

2 AA Cells Replace 9V Battery, Extend Operating Life

Design Note 63

Steve Pietkiewicz

Operating life is an important feature in many portable battery-operated systems. In many cases the power source is the ubiquitous 9 V "transistor" battery. 5 V generation is accomplished with a linear regulator. Significant gains in battery life can be obtained by replacing the $9 \mathrm{~V} / \mathrm{linear}$ regulator combination with 2 AA cells and a step-up switching regulator. Two (alkaline) AA cells occupy 1.3 cubic inches, the same as a 9V battery, but contains 6WH of energy, compared to just 4WH in an alkaline 9 V battery. Two AA cells also cost less than a 9 V battery. 1 The additional energy in the AA cells provides longer operating life when compared to a 9V battery based solution.
An evaluation of the three approaches with a 30 mA load illustrates the differences in battery life. An HP7100B strip chart recorder provides a nonvolatile record of circuit performance. The linear regulator circuit shown in Figure 1 uses an LT1120 micropower low-dropout regulator IC. A minimum of external components are required. No inductors or diodes are needed; however, the linear stepdown process is inherently inefficient. The step-down switcher shown in Figure 2 uses an LT1173 configured in step-down mode driven from an alkaline 9 V battery. In Figure 3 the step-up circuit uses an LT1173 configured in step-up mode driven from a pair of alkaline AA cells. The two switching circuits require an external inductor, diode and output capacitor in addition to the IC.

BATTERY $=9 \mathrm{~V}$ DURACELL ALKALINE \#MN1604

Figure 1. 9V to 5V Linear Regulator

1. A quick check at the local drugstore yielded $\$ 2.99$ for a 4-pack of alkaline AA cells and $\$ 2.49$ for a single 9V battery (after $\$ 1.00$ mail-in rebate).

Circuit operation of the switching step-down regulator is straightforward. A comparator inside the LT1173 senses output voltage on its "sense" pin. When $\mathrm{V}_{\text {Out }}$ drops below 5 V , the on-chip switch cycles. As current ramps up and ramps down in L1, it flows into C 1 and the load, raising output voltage. When $\mathrm{V}_{\text {OUt }}$ rises above 5 V , the cycling action stops and the regulator goes into a standby mode, pulling $110 \mu \mathrm{~A}$ from the supply. C1 is left to supply energy to the load. These "bursts" of cycles occur as needed to keep the output voltage at 5 V .50 mV of hysteresis at the sense pin eliminates the need for frequency compensation. The step-up regulator operates in a similar fashion, although in this case the inductor current flows into the load only on the discharge half of the switch cycle. Output voltage is regulated in a similar manner.

Figure 2. 9V to 5V Step-Down Converter

BATTERY $=2 \times$ DURACELL "AA" ALKALINE \#MN1500 *TOKO 262LYF-0091K

Figure 3. 3V to 5V Step-Up Converter

Efficiency curves for the three circuits are shown in Figures 4 and 5. The linear regulator circuit has efficiency of 52% with a fresh battery. As the input-output differential decreases, the efficiency increases and at end of battery life exceeds 90%. Regulator ground current limits efficiency at drop-out. The switch-mode step-down circuit has almost constant efficiency, ranging from 84% at 6.3 V input to 82% at 9.5 V input. Minimum $\mathrm{V}_{\text {IN }}$ is set by the drop of the emitter follower switch inside the LT1173. Performance for the step-up converter is shown in Figure 5. At higher inputs, the switch drop is a lower percentage of supply, resulting in higher efficiency.
The three regulators show substantial differences in operating life. The linear regulator operates for 16.5 hours, as shown in Figure 6. Figure 7 shows a 19 hour operating life for the step-down switching circuit. The step-up regulator circuit's performance, detailed in Figure 8, yields an operating life of 26 hours. This is an increase of 58% over the linear step-down approach at less cost and 37% over the switching step-down approach.

Figure 4. Step-Down Conversion Efficiency 5V Output, 30mA Load

Figure 5. Step-Up Conversion Efficiency 5V Output, 30mA Load

Figure 6. 9V to 5V Step-Down Linear LT1120, 30mA Load

DN63••07
Figure 7. 9V to 5V Step-Down Switcher -LT1173-5, 30mA Load

Figure 8. 3V to 5V Step-Up Switcher -LT1173-5, 30mA Load

For literature on our Micropower Switching Regulators, call (800) 637-5545. For applications help, call (408) 432-1900, Ext. 456

