx 💌
Temperature corner:	Typical 💌	Global simulation temperature: 25 C
Rx Settings		
Silicon process corner:	Typical 💌	RX termination control (TERMINATION_CTRL_[4:0]_RX): 10101
Voltage corner:	Typical 💌	RX supply (MGTAVCCRX): 1.0 V RX termination supply (MGTAVTTRX): 1.2 V
Receiver GND termination:		Receiver GND termination = No
External AC coupling:	$\overline{\mathbf{v}}$	External AC coupling = Yes
Equalizer gain:	5 0=min 7=max	(RXEQMIX[2:0]): 000
Reset Defau	It Settings	OK Cancel

Figure 1-5: Configuration Dialog Box

Note: Be sure to click only once. If multiple instances of the configurators are open, close all but one by clicking on their **Cancel** buttons.

Adjusting Simulation Settings

1. Click Run Interactive Simulation (Oscilloscope) under the Simulate tab.

		_
		Select and configure stimulus
	Standard Eye Diagram Start Simulaton Start Simulaton Global Gert-Net/Pin	Celeor and conligure stimulus
	 ⊂ Edge MHz 1623.38 ⊂ Eldo/ADMS ⊂ Oscillator Duty 50.0 % 	Select Eldo simulation engine
	Slow-Weak Typical Fast-Strong	- Ignore
	Overview pane Readout text Probes: Located: Always at the die ✓ Previous results ✓ Previous results ✓ Latest results ✓ Corrent ✓ Oltage ✓ Outage ✓ Outage ✓ Disbility ✓ Usibility ✓ Outage ✓ Outage ✓ Outage ✓ Disbility ✓ Disbility	Select nodes to be plotted Virtex-6 FPGA equalizer outputs
Vaveform	Vestual Position Vestual Copy to Clip Copy to Clip Erase Print	
Þ	Close 1 ÷V/div 1÷ns/div Help	

2. Select the **Eldo/ADMS** radio button under the **Start Simulation** button, as shown in Figure 1-6.

UG376_c1_06_020410

- 3. Add a checkmark to all nodes to plot.
- 4. Select the type of stimulus for HyperLynx to generate. The oscilloscope has several stimulus waveform options available:
 - a. The **Standard** radio button under the **Operation** section provides options to run a single rising or falling edge simulation or a pulse train of a certain frequency and duty cycle.
 - b. The Eye Diagram radio button under the Operation section provides capabilities to set up various bit sequences after the Configure button is clicked. The available Bit Pattern selection includes PRBS, 8B/10B, Toggling, USB 2.0 and Custom patterns (see Figure 1-7). The Configure Eye Diagram dialog box also allows the

user to set up an eye mask for the eye diagram display in the oscilloscope. Refer to the HyperLynx manuals for more details on how to set up these parameters.

itimulus Name:	
Bit pattern	
Sequence: PRBS (pseudo random)	Bit order: 7 💌 Initial state: High 💌
0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 Sequence length: 127	
	<u> </u>
Stimulus Bit interval: 0.308 ns	Amount: 1. % of interval
Sequence repetitions: 10	Distribution: Gaussian (1 Sigma) 💌
Display Skip first: 10 - bits	Generate the same random numbers as were used in the last jitter simulation

Figure 1-7: 6.5 Gb/s PRBS 27 Stimulus

Notes relevant to this section:

- *Important*! The frequency of the pulse train and the time of the bit interval specified in the oscilloscope must match the data rate setting in the TX configurator. Each setting has to be done explicitly.
- The radio buttons in the IC modeling group (Figure 1-6) are ineffective because the simulation corner selections are made using the **Configure Model** button in the **Assign Models** dialog box.
- Checkboxes with the red SPICE label on their (Figure 1-6) left represent schematic symbol nodes that are connected to **NC** in the **Assign Models** dialog box. These nodes are defined on the subcircuit definition line of the symbol, but do not need to be connected to anything else on the schematics because they are used solely to provide probing capabilities for waveforms inside the subcircuits.

Running the Simulation

Click the **Start Simulation** button and wait for the simulator to finish the simulation. The waveform window automatically displays the results for the selected waveforms in the oscilloscope. The vertical and horizontal scales can be adjusted to maximize the waveforms, as shown in Figure 1-8.

Figure 1-8: Example Simulation Results

Appendix A

Frequently Asked Questions

All Versions

1. What does the "Device-kit .INI file where_am_i\V6_kit.ini does not exist or cannot be read" message shown in Figure A-1 mean?

Figure A-1: Device-kit .INI Error Message

HyperLynx cannot find the Device-kit.INI file, most likely because the DesignName.pjh file has an incorrect path for the .ini file. The V6_kit.ini file is located in the hl_projects directory. Do one of the following:

- Click **No**, close HyperLynx and edit the .pjh file as described in Installation and Requirements, page 7 and start HyperLynx again.
- Click **Yes** and browse to the hl_projects directory to locate the DesignName.pjh file.

2. What is the J0 symbol on the schematic screen (Figure A-2)?

The J0 symbol appears unconnected on the schematics screen and must *not* be removed from the schematics. The J0 symbol inserts global simulation parameters, such as **.TEMP** and **.option compat** (the HSPICE compatibility switch for Eldo) into the project. These parameters are managed automatically by the configurator programs. Removing J0 results in incorrect simulations.

3. What does the "Your model library paths contain at least one space" message shown in Figure A-3 mean?

UG376_aA_03_011110

Figure A-3: Spaces in Path Error Message

If the installation instructions in Installation and Requirements are followed, this message can usually be ignored. This message appears when model search path directories contain space characters. From the menu bar, select **Options** \rightarrow **Directories** to verify in the list (Figure A-4) that there are no spaces in the path pointing to the root of this kit.

IVD TIN and EEC Character		•
Priverk/teethop, etc. etc. kir 1, 0, aldebbl, excisenteb	Disease 1	
Use directory of last-opened file	Default	
Model-library file path(s)		
C:\MentorGraphics\2009HL\SDD_HOME\hyperlynx\LIBS\	Edit	
C:\work\test\v6_gtx_sis_kit_1_0_eldo\hl_projects\\ C:\work\test\v6_gtx_sis_kit_1_0_eldo\hl_projects\\testbenches\	Default	
		Dath to the life much
		Path to the kit must
3oardSim qualified-parts-list file(s) (QPL)		not contain spaces
	Add File	
✓ Use QPL file(s) to assign models	Default	
Stimulus file path(s)		
(design directory)	Edit	
	Default	
Most recently used files		
Limit list 8 files		
Reports and log files directory		
C:\MentorGraphics\2009HL\SDD_HOME\hyperlynx\HYPFILES\	Browse	
Use project directory for reports and log files	Default	
Cancer Help		1
		116376 22 04 0200410

Figure A-4: Example of Path

4. What if the simulation does not start or aborts prematurely?

This might occur if:

- The correct simulation in HyperLynx is not selected. Verify that Eldo/ADMS is the selected simulator engine in the **Digital Oscilloscope** window.
- The HSPICE compatible radio button is not selected or the Eldo executable is not listed in the Circuit Simulators tab of the Setup → Options → General dialog box. See Figure A-5 for proper selection.
- The HyperLynx license is not set to perform Eldo simulations. Contact the license manager or a Mentor Graphics representative to resolve this issue.

	Applica	ation: HyperLynx 💌
Temperature corner:	Typical 💌	Global simulation temperature: 25 C
Settings		
Silicon process corner:	Typical 💌	RX termination control (TERMINATION_CTRL_[4:0]_RX): 10101
Voltage corner:	Typical	RX supply (MGTAVCCRX): 1.0 V RX termination supply (MGTAVTTRX): 1.2 V
eceiver GND termination:	Г	Receiver GND termination = No
External AC coupling:	V	External AC coupling = Yes
Equalizer gain:	5 0=min 7=max	(RXEQMIX[2:0]): 000

UG376_aA_05_011110

Figure A-5: HSPICE Compatible Radio Button

Appendix B

HSPICE and HyperLynx/Eldo Correlation Results

Introduction

The results generated by the Hyperlynx and Eldo simulators are validated by executing a set of the same simulations in both simulators and plotting the waveform results on top of each other to verify identical outcomes.

Note: HSPICE version A-2009.03 was used for the S-parameter/circuit correlation and the GTX REFCLK and GTX transceiver simulations.

For this correlation, only the silicon models for the GTX transmitter and receiver are used. Package and channel models are ignored, except for the GTX reference clock, where the package model is included.

Table B-1 lists the parameter settings used by the GTX transceiver simulations.

Table B-1: GTX Transceiver Simulations Parametric Settings

File Extension	TXDIFFCTRL	TXPOSTEMPHASIS	TXPREEMPHASIS	RXEQMIX	
Typical Process Corner with Typical Voltage and Typical Temperature					
.tr0	4'b0000	5'b00000	4'b0000	3'b000	
.trl	4'b0100	5'b00000	4'b0000	3'b000	
.tr2	4'b1010	5'b00000	4'b0000	3'b000	
.tr3	4'b1111	5'b00000	4'b0000	3'b000	
.tr4	4'b1010	5'b00000	4'b0100	3'b000	
.tr5	4'b1010	5'b00000	4'b1010	3'b000	
.tr6	4'b1010	5'b00000	4'b1111	3'b000	
.tr7	4'b1010	5'b01100	4'b0000	3'b000	
.tr8	4'b1010	5'b10010	4'b0000	3'b000	
.tr9	4'b1010	5'b11111	4'b0000	3'b000	
.tr10	4'b1010	5'b00111	4'b0011	3'b000	
.trll	4'b1010	5'b00000	4'b0000	3'b010	
.tr12	4'b1010	5'b00000	4'b0000	3'b100	
.tr13	4'b1010	5'b00000	4'b0000	3'b111	

File Extension	TXDIFFCTRL	TXPOSTEMPHASIS	TXPREEMPHASIS	RXEQMIX		
Fast Process Corner with Maximum Voltage and Cold Temperature						
.tr14	4'b1010	5'b00000	4'b0000	3 ' b000		
.tr15	4'b1010	5'b0011	4'b0011	3'b000		
Slow Process Corner with Minimum Voltage and Hot Temperature						
.tr16	4'b1010	5'b00000	4'b0000	3'b000		
.tr17	4'b1010	5'b0011	4'b0011	3'b000		

Table B-1: GTX Transceiver Simulations Parametric Settings (Cont'd)

The plots are zoomed in and aligned to better highlight the correlation.

These conditions were used for the transceiver correlation:

- A data rate of 6.5 Gb/s
- PRBS7 data pattern
- No external capacitor
- No ground termination

The simulation results are provided in these sections:

- GTX REFCLK Model Correlation, page 23
- GTX Transceiver Model Correlation, page 26

GTX REFCLK Model Correlation

Figure B-1 through Figure B-3 contain the waveform overlays of the correlation simulations for the GTX REFCLK testbench (GTX_RefClk.ffs).

Figure B-1: GTX REFCLK - Typical

Figure B-2: GTX REFCLK - Fast

Figure B-3: GTX REFCLK - Slow

GTX Transceiver Model Correlation

Figure B-4 through Figure B-21 contain the waveform overlays of the correlation simulations for the GTX transceiver models.

Figure B-4: .tr0 TXDIFFCTRL = 0000, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-5: .tr1 TXDIFFCTRL = 0100, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 000 (GTX Transceiver - Typical)

Figure B-6: .tr2 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-7: .tr3 TXDIFFCTRL = 1111, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-8: .tr4 TXDIFFCTRL = 1010, TXPREEMP = 0100, TXPOSTEMP = 00000, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-9: .tr5 TXDIFFCTRL = 1010, TXPREEMP = 1010, TXPOSTEMP = 00000, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-10: .tr6 TXDIFFCTRL = 1010, TXPREEMP = 1111, TXPOSTEMP = 00000, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-11: .tr7 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 01100, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-12: .tr8 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 10010, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-13: .tr9 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 11111, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-14: .tr10 TXDIFFCTRL = 1010, TXPREEMP = 0011, TXPOSTEMP = 00111, RXEQMIX = 000 (Typical - GTX Transceiver)

Figure B-15: .tr11 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 010 (Typical - GTX Transceiver)

Figure B-16: .tr12 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 100 (Typical - GTX Transceiver)

Figure B-17: .tr13 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 111 (Typical - GTX Transceiver)

Figure B-18: .tr14 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 000 (Fast - GTX Transceiver)

Figure B-19: .tr15 TXDIFFCTRL = 1010, TXPREEMP = 0011, TXPOSTEMP = 00011, RXEQMIX = 000 (Fast - GTX Transceiver)

Figure B-20: .tr16 TXDIFFCTRL = 1010, TXPREEMP = 0000, TXPOSTEMP = 00000, RXEQMIX = 000 (Slow - GTX Transceiver)

Figure B-21: .tr17 TXDIFFCTRL = 1010, TXPREEMP = 0011, TXPOSTEMP = 00011, RXEQMIX = 000 (Slow - GTX Transceiver)